

Reference number
ISO/TS 18234-10:2013(E)

© ISO 2013

TECHNICAL
SPECIFICATION

ISO/TS
18234-10

First edition
2013-10-15

Intelligent transport systems — Traffic
and travel information via transport
protocol experts group, generation 1
(TPEG1) binary data format —

Part 10:
Conditional access information
(TPEG1-CAI)

Systèmes intelligents de transport — Informations sur le trafic et le
tourisme via les données de format binaire du groupe d'experts du
protocole de transport, génération 1 (TPEG1)

Partie 10: Information d'accès conditionnel (TPEG1-CAI)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2013 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved iii

Contents Page

Foreword .. iv

Introduction .. vi

1 Scope .. 1

2 Normative References ... 1

3 Abbreviated terms ... 1

4 Application identification and version number signalling .. 2
4.1 Application identification.. 2
4.2 Version number signalling ... 2

5 Service Component Data .. 3

6 Conditional Access Methodology .. 3

7 Message Components .. 4
7.1 List of Generic Component Ids .. 4
7.2 CAIMessage ... 5
7.3 CAIDataUnit .. 5

Annex A (normative) Binary SSF and Data Types ... 6
A.1 Conventions and symbols .. 6
A.1.1 Conventions ... 6
A.1.2 Symbols .. 6
A.2 Representation of syntax.. 7
A.2.1 General ... 7
A.2.2 Data type notation ... 7
A.2.3 Application dependent data types ... 10
A.2.4 Toolkits and external definition ... 14
A.2.5 Application design principles .. 15
A.3 TPEG data stream description ... 15
A.3.1 Diagrammatic hierarchy representation of frame structure ... 15
A.3.2 Syntactical Representation of the TPEG Stream ... 16
A.3.3 Description of data on Transport level .. 20
A.3.4 Description of data on Service level .. 22
A.3.5 Description of data on Service component level ... 22
A.4 General binary data types .. 23
A.4.1 Primitive data types ... 23
A.4.2 Compound data types ... 28
A.4.3 Table definitions .. 31
A.4.4 Tables ... 32

Bibliography .. 48

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

iv © ISO 2013 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, a
technical committee may decide to publish other types of normative document:

 an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in
an ISO working group and is accepted for publication if it is approved by more than 50 % of the members
of the parent committee casting a vote;

 an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical
committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting
a vote.

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a
further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is
confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an
International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TS 18234-10 was prepared by the European Committee for Standardization (CEN) Technical Committee
CEN/TC 278, Road transport and traffic telematics, in collaboration with ISO Technical Committee
ISO/TC 204, Intelligent transport systems, in accordance with the Agreement on technical cooperation
between ISO and CEN (Vienna Agreement).

ISO/TS 18234 consists of the following parts, under the general title Intelligent transport systems — Traffic
and travel information via transport protocol experts group, generation 1 (TPEG1) binary data format:

 Part 1: Introduction, numbering and versions (TPEG1-INV)

 Part 2: Syntax, semantics and framing structure (TPEG1-SSF)

 Part 3: Service and network information(TPEG1-SNI)

 Part 4: Road Traffic Message application (TPEG1-RTM)

 Part 5: Public Transport Information (PTI) application

 Part 6: Location referencing applications

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved v

 Part 7: Parking information (TPEG1-PK1)

 Part 8: Congestion and travel-time application (TPEG1-CTT)

 Part 9: Traffic event compact (TPEG1-TEC)

 Part 10: Conditional access information (TPEG1-CAI)

 Part 11: Location Referencing Container (TPEG1-LRC)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

vi © ISO 2013 – All rights reserved

Introduction

TPEG technology uses a byte-oriented data stream format, which may be carried on almost any digital bearer
with an appropriate adaptation layer. TPEG-messages are delivered from service providers to end-users and
used to transfer information from the database of a service provider to an end-user’s equipment.

The brief history of TPEG technology development dates back to the European Broadcasting Union (EBU)
Broadcast Management Committee establishing the B/TPEG project group in autumn 1997 with the mandate
to develop, as soon as possible, a new protocol for broadcasting traffic and travel-related information in the
multimedia environment. TPEG technology, its applications and service features are designed to enable
travel-related messages to be coded, decoded, filtered and understood by humans (visually and/or audibly in
the user’s language) and by agent systems.

One year later in December 1998, the B/TPEG group produced its first EBU specifications. Two Technical
Specifications were released. ISO/TS 18234-2, described the Syntax, Semantics and Framing Structure,
which is used for all TPEG applications. ISO/TS 18234-4 (TPEG-RTM) described the first application, for
Road Traffic Messages.

Subsequently, CEN/TC 278/WG 4, in conjunction with ISO/TC 204, established a project group comprising the
members of B/TPEG and they have continued the work concurrently since March 1999. Since then two further
parts were developed to make the initial complete set of four parts, enabling the implementation of a
consistent service. ISO/TS 18234-3 (TPEG-SNI) describes the Service and Network Information Application,
which should be used by all service implementations to ensure appropriate referencing from one service
source to another. ISO/TS 18234-1 (TPEG-INV), completes the series, by describing the other parts and their
relationship; it also contains the application IDs used within the other parts. Additionally ISO/TS 18234-5 the
Public Transport Information Application (TPEG-PTI) and ISO/TS 18234-6 (TPEG-LRC), were developed.

TPEG applications are developed using UML modelling and a software tool is used to automatically select
content which then populates this TS. Diagrammatic extracts from the model are used to show the capability
of the binary coding in place of lengthy text descriptions; the diagrams do not necessarily include all relevant
content possible.

This Technical Specification describes the binary data format of the on-air interface of the Conditional Access
Information application, (TPEG-CAI) with the technical version number TPEG-CAI_1.0/001.

CAI application

The basic concept behind the CAI application is to transport CAI in separate TPEG service components of a
dedicated application type and to define an SNI table that contains the link between scrambled content and
related CAI.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

TECHNICAL SPECIFICATION ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 1

Intelligent transport systems — Traffic and travel information
via transport protocol experts group, generation 1 (TPEG1)
binary data format —

Part 10:
Conditional access information (TPEG-CAI)

1 Scope

This Technical Specification contains the definition of the TPEG Conditional Access Information (CAI)
application. It enables dedicated conditional access data, such as management messages (e.g. Control
Words and Entitlement Control Messages) to be delivered to recipient client devices. This TPEG application is
designed for a service provider to: establish setup, prolongation or revocation of services to a specific client
device, using a limited capacity unidirectional broadcast channel and without recourse to service-client
handshaking.

This TPEG application defines:

 the logical channel, for the transmission of the additional CA information (CAI);

 how the CAI is linked and synchronized to the scrambled content.

This Technical Specification is related to conditional access applied at the service component level of a TPEG
service. It is an open design for the integration of various different conditional access systems, externally
specified, which are signalled by the TPEG service Encryption Indicator to allow client devices to operate
correctly.

2 Normative References

The following referenced documents are indispensable for the application of this Technical Specification. For
dated references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/TS 18234-1, Intelligent transport systems — Traffic and travel information via transport protocol experts
group, generation 1 (TPEG1) binary data format — Part 1: Introduction, numbering and versions (TPEG1-INV)

ISO/TS 18234-2, Intelligent transport systems — Traffic and travel information via transport protocol experts
group, generation 1 (TPEG1) binary data format — Part 2: Syntax, semantics and framing structure
(TPEG1-SSF)

ISO/TS 18234-3, Intelligent transport systems — Traffic and travel information via transport protocol experts
group, generation 1 (TPEG1) binary data format — Part 3: Service and network information (TPEG1-SNI)

3 Abbreviated terms

For the purposes of this document, the following abbreviated terms apply.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

2 © ISO 2013 – All rights reserved

AID Application Identification

CA Conditional Access

CAI Conditional Access Information

CRC Cyclic redundancy check

ECM Entitlement Control Message

EMM Entitlement Management Message

TPEG Transport Protocol Expert Group

SSF Syntax, Semantics and Framing Structures

TTI Traffic and Traveller Information

4 Application identification and version number signalling

4.1 Application identification

The word 'application' is used in the TPEG specifications to describe specific subsets of the TPEG structure.
An application defines a limited vocabulary for a certain type of messages, for example parking information or
road traffic information. Each TPEG application is assigned a unique number, called the Application
Identification (AID). An AID is defined whenever a new application is developed and these are all listed in
ISO/TS 18234-1.

The application identification number is used within the TPEG-SNI application to indicate how to process
TPEG content and facilitates the routing of information to the appropriate application decoder.

4.2 Version number signalling

Version numbering is used to track the separate versions of an application through its development and
deployment. The differences between these versions may have an impact on client devices.

The version numbering principle is defined in ISO/TS 18234-1.

Table 1 shows the current version numbers for signalling CAI within the SNI application:

Table 1 — Current version numbers for signalling of CAI

major version number 1

minor version number 0

STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/TS 18
23

4-1
0:2

01
3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 3

5 Service Component Data

TPEG-CAI makes use of the "Service component data with dataCRC" according to Annex A, section
A.3.2.6.2.1. For explanatory purposes, this is repeated here.

< ServCompFrameProtected >:=

 <ServCompFrameHeader>(header),

 external <ApplicationContent>(content),

 <CRC>(dataCRC);

: CRC protected service component frame

: Component frame header as defined in A.3.2.6.1

: Content specified by the individual application

: CRC starting with first byte after the header

The main frame of CAI defines ApplicationContent as follows:

<ApplicationContent>:= : application content

 messageCount * <CAIMessage>(msg); : Any number of any CAI message components

6 Conditional Access Methodology

Conditional access (CA) is specified within TPEG-SSF and TPEG-SNI as a function being applied on service
frame or service component level. The method used is indicated via the Encryption Identifier (EncID) directly
in the service frame or for components via the SNI Fast Tuning Table (Guide to the Services 1). This
specification is related to conditional access applied on service component level.

Generally, a broadcast based CA-system requires encryption related data to be transmitted which is
independent from the content, but necessary for decryption and subscriber management.

If a conditional access system is applied on the TPEG service component level, some service components
may be encrypted using the same "encryption key", while others remain unencrypted or use different
"encryption keys". Therefore, several service components can share the same conditional access information
, if they are supposed to be offered as one bundle and hence are encrypted with the same keys.

Each of the aforementioned bundles may require CA-management-messages, which have to be transmitted
separated from the (encrypted) content in the corresponding service components. The most appropriate way
for the transport is the use of separate service components of a dedicated application type.

For each encrypted TPEG-Service component a link or reference to the service component carrying the
relevant CA information is required. This is handled by TPEG-SNI GST-Table 6, Conditional Access
Information Reference.

EXAMPLE

A TPEG Service may contain the following service components:

SCID Application
0 SNI
2 TEC
5 TEC (encrypted)
7 TEC (encrypted)
8 PTI
10 PKI (encrypted)
20 CAI
21 CAI
30 CAI

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

4 © ISO 2013 – All rights reserved

The service components 5 and 7 are encrypted with key 1, while service component 10 is encrypted using key
2. Hence two components with CA-meta information for the corresponding component are required, in the
example listed as SCID 20 and 21. A third CAI component, in the example number 30, contains CA-meta
information that relates to all encrypted components independent which key is applied.

This specification describes the generic containers for the CAI application. The container content will be
proprietary and specified individually for each CA-System indicated by the encryption indicator (EncID). The
linking between encrypted service components and related CAI-Components is achieved via a reference table
within the TPEG-SNI application.

7 Message Components

Unlike other TPEG applications, TPEG-CAI does not use a Message Management Container and does not
use a Location Referencing Container; it only uses an Application Event Container.

Figure 1 visualises the logical structure of the Conditional Access Information (CAI) application.

class ConditionalAc...

CAIMessage

«External»
CAIDataUnit

1

Figure 1 — Logical structure of CAI application

7.1 List of Generic Component Ids

Name Id

CAIMessage 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 5

7.2 CAIMessage

A TPEG-CAI Message includes solely one single container for proprietary CA data.

The CAI Message Container is available to carry data, which is defined within the CA system specific
specifications. The CAIDataUnit is directly following after the lengthAttr of the CAIMessage.

<CAIMessage(1)>:=
 <IntUnTi>(id),
 <IntUnLoMB>(lengthComp),

 <IntUnLoMB>(lengthAttr),
 <CAIDataUnit>(data);

: Identifier = 1
: Length of component in bytes, excluding
: the id and length indicator
: Length of attributes
: CAI data

7.3 CAIDataUnit

The CAIDataUnit carries the data that is specified by the corresponding conditional access specification.

<CAIDataUnit>:=
 m*<byte>;

 CAI data
:proprietary CA data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

6 © ISO 2013 – All rights reserved

Annex A
(normative)

Binary SSF and Data Types

A.1 Conventions and symbols

A.1.1 Conventions

A.1.1.1 Byte ordering

All numeric values using more than one byte are coded in “Big Endian” format (most significant byte first).
Where a byte is subdivided into bits, the most significant bit (“b7”) is at the left-hand end and the least
significant bit (“b0”) is at the right-hand end of the structure.

A.1.1.2 Method of describing the byte-oriented protocol

TPEG uses a data-type representation for the many structures that are integrated to form the transmission
protocol. This textual representation is designed to be unambiguous, easy to understand and to modify, and
does not require a detailed knowledge of programming languages.

Data types are built up progressively. Primitive elements, which may be expressed as a series of bytes are
built into compound elements. More and more complex structures are built up with compound elements and
primitives. Some primitives, compounds and structures are specified in this Technical Specification, and apply
to all TPEG Applications. Other primitives, compounds and structures are defined within applications and are
local only to that application.

A resultant byte-stream coded using C-type notation is shown in ISO/TS 18234-2:2006, Annex E.

A.1.1.3 Reserved data fields

If any part of a TPEG data structure is not completely defined, then it should be assumed to be available for
future use. The notation is UAV (unassigned value). This unassigned value should be encoded by the service
provider as the value 00 hex. This allows newer decoders using a future TPEG Standard to ignore this data
when receiving a service from a provider encoding to this older level of specification. A decoder which is not
aware of the use of any former UAVs can still make use of the remaining data fields of the corresponding
information entity. However, the decoder will not be able to process the newly defined additional information.

A.1.2 Symbols

A.1.2.1 Literal numbers

Whenever literal numbers are quoted in TPEG Standards, the following applies:

 123 = 123 decimal

 123 hex = 123 hexadecimal

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 7

A.1.2.2 Variable numbers

Symbols are used to represent numbers whose values are not predefined within the TPEG Standards. In
these cases, the symbol used is always local to the data type definition. For example, within the definition of a
data type, symbols such as “n” or “m” are often used to represent the number of bytes of data within the
structure, and the symbol “id” is used to designate the occurrence of the identifier of the data type.

A.1.2.3 Implicit numbers

Within the definition of a data structure it is frequently necessary to describe the inclusion of a component
which is repeated any number of times, zero or more. In many of these cases it is convenient to use a
numerical symbol to show the component structure being repeated a number of times, but the number itself is
not explicitly included within the definition of the data structure. Often, the symbol “m” is used for this purpose.

A.2 Representation of syntax

A.2.1 General

This clause introduces the terminology and the syntax that is used to define TPEG data elements and
structures.

A.2.2 Data type notation

A.2.2.1 Rules for data type definition representation

The following general rules are used for defining data types:

 a data type is written in upper camel case letters in one single expression.1 The data type may contain
letters (a-z), number (0-9), underscore "_", round brackets "()" and colon ":"; the first must be a letter;

EXAMPLE 1 IntUnLo stands for Integer Unsigned Long

 a data type is framed by angle brackets “ < > ” ;

 the content of a data type is defined by a colon followed by an equal sign “ := ”;

 the end of a data type is indicated by a semicolon “ ; ”;

 a descriptor written in lower camel case may be added to a data type as one single expression without spaces;

 a descriptor is framed by round brackets “ () ”;

 the descriptor contains either a value or a name of the associated type;

 data types in a definition list of another one are separated by commas “ , ”. The order of definition is defined as the
order of occurrence in a data stream;

 curly brackets (braces) “ { } ” group together a block of data types;

 control statements (“if”, “infinite”, “unordered” or “external”) are noted in lower case letters. A control statement is
followed by a block statement or only one data type:

1 Camel case is the description given to the use of compound words wherein each individual word is signalled by a
capital letter inside the compound word. Upper camel case means that the compound word begins with an upper-case
(capital) letter, and lower camel case means the compound word begins with a small letter.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

8 © ISO 2013 – All rights reserved

1) “if” defines a condition statement. The block’s (or data type’s) occurrence is conditional to the condition
statement being valid. The condition statement is framed with round brackets. This statement applies to any
data type;

2) “infinite” defines endless repetition of the block (or data type). This is only used to mark the main TPEG stream
as not ending stream of data;

3) “unordered” defines that the following block contains data types which may occur in any order, not only the one
used to specify subsequent data types. This statement applies to components only. (See Clause A2.3.3 -
Components);

4) “external” defines that the content of the data type is being defined external to the scope of given specification.
The control statement “external” must be followed by only one data. A reference to the corresponding
specification should follow in the comment. All types specified in TYP specification are treated as being in scope
of any application

EXAMPLE 2

<MMCLink(1)>:= : externally defined component

external <MessageManagementContainer(1)>; : id = 1, See Annex B (Message Management
Container)

 the expression “ n * ” indicates multiplicity of occurrence of a data type . The lower and upper bound are
implicitly from 0 to infinite; other bounds are described in square brackets between two points " .. " and
behind the data type descriptor. The " * " stands for no limitation at upper bound

EXAMPLE 3

m * <IntUnTi>(Attribute) [1..*] , : The “Attribute” must occur once at least and up
to infinite.

 a function “ fn () ” that is calculated over a data type is indicated by italic lower case letters. The comment
behind the definition of the function shall explain which function is used;

 any text after a colon “ : ” is regarded as a comment;

 a data type definition can be a template (i.e. not fully defined declarative structure) having a parameter
inside of round brackets "(x)" at the end of the data type name. Templates define structures, whose
structural definition is included as a basis for other data type definitions. To declare the given template
(making it identifiable) the name of the parameter is repeated as a descriptor in a nested data type of the
subsequent definition list. Templates allow for reading the generalised part of different instances i.e. to
specify data type interfaces. (See Clause A2.3.2 - Using templates as interfaces for further description)

EXAMPLE 4

<Template(x)> := : x defines the template parameter

<IntUnTi>(x); : descriptor x defines position of setting the
parameter in the list

 a data type can inherit a template by concatenating the data type name of the template including the
square brackets to its own name. The data type itself can again be a template having the "(x)" at its end
of name, or it instantiates the inherited template by defining the value of the parameter in the brackets. In
the latter case the brackets shall contain the decimal number of the identifier and the value shall be set in
the subsequent definition list. The structural definition of the inherited template is repeated as the first part
of the definition list before new data types are specified. (See Clause A2.3.2 - Using templates as
interfaces for further description)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 9

EXAMPLE 5

<AnotherTemplate(x)<Template(x)>>:= : second template inherits first

<IntUnTi>(x), : repeated definition from 1st template

<IntUnLi>(n); : additional structural definition

<Instance<AnotherTemplate(1)>>:= : instantiation of the second template

<IntUnTi>(1), : definition of parameter in the stream

<IntUnLi>(n), : structural definition from template

<IntUnTi>(value); : some more definition

 in the definition list a specific instance of a template (i.e. declarative structure) is described without the
brackets. Any inherited data type of this template may occur at that position in the data stream

EXAMPLE 6

<SomeData>:=

<AnotherTemplate>(anyAnotherTemplate); : Data stream contains e.g. <Instance>

The following additional guidelines help to improve the readability of data type definitions:

 data type names are written in bold;

 nested data type definitions are defined from top to bottom (i.e. higher levels first, then lower levels);

 a box is drawn around a data type definition;

 for clear graphical presentation, lines in a coding box if they are too long to fit, are broken with a
backslash “\” followed by a carriage return. The broken line restarts with an additional backslash

EXAMPLE 7

<LongLinesExample>:=
 <DateTimeVeryLongType\

 \NameMayBeInSeveralLines>,
 <DateTime>,
 <ShortString>;

: First line

: Second line

A.2.2.2 Description of data type definition syntax

A data type is an interpretation of one or more bytes. Each data type has a structure, which may describe the
data type as a composition of other defined data types. The data type structure shows the composition and
the position of each data element. TPEG defines data structures in the following manner:

<NewDataType>:=
 <DataTypeA>(descriptorA),
 <DataTypeB>(descriptorB);

: Description of data type
: Description of data A
: Description of data B

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

10 © ISO 2013 – All rights reserved

This shows an example data structure, which has just two parts, one of type <DataTypeA> and the other of
<DataTypeB>. A descriptor may be assigned to the data type, to relate the element to another part of the
definition. Comments about the data structure are included at the right-hand side delimited by the colon “:”
separator. Each of the constituent data types may be itself composed of other data types, which are defined
separately. Eventually each data type is expressible as one or more bytes.

Where a data structure is repeated a number of times, this may be shown as follows:

<NewDataType>:=
 <DataTypeA>,
 m * <DataTypeB>[0..*];

: Description of data type
: Description of data A
: Description of data B

Often, in such cases it is necessary to explicitly deliver to the decoder the number of times a data type is
repeated; sometimes it is not, because other means like framing or internal length coding allows knowledge of
the end of the list of the repeated data type. In other cases the overall length of a data structure in bytes
needs to be specified. Additionally the constraint on occurrences can be added, which tells how many
instances of the data type must be expected by the decoder. The “*” as upper bound means in this case that
at this place no restriction is given to the upper bound; in other words, infinite elements may follow.

Where the number of repetitions must be signalled, it may be accomplished using another data element as
follows:

<NewDataType>:=
 <IntUnTi>(n),
 n * <DataTypeA>[0..255],
 <DataTypeB>;

: Description of data type
: An integer representing the value of "n"
: Description of data A
: Description of data B

In the above example a decoder has to have the value of “n” in order to correctly determine the n’th position of
the <DataTypeB> in the list. Here as consequence of data type IntUnTi not more as 255 instances of the data
type can be coded.

In the following example the decoder uses the value of “n” to determine the overall length of the data
structure, and the value of “m” determines that <DataTypeB> is repeated m times:

<NewDataType>:=
 <IntUnTi>(n),
 m * <DataTypeA>;

: Description of data type
: Length, n, of data structure in bytes
: Description of data A

This data type definition is used to describe a variable structure switched by the value of x:

<NewDataType>:=
 <IntUnTi>(x),
 if (x=1) then <DataTypeA>,
 if (x=2) then <DataTypeB>,

: Description of data type
: Select parameter, x
: Included if x equals 1
: Included if x equals 2

A.2.3 Application dependent data types

This clause describes the methodology and syntax by which application data types may be constructed within
TPEG Applications. Two basic forms are described: data structures (being non-declarative) and components
(being declarative). Components contain an identifier which labels the structure, and which can be used by a
decoder to determine the definition of content of the structure. As such, components are used where options
are required, or where an application needs to build in ‘future proofing’. Data structures do not contain such
information, and are used in all other positions.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 11

This Annex does not specify the structures, which are actually used in TPEG Applications. Such specifications
are made in the respective parts of the Standard. However examples are given to show how such structures
may be built from the primitive elements already described above.

A.2.3.1 Data structures

Data structures are built up from several (i.e. more than one) elements: primitive, compound or other
structures (both non-declarative and declarative). As such, any application specific data type definition having
no component identifier is per definition a data structure. The term data structure is specifically used for data
type definitions having more than one sub element defined.

Examples of data structure might be:

EXAMPLE 1

<Activity>:=
 <DateTime>,
 <DateTime>,
 <ShortString>;

: Activity
: Beginning
: End
: Text

EXAMPLE 2

<Wave>:=
 <IntUnLi>(n),
 n * <IntSiTi>(sample)[0..8000];

: Sound sample
: Length of samples, n
: Between 0 and 8000 occurrences of a sample

Another example making use of a condition within a data type definition is shown below.

EXAMPLE 3 An application could use the example data types above in the following way

<Appointment>:=
 <IntUnTi>(at),
 if (at = 1)

 <WaveAlarm>,
 if (at = 2)

 <TextAlarm>,
 <Activity>;

: Appointment
: Alarm type

: Remind with a sound

: Remind with a text

: Let some action follow

<WaveAlarm>:=

 <DateTime>,
 <Wave>;

: Sound alarm
: When to wake up
: Sound to wake up to!

<TextAlarm>:=
 <DateTime>,
 <ShortString>;

: Text alarm
: When to display
: Text to display

For optional values a general mechanism is provided, using a bitarray for signalling optional values. In the
case that a corresponding bit of the bitarray is set (=1), the optional attribute is stored in the stream. In case
the bit is unset the attribute is not available and the next following attribute shall be processed in the stream.

EXAMPLE 4 Data structure with optional elements, signalled by a preceding bitarray as selector

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

12 © ISO 2013 – All rights reserved

<TimeInterval>:=
 <BitArray>(selector),

 if (bit 0 of selector is set)

 <IntUnTi>(years),
 if (bit 1 of selector is set)

 <IntUnTi>(months),
 if (bit 2 of selector is set)

 <IntUnTi>(days),
 if (bit 3 of selector is set)

 <IntUnTi>(hours),
 if (bit 4 of selector is set)

 <IntUnTi>(minutes),
 if (bit 5 of selector is set)

 <IntUnTi>(seconds);

: DaySelector

: Number of years between 0 and 100

: Number of months between 0 and twelve

: Number of days between 0 and 31

: Number of hours between 0 and 24

: Number of minutes between 0 and 60

: Number of seconds between 0 and 60

A.2.3.2 Using templates as interfaces

In addition to the possibility of coding the complete and static structural definition of a data structure, the
syntax does foresee that parts of the structure are conditionally different; signalled by a well defined first part
some other data types are different.

EXAMPLE

A tagged value (also known as TagLengthValue-Coding) starts with a type and length; afterwards the value follows. Let's
assume the type is an enumeration of some possible values, one would first specify the interface having only the type
defined. The different tagged value types would now inherit this interface, i.e. would have the type defined as first element
amended with the definition of the tagged value data type. The decoder now reads the interface information (the type
attribute) and knows how to proceed for reading the rest of the tagged value from the stream.

<DifferentDataList>:=
 n * <TaggedValue>(value);

: A list of data

: Different instances can have different types

<TaggedValue(x)>:=
 <tav001:ValueType>(type),

 <IntUnTi>(length);

: Template for tagged value

: Type of this tagged value

: Length in bytes in case that value type is
unknown

Example table tav001:ValueType:

Code Reference-English ‘word’ Comment

001 Service name

002 Price per month

Then the resulting list of inherited tagged value data types would be:

<ServiceName<TaggedValue(1)>>:=
 <tav001:ValueType>(1),

 <IntUnTi>(length),

 <ShortString>(serviceName);

: Template for tagged value

: Type of this tagged value

: Length in bytes in case that value type is
unknown

: Service name

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 13

<ServiceName<TaggedValue(2)>>:=
 <tav001:ValueType>(2),

 <IntUnTi>(length),

 <Float>(pricePerMonth);

: Template for tagged value

: Type of this tagged value

: Length in bytes in case that value type is
unknown

: Price per month

This interface allows a subsequent list of data types which can easily be extended, by using the same interface.

A.2.3.3 Components

A component is understood as a declarative structure having an interface as described in the previous clause.
A decoder of the data stream can identify the content of the structure with the help of the identifier which is
unique in the scope of any one TPEG Application Standard. In addition to the identifier a length indicator
allows the decoder to step over those components whose ids are unknown to it. This enables the possibility of
introducing new components in the data stream although decoders in the market do not know their content.
The old decoder does expect the content of the first version of a protocol and ignores simply unrecognized
data with small performance loss. The new decoder expects the second version of the protocol and can fully
decode that version of the protocol. Components should be used wherever future extensions are envisioned,
and where ‘future proofing’ is a strong requirement.

NOTE With this method even non-backwards compatible changes can be introduced into the existing market by
having a migration period being backward compatible and then later cutting of not longer supported devices, even though
it is expected that the migration will take its time.

In Addition to the concept of declarative structuring a second step of improvement of size efficiency combined
with the backward compatibility is specified. The first part following the header of a component in the data
stream is defined as attribute block. The attribute block starts with the length of the block in bytes which again
allows the decoder to step over attributes that are not specified in a first version of the protocol.

The decoder reads the attribute block length and decreases the count of bytes while reading the attributes in
case that the last known attribute is read, and the attribute block count is not zero, the remaining bytes in the
data stream are omitted to step over to the next well-known part of the data stream.

A.2.3.3.1 Definition of standard component interface

A component, including attributes, which is the general standard component, containing a unique "generic
component id", a length indicating count of bytes following as data after the component length and an attribute
length indicating the count of bytes in the attribute block (as first part of the component data). The structure is
defined by:

<Component(x)>:= : Component template used for standard components

 <IntUnTi>(x), : id is unique within the scope of the application.

 <IntUnLoMB>(compLengthInByte), : length of the component counted in bytes.

 <IntUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes.

A.2.3.3.2 Example for jumping over unknown content types

 let C1 be a component with an attribute a1 as ShortInt and a sub component C2;

 let C2 be a component with an attribute a2 as one IntUnTi and a second a3 as ShortString;

 let C3 be a component being the successor of C1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

14 © ISO 2013 – All rights reserved

<C1<Component(1)>>:=

 <IntUnTi>(1), : id = 1.

 <IntUnLoMB>(compLengthInByte), : length of the component counted in bytes

 <IntUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes

 <ShortInt>(a1), : first attribute in C1

 <C2>(c2); : sub component from C1

<C2<Component(2)>>:=

 <IntUnTi>(2), : id = 2.

 <IntUnLoMB>(compLengthInByte), : length of the component counted in bytes

 <IntUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes

 <IntUnTi>(a2), : first attribute in C2

 <ShortString>(a3); : second attribute in C2

<C3<Component(3)>>:=

 <IntUnTi>(3), : id = 3.

 <IntUnLoMB>(compLengthInByte), : length of the component counted in bytes

 <IntUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes

For example to demonstrate the method some padding bytes with value CD hex could be added to the stream
whereby a decoder could still read C1 – C3. In Figure A.1 one can see a first line with a position number, a
second line with the abbreviated function of that byte and a third line with sample content. The arrows under
the table show the possible jumps allowing the seeking over the different padding bytes.

Line function abbreviations mean:
CL : component (data) length in bytes AL : attribute block length in bytes
P : padding bytes A1, A2, A3 : attributes
C1, C2, C3 : component identifier, begin of the component

Pos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Func C1 CL AL A1’ A1” P P C2 CL AL A2 A3 A3 A3 A3 A3 P C3 CL AL
Val 1 15 4 42 12 CDh CDh 2 8 7 3 4 ‘T’ ‘E’ ‘S’ ‘T’ CDh 3 1 0

Figure A.1 — Example for jumping over unknown content with component header information

A.2.4 Toolkits and external definition

Some functionality is shared between different TPEG Applications. This is for example the case for location
referencing container and message management container. A TPEG Application therefore can refer to a data
type definition not specified in the same Technical Specification.

Toolkits are designed, so that the root components usable as external reference are defined as templates. A
TPEG Application using a toolkit template therefore needs to specify a unique generic component id for this
instantiation of the interface.

All subsequent components in a toolkit are defined as out of scope of the TPEG Application; i.e. the toolkit on
its own defines subcomponents beginning with 0. With that on one hand application decoder must be aware

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 15

that component ids of the application may be repeated in sub components of a toolkit. On the other hand
further development of application and toolkit can be done independently.

A.2.5 Application design principles

This clause describes design principles that will be helpful in building TPEG applications. A fundamental
assumption is that applications will develop and new features will be added. If design principles are adopted
properly then older decoders will still operate properly after extending features. Correct design should permit
applications to be upgraded and extended over time, providing new features to new decoders, and yet permit
existing decoders to continue to operate.

A.2.5.1 Variable data structures

Switches may be included within an application, which permit variations in the subsequent data structure.
However, the switch fixes the values of variations. A new type cannot be introduced without breaking
backward compatibility. This may be achieved by using components. When new features are likely to be
incorporated, attention should be given to the fact that old decoders just ‘skip over’ new data fields and still
expect the old components if they were mandatory.

A.2.5.2 Re-usable and extendable structures

Within an application there will be data structures, which are used repeatedly in a variety of places. There will
also certainly be an ever-growing set of structures, as the application protocol develops and incorporates new
features. Component templates may be used to minimize the number of occasions within the decoder’s
software in which the structure needs to be defined, and to permit an increasing variety of structures to be
used in a given location.

A.2.5.3 Validity of declarative structures

The Identifier of a component is uniquely defined within each application. The same number may be used in
different applications for completely different purposes. Within an application one identifier designates one
definition of a component. The design of an application may use components to implement placeholders or to
change the composition of elements in a fixed structure.

A.3 TPEG data stream description

A.3.1 Diagrammatic hierarchy representation of frame structure

Transport Frame: Sync Word Field Length Header CRC
Frame Type

= 0
Service Frame

Service Frame:
Service 3
(SID-A,
SID-B,
SID-C)

Number
of

Services
= n

Service 1
(SID-A,
SID-B,
SID-C)

Service 2
(SID-A,
SID-B,
SID-C)

Service ...
(SID-A,
SID-B,
SID-C)

Service n
(SID-A,
SID-B,
SID-C)

CRC

Figure A.2 — TPEG Frame Structure, Frame Type = 0 (i.e. stream directory)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

16 © ISO 2013 – All rights reserved

Transport Frame: Sync Word Field Length Header CRC
Frame Type

= 1
Service Frame

Service Frame:
Service

Identification
SID-A

Service
Identification

SID-B

Service
Identification

SID-C

Encryption
Indicator

fn (component multiplex)

...Service Component Multiplex:
Service

Component
Frame 1

Service
Component

Frame n

Service
Component

Frame ...

Encryption/Compression
Function

Field Length CRCService Component Frame:
Service

Component
Identifier

Component data

Figure A.3 — TPEG Frame Structure, Frame Type = 1 (i.e. conventional data)

A.3.2 Syntactical Representation of the TPEG Stream

A.3.2.1 TPEG transport frame structure

The following boxes are the syntactical representation of the TPEG frame structure shown in Clause A.3.1
The byte stream contains consecutive transport frames. Each frame includes:

The synchronization word (syncword) 2 bytes (See Clause A.3.3.1)

The length of the service frame in bytes (field length) 2 bytes (See Clause A.3.3.2)

The header CRC 2 bytes (See Clause A.3.3.3)

The frame type indicator 1 byte (See Clause A.3.3.4)

The service frame n bytes (n = Field Length)

The byte stream is built according to the above-mentioned repetitive structure of transport frames. Normally
one transport frame should follow another directly, however if any spacing bytes are required these should be
set to 0 hex (padding bytes).

<TpegStream>:=
 infinite {
 n * <IntUnTi>(0),
 <TransportFrame>
 };

: The data stream.
: Control element, (loop continues infinitely)
: Any number of padding bytes (0 hex)
: Transport frames

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 17

<TransportFrame>:=
 <IntUnLi>(FF0F hex),
 <IntUnLi>(m),

 <CRC>(headCRC),

 <IntUnTi>(x),

 <ServiceFrame(x)>;

: Sync word (FF0F hex)
: Number of bytes in Service Frame
: Header CRC, (See Clause A.3.3.4)

: Frame type of service frame

: Any service frame follows

A.3.2.2 TPEG service frame template structure

This service frame comprises:

<ServiceFrame(x)>:=
 n * <byte>;

: Template for service frame
: Content of service frame

A.3.2.3 Service frame of frame type = 0

The service frame is solely used to transport the stream directory information.

Number of services (n) 1 byte

n *(SID-A, SID-B, SID-C) n * (3 bytes)

CRC 2 bytes

<StreamDirectory<ServiceFrame(0)>>:=

 <IntUnTi>(n),
 n * <ServiceIdentifier>,

 <CRC>;

: Stream directory

: Number of services

: Any number of Service IDs

: CRC of Service IDs

A.3.2.4 Service frame of frame type = 1

Each service frame comprises:

SID-A, SID-B, SID-C 3 bytes (See Clause A.3.4.2)

The encryption indicator 1 byte (See Clause A.3.4.1)

The component data m bytes

The service level is defined by the service frame. Each transport frame carries one and only one service
frame. The service frame includes a component multiplex comprising one or more component frames.

Each service frame may contain a different range and number of component frames as required by the
service provider.

Each transport frame may be used by only one service provider and one dedicated service, which supports a
mixture of applications. A multiplex of service providers or services is realized by concatenation of multiple
transport frames. Each service frame includes service information that comprises the service identification
elements and the encryption indicator.

<ConventionalData<ServiceFrame(1)>>:=
 <ServiceIdentifier>,

 <IntUnTi>(encIdentifier),

 fn(<ServCompMultiplex>);

: Conventional data

: Service identification

: Encryption indicator n. 0 = no encryption

: Function fn (…) is utilized according to the chosen
encryption algorithm

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

18 © ISO 2013 – All rights reserved

A.3.2.5 TPEG service component frame multiplex

The component multiplex is a collection of one or more component frames, the type and order of which are
freely determined by the service provider. The resultant multiplex is transformed according to the encryption
method required (if the encryption indicator is not 0) or is left unchanged (if the encryption indicator = 0). The
length of the resultant data must be less than or equal to 65531 bytes.

<ServCompMultiplex>:=
 n * <ServCompFrame>(data);

: Any number of any component frames

A.3.2.6 Interface to application specific frames

The service component frame introduces the application specific code. This means further details of the data
stream are specified by the application specification. In the history for different needs slightly different frames
have been defined in the existing application specifications. To harmonize this kind of frames, especially for
new developments of specifications, this clause specifies not only a basic frame, which is required for any
application but also a selection of possible other frames, whereof an application can just choose one without
the need to specify its own frame.

An application specification, however, can specify its own frame, which shall at minimum include the following
base service component frame as first sub type.

A.3.2.6.1 TPEG base service component frame structure

In a TPEG data stream it shall be possible to have not only one content stream but more; even different from
the same application. This is possible with the help of the Service and Network Information (SNI) Application,
which is served like variable directory information in the data stream. Therein a table defines a unique number
for any content stream being transmitted. This includes also the definition which application is expected in one
specific frame. In other words the frame starts not with a typical interface template, but with a header, defining
three first values being in common with all service component frames. Therefore, any service component
frame is built as shown below:

<ServCompFrame>:=

 <ServCompFrameHeader>(header),

 <ApplicationData>(data);

: Service component frame

: Common service component header

: Component data

Where the service component header is specified as:

<ServCompFrameHeader>:=
 <IntUnTi>(scId),

 <IntUnLi>(lengthInByte),
 <CRC>(headerCRC);

: Common service component frame header
: Service component identifier (scid is defined by SNI
service component designating the application in this
service component frame)

: Length, n, of component data in bytes
: Header CRC (See Clause A.3.5.3)

At the component level data is carried in component frames which have a limited length. If applications require
greater capacity then the application must be designed to distribute data between component frames and to
recombine this information in the decoder.

The inclusion of the field length enables the decoder to skip a component.

The maximum field length of the component data (assuming that there is no transformation, and only one
component is included in the service frame) = 65526.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 19

A.3.2.6.2 TPEG specialized service component data schemata

It is in interest of consistency to make sure that service component frames still become defined in as similar
as possible in different applications. Specifically with three further attributes being of general nature. The
following proposed specialized service component data schemata can be used to inform on this general level
about following information:

a) The application data of a component frame with dataCRC is error-free.

Data CRC on this level makes it possible, that in case of errors only the service component frame (e.g. one
relatively small package of data) would be lost. Other parts of the service multiplex may still be valid and could
still be used. (See Clause A.3.5.4)

b) Count of messages the service component frame contains named messageCount.

Sometimes it is useful not only to know the opaque count of bytes, but also how many different message have
to be expected by the decoder (e.g. for displaying purpose).

c) Prioritization can be made by assigning a groupPriority.

In some cases the different service components received shall not just be handled by a FIFO buffer but also
with some qualification of priority of messages. In this case high priority message may take precedence over
other messages in the decoder. These may be presented to the user even before low priority messages are
decoded.

A.3.2.6.2.1 Service component data with dataCRC

Any application should at least specify a data CRC as defined in Clause A.3.5.4 at the end of application data
ensuring that bit errors can be detected on service component frame level.

< ServCompFrameProtected >:=

 <ServCompFrameHeader>(header),

 external <ApplicationContent>(content),

 <CRC>(dataCRC);

: CRC protected service component frame

: Component frame header as defined in A.3.2.6.1

: Content specified by the individual application

: CRC starting with first byte after the header

A.3.2.6.2.2 Service component data with dataCRC and messageCount

This service frame is used for applications containing messages more or less directly presented to the user
which indicate already on frame level how many messages are to be expected. Data CRC is contained as
well.

< ServCompFrameCountedProtected>:=

 <ServCompFrameHeader>(header),

 <IntUnTi>(messageCount),

 external <ApplicationContent>(content),
 <CRC>(dataCRC);

: CRC protected service component frame with
message count

: Component frame header as defined in A.3.2.6.1

: count of messages in this ApplicationContent

: actual payload of the application

: CRC starting with first byte after the header

A.3.2.6.2.3 Service component data with dataCRC and groupPriority

When messages need to be grouped by priority, this service component frame is used. If not all messages
within the frame have the same priority, 'typ007_000: undefined' shall be used. Data CRC is contained as
well.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

20 © ISO 2013 – All rights reserved

< ServCompFramePrioritisedProtected>:=

 <ServCompFrameHeader>(header),

 <typ007:Priority>(groupPriority),

 external <ApplicationContent>(content),

 <CRC>(dataCRC);

: CRC protected service component frame with
message count

: Component frame header as defined in A.3.2.6.1

: group priority applicable to all messages in this
ApplicationContent

: actual payload of the application

: CRC starting with first byte of after the header

A.3.2.6.2.4 Service component frame with dataCRC, groupPriority, and messageCount

Additionally, an application can also make use of all features described in previous clauses.

< ServCompFramePrioritisedCountedProtected>:=

 <ServCompFrameHeader>(header),

 <typ007:Priority>(groupPriority),

 <IntUnTi>(messageCount),

 external <ApplicationContent>(content),

 <CRC>(dataCRC);

: CRC protected service component frame with group

priority and message count

: Component frame header as defined in A.3.2.6.

: group priority applicable to all messages in the

ApplicationContent

: count of messages in this ApplicationContent

: actual payload of the application

: CRC starting with first byte after the header

A.3.2.6.3 Example of an application implementing a service component frame

An application specification is required to specify first the component frame just as a written sentence. It may
for information repeat the definition of the frame, but in this case it shall add a note, that this definition can be
superseded by a future release of this specification.

As second definition tree of application starts with:

<ApplicationContent>:=
 n * <MyComponent>(comp);

: link provided by SSF

: n root components of the application

<MyComponent<Component(0)>>:=

 <IntUnTi>(0), : id = 1

 <IntUnLoMB>(compLengthInByte), : length of the component in bytes

 <IntUnLoMB>(attributeBlockLengthInByte), : length of the attribute block in bytes

 <ShortString>(myText), : some first attribute of the application

 <SubComp>(sub); : some sub components of Component(0)

A.3.3 Description of data on Transport level

A.3.3.1 Syncword

The syncword is 2 bytes long, and has the value of FF0F hex.

The nibbles F hex and 0 hex have been chosen for simplicity of processing in decoders. The patterns
0000 hex and FFFF hex were deprecated to avoid the probability of false triggering in the cases of some
commonly used transmission channels.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 21

A.3.3.2 Field length

The field length consists of 2 bytes and represents the number of bytes in the service frame.

This derives from the need of variable length frames.

A.3.3.3 Header CRC

The Header CRC is two bytes long, and is based on the ITU-T polynomial x16 + x12 + x5 + 1. The Header CRC
is calculated on 16 bytes including the syncword, the field length, the frame type and the first 11 bytes of the
service frame. In the case that a service frame is shorter than 11 bytes, the sync word, the field length, the
frame type and the whole service frame shall be taken into account.

In this case the Header CRC calculation does not run into the next transport frame.

The calculation of the CRC is described in ISO/TS 18234-2, Annex C.

A.3.3.4 Frame type

The frame type (FTY) indicates the content of the service frame. Its length is 1 byte. The following table gives
the meaning of the frame type:

FTY value (dec): Content of service frame: Kind of information in service frame:

0 Number of services, n * (SID-A, SID-B, SID-C) Stream directory information

1 SID-A, SID-B, SID-C, Encryption ID,

Component Multiplex

Conventional service frame data

If FTY = 0, an extra CRC calculation is done over the whole service frame, i.e. starting with n (number of
services) and ending with the last SID-C of the last service.

The calculation of the CRC is described in ISO/TS 18234-2, Annex C.

A.3.3.5 Synchronization method

A three-step synchronization algorithm can be implemented to synchronize the receiver:

a) search for an FF0F hex value;

b) calculate and check the header CRC, which follows;

c) check the two bytes, which follow the end of the service frame as defined by the field length.

The two bytes following the end of the service frame should either be a sync word or 00 hex, when spaces are
inserted.

A.3.3.6 Error detection

The CRC header provides error detection and protection for the synchronization elements and not for the data
within the service frame (except the first 11 bytes, when applicable).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

22 © ISO 2013 – All rights reserved

A.3.4 Description of data on Service level

A.3.4.1 Encryption indicator

Length: 1 byte

The encryption indicator is defined as one byte according to TPEG primitive syntax. If the indicator has value
00 hex all data in the component multiplex are non-encrypted. Every other value of the encryption indicator
indicates that one of several mechanisms for data encryption or compression has been utilized for all data in
the following data multiplex. The encryption/compression technique and algorithms may be freely chosen by
the service provider.

0 = no encryption/compression

1 to 127 = reserved for standardized methods

128 to 255 = may be freely used by each service provider, may indicate the use of proprietary
methods

A.3.4.2 Service identification

The service IDs are structured in a similar way to Internet IP addresses as follows:

SID-A . SID-B . SID-C

The combination of these three SID elements must be uniquely allocated on a worldwide basis.

The following address allocation system applies:

 SID range for TPEG technical tests SIDs = 000.000.000 - 000.127.255

 SID range for TPEG public tests SIDs = 000.128.000 - 000.255.255

 SID range for TPEG regular public services SIDs = 001.000.000 - 100.255.255

 SID range: reserved for future use SIDs = 101.000.000 - 255.255.255

NOTE The above allocations and structure is significantly changed from that originally specified in ISO/TS 18234-2.

A.3.5 Description of data on Service component level

A.3.5.1 Service component identifier

The service component identifier with the value 0 is reserved for the SNI Application. (See ISO/TS 18234-3).

A.3.5.2 Field length

The field length consists of 2 bytes and represents the number of bytes of the component data.

A.3.5.3 Service component frame header CRC

The component header CRC is two bytes long, and based on the ITU-T polynomial x16+x12+x5+1.

The component header CRC is calculated from the service component identifier, the field length and the first
13 bytes of the component data. In the case of component data shorter than 13 bytes, the component
identifier, the field length and all component data shall be taken into account.

The calculation of the CRC is described in ISO/TS 18234-2 Annex C.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 23

A.3.5.4 Service component frame data CRC

The DataCRC is two bytes long, and is based on the ITU polynomial x16+x12+x5+1. This CRC is calculated
from all the bytes of the service component frame data after the service component frame header.

The calculation of the CRC is described in ISO/TS 18234-2 Annex C.

A.4 General binary data types

This clause describes the primitive elements and compound elements that are used by TPEG applications.

A.4.1 Primitive data types

The fundamental data element in TPEG technology is the byte, which is represented by 8 bits. All other
primitive data types are expressed in terms of bytes as follows:

A.4.1.1 Basic numbers

The following data type represent the general notation of integral numbers either coded as signed or
unsigned.

<IntUnTi>:=
 <byte>;

: Integer Unsigned Tiny, range 0..255
: Primitive

<IntSiTi>:=
 <byte>;

: Integer Signed Tiny, range -128..(+)127
: Two's complement

<IntUnLi>:=
 <byte>,
 <byte>;

: Integer Unsigned Little, range 0..65 535
: MSB, Most Significant Byte
: LSB, Least Significant Byte

<IntSiLi>:=
 <byte>,
 <byte>;

: Integer Signed Little, range -32 768..(+)32 767
: MSB, Two’s complement
: LSB, Two's complement

<IntUnLo>:=
 <byte>,
 <byte>,
 <byte>,
 <byte>;

: Integer Unsigned Long, range 0..4 294 967 295
: MSB

: LSB

<IntSiLo>:=

 <byte>,
 <byte>,
 <byte>,
 <byte>;

: Integer Signed Long, range -2 147 483 648..(+)2 147
483 647
: MSB, Two’s complement

: LSB, Two’s complement

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

24 © ISO 2013 – All rights reserved

A.4.1.2 MultiByte

A.4.1.2.1 Unsigned Long MultiByte

A multi-byte integer consists of a series of bytes, where the most significant bit is the continuation flag and the
remaining seven bits are a scalar value. The continuation flag indicates that a byte is not the end of the multi-
byte sequence. A single integer value is encoded into a sequence of N bytes. The first N-1 bytes have the
continuation flag set to a value of one (1). The final byte in the series has a continuation flag value of zero (0).
This allows to know exactly the end of a series of bytes belonging to one multi-byte, being the one with
MSB=0.

The bytes are encoded in “big-endian” order i.e. most significant byte first. The maximum number of
concatenated bytes is 5, so that the maximum unsigned integer, which can be encoded is 2(40-5) - 1. However,
this specification defines the three most significant bits of the fifth, most significant byte as “reserved for future
use”, to be set to 000. This leads into the maximum number 2(32) - 1 which is the maximum value of a four byte
unsigned integer.

<IntUnLoMB>:=
 m*<byte>[1..5];

: Integer Unsigned Long, range 0..4 294 967 295
: MS-Bit = 1 signals one more byte follows.

EXAMPLE

Positive number to be encoded

 in Decimal: 1093567633

 Binary (32bit): 0100 0001001 0111010 0001001 0010001

Multibyte encoded:

Byte [5] (MSB) Byte [4] Byte [3] Byte [2] Byte [1] (LSB)

(1)"000"0100 (1)0001001 (1)01110100 (1)0001001 (0)0010001

Bits in brackets are continuity flags, the ones in quotes are reserved and set to 0.

Multibyte encoded hex: 8489ba8911.

A.4.1.2.2 Signed Long MultiByte

The signed multi-byte is defined in the same way as IntUnLoMB except in case of signed value interpretation;
the complement on two is used on the 7 bit wide byte series. The count of bytes is then defined by the
magnitude of the positive value to be stored in multi-byte. The three reserved bits in byte #5 shall be set to
111 in case of negative numbers with 5 byte length and 000 otherwise, to be up-ward compatible in case of
introduction of a 64-bit integer value in future. Signed values from 0 to -26 are stored in one byte, to -213 in two
bytes, to -220 in three bytes, to -227in four bytes and to -232 in five bytes.

For example a value 0x62 (0110 0010) would be encoded with the one byte 0x62. The integer value 0xA7
(1010 0111) would be encoded with a two-byte sequence 0x8127. The signed representation of -1 is 0x7F.
And -2345 is represented in two bytes so that the complement on two is 0x36D7 = (110 1101.101 0111). A
serialisation in multi-byte then results in 1110 1101.0101 0111 = 0xED57.

<IntSiLoMB>:=
 m*<byte>[1..5];

: Integer Signed Long, range -2 147 483 648..(+)2 147
483 647
: Two’s complement after elimination of continuation
flags.

 MS-Bit = 1 signals one more byte follows.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 25

EXAMPLE

Positive number to be encoded

in Decimal: 1093567633

Binary (32bit): 0100 0001001 0111010 0001001 0010001

Multibyte encoded:

Byte [5] (MSB) Byte [4] Byte [3] Byte [2] Byte [1] (LSB)

(1)"000"0100 (1)0001001 (1)01110100 (1)0001001 (0)0010001

Bits in brackets are continuity flags, the ones in quotes are reserved and set to 0.

Multibyte encoded hex: 8489ba8911.

Negative number to be encoded

 in Decimal: -1093567633

 Binary (two's complement): 1011 1110110 1000101 1110110 1101111

Multibyte encoded:

Byte [5] (MSB) Byte [4] Byte [3] Byte [2] Byte [1] (LSB)

(1)"111"'1'011 (1)1110110 (1)1000101 (1)1110110 (0)1101111

Bits in brackets are continuity flags, the ones in quotes are reserved and set to 1.

Multibyte encoded hex: FBF6C5F66F.

A.4.1.3 BitArray

This is an encoding specific data type used for encoding an array of Booleans. The bits are encoded in a
sequence of bytes, where the first bit of each byte is a continuation flag (shown as c in A.4). If this bit is set
(=1) there follows at least one more byte in this bit array. The last byte always has this bit cleared (=0). A
BitArray represents a list of Boolean values which is implemented in the same way as for all lists. The first
byte holds bits numbered from zero to six in that order. The second byte holds bits numbered seven to 13,
again in that order, and so on.

The ordering is sequential from first to last bit. This use, to ensure consistency with other lists, differs from the
encoding of numeric values which use a Big-endian bit and byte order.

Figure A.4 — BitArray coding format

<BitArray>:=
 m * <byte>[1..*];

: byte of flags; MS-Bit = 1 signals one more byte follows

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

26 © ISO 2013 – All rights reserved

A.4.1.4 Boolean

A single true or false value. The Boolean is differently defined for the following cases:

A.4.1.4.1 Mandatory Boolean

Mandatory Booleans are defined directly in the selector bitarray used for signalling optional attributes. This
saved additional bytes for Boolean values. If bit x of selector is set, the Boolean value is interpreted as being
true, otherwise false.

A.4.1.4.2 Mandatory Multiple Booleans

For multiple Boolean values (Boolean value with multiplicity higher then 1) the coding requires as first a
multibyte "n" as counter how many bit of the then following extra bitarray are in use. The bitarray then contains
n valid bits, coding the same as single Booleans. If n = 0 the bitarray attribute is not existing.

A.4.1.5 Date and time information:

The number of seconds elapsed since the start 1970-01-01T00:00:00 Universal Coordinated Time (UTC).
This gives values for 136 years until 2106, i. e. 232 seconds from the year 1970.

The exact formula for the date and time calculation can be found in ISO/TS 18234-2 Annex D.

<DateTime>:=
 <IntUnLo>;

: Date and time
: Number of seconds since 1970-01-01T00:00:00
 Universal Coordinated Time (UTC)

A.4.1.5.1 Day selection

This type gives the possibility to select one or more days of the week to indicate the repetition of an event.

A DaySelector attribute can be used to select one or more week days. The Boolean attributes indicate
whether a particular day is included in the selection, if the attribute value is "true", the day is selected. These
seven attributes are mandatory Booleans, encoded using a BitArray.

<DaySelector>:=
 <BitArray>(selector),

: DaySelector

 if (bit 0 of selector is set)

 <Boolean>(saturday);

: every Saturday

 if (bit 1 of selector is set)

 <Boolean>(friday),

: every Friday

 if (bit 2 of selector is set)

 <Boolean>(thursday),

: every Thursday

 if (bit 3 of selector is set)

 <Boolean>(wednesday),

: every Wednesday

 if (bit 4 of selector is set)

 <Boolean>(tuesday),

: every Tuesday

 if (bit 5 of selector is set)

 <Boolean>(monday),

: every Monday

 if (bit 6 of selector is set)

 <Boolean>(sunday),

: every Sunday

EXAMPLE 1 <DaySelector> = 05 hex - Meaning: The event (e. g. service) is repeated every Sunday and Tuesday.

EXAMPLE 2 <DaySelector> = 7E hex - Meaning: The event (e. g. service) is repeated every day except Sunday.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 27

A.4.1.5.2 Duration

 Values of this type define temporal duration, expressed in a number of whole seconds. Values must be
between 0 and 4294967295. Because it is expected that in many cases the amount of the value is low,
variable length coding is used.

<Duration>:=
 <IntUnLoMB>;

: Time duration
: Number of seconds

A.4.1.6 DistanceMetres

Distance in integer units of metres.

<DistanceMetres>:=
 <IntUnLoMB>;

: Distance in integer units of metres.

A.4.1.7 DistanceCentiMetres

Distance in integer units of centimetres.

<DistanceCentiMetres>:=
 <IntUnLoMB>;

: Distance in integer units of centimetres.

A.4.1.8 CRC-word data type

The Cyclic redundancy check (CRC) is a calculated hash value over a defined array of bytes. The definition of
a CRC must include the definition of the array.

<CRC>:=
 <IntUnLi>;

: Cyclic redundancy check
: According to ITU-T polynomial, over an indicated
Range of elements. (See ISO/TS 18234-2 Annex C)

A.4.1.9 FixedPercentage

FixedPercentage defines a fixed percentage value in integer units in the range 0 and 100.

A fixed percentage can not be used as an indication of a change, where both negative values and values
larger than a 100% might be required.

<FixedPercentage>:=
 <IntUnTi>;

: valid values of percentage from 0 to 100

A.4.1.10 Probability

Probability defines a percentage value between zero and one with a precision of two decimals. Where zero
denotes no probability and one hundred certainty.

<Probability>:=
 <FixedPercentage>;

: valid values from 0 to 100

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

28 © ISO 2013 – All rights reserved

A.4.1.11 Float

A float defines a number with decimal precision. It is encoded as an IEC 60559 single precision floating point
number (32 bit).

<Float>:=
 <IntUnLo>;

: IEC 60559 single precision floating point number

A.4.1.12 Severity

Severity is application specific and defined in the range from 1 to 255 where higher values are expected to be
more severe. Value 0 is predefined as undefined.

<Severity>:=
 <IntUnTi>;

: Application specific value of severity

A.4.1.13 Velocity

Velocity in integer units of metres per second in the range from 0 to 255.

<Velocity>:=
 <IntUnTi>;

: Speed in m/s

A.4.1.14 Weight

Weight in integer units of kilogram’s. The value is in the range from 0 to 4294967295, encoded as IntUnLoMB.

<Weight>:=
 <IntUnLoMB>;

: Weight in kg

A.4.2 Compound data types

A.4.2.1 ServiceIdentifier

A service identifier is an data type that defines a single service identifier.

<ServiceIdentifier>:=
 <IntUnTi>(sidA),
 <IntUnTi>(sidB),
 <IntUnTi>(sidC);

: Service identification part A

: Service identification part B

: Service identification part C

A.4.2.2 FixedPointNumber

Defines a value from -2147483648.99 to 2147483647.99 with a fixed precision of 2 decimals.

<FixedPointNumber>:=
 <IntSiLoMB>(integralPart),
 <IntUnTi>(decimalPart);

: integral part of the number
: fraction of 2 decimal digits
 values from 0 to 99

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 29

A.4.2.3 Strings

The string of characters is represented by a series of n bytes. These bytes need to be interpreted according to
a character table, which will designate the byte width of each character. The encoding of the characters is
defined in ISO/TS 18234-3. Where multiple code tables are used, an application needs mechanisms to set the
scope of applicability of each table.

<ShortString>:=
 <IntUnTi>(n),
 n * <byte>;

: Short string
: Number of bytes, n
: String of characters; count of characters depends on
chosen coding

<LongString>:=
 <IntUnLi>(n),
 n * <byte>;

: Long string
: Number of bytes, n
: String of characters; count of characters depends on
chosen coding

A.4.2.4 Localised Strings

A string accompanied with a language code that identifies the language that the string is given in. The
typ001:LanguageCode is derived from ISO 639: 2002 - Codes for the representation of names of languages.

<LocalisedShortString>:=
 <typ001:LanguageCode>(languageCode),

 <ShortString>(string);

: Specifies the language used for this string.

: Short string

<LocalisedLongString>:=
 <typ001:LanguageCode>(languageCode),

 <LongString>(string);

: Specifies the language used for this string.

: Long string

A.4.2.5 Compound time information

A.4.2.5.1 TimeInterval

The TimeInterval data structure can be used when an interval in time must be specified with more flexibility
than the simple Duration type allows.

Each TimeInterval attribute has a number of optional attributes. It is maximally 101 years long. Each attribute
can be used as stand-alone attribute or in combination with other attributes. When an attribute is not given,
the value zero is implied. Every TimeInterval must specify at least one attribute.

<TimeInterval>:=
 <BitArray>(selector),

 if (bit 0 of selector is set)

 <IntUnTi>(years),
 if (bit 1 of selector is set)

 <IntUnTi>(months),
 if (bit 2 of selector is set)

 <IntUnTi>(days),
 if (bit 3 of selector is set)

 <IntUnTi>(hours),
 if (bit 4 of selector is set)

 <IntUnTi>(minutes),
 if (bit 5 of selector is set)

 <IntUnTi>(seconds);

: DaySelector

: Number of years in the range from 0 to 100.

: Number of months in the range from 0 to 12.

: Number of days in the range from 0 to 31.

: Number of hours in the range from 0 to 24.

: Number of minutes in the range from 0 to 60.

: Number of seconds in the range from 0 to 60.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

30 © ISO 2013 – All rights reserved

A.4.2.5.2 TimePoint

The TimePoint data structure can be used when a point in time must be specified with fewer granularities than
the simple DateTime allows. Each TimePoint attribute has a number of optional attributes. Each attribute can
be used as stand-alone attribute or in combination with other attributes. Every TimePoint must specify at least
one attribute. In binary encoding, 1970 is subtracted from the year, mapping the range 1970-2100 to the
values 0-130.

<TimePoint>:=
 <BitArray>(selector),

 if (bit 0 of selector is set)

 <IntUnTi>(year),
 if (bit 1 of selector is set)

 <IntUnTi>(month),
 if (bit 2 of selector is set)

 <IntUnTi>(day),
 if (bit 3 of selector is set)

 <IntUnTi>(hour),
 if (bit 4 of selector is set)

 <IntUnTi>(minute),
 if (bit 5 of selector is set)

 <IntUnTi>(second);

: DaySelector

: The year in the range from 1970 to 2100.

: Number of months in the range from 1 to 12.

: Number of days in the range from 1 to 31.

: Number of hours in the range from 0 to 23.

: Number of minutes in the range from 0 to 59.

: Number of seconds in the range from 0 to 59.

A.4.2.5.3 TimeToolkit

The time toolkit allows different date and time information to be described. For example where an event has a
start but no known end-time. In such a case we should used only a start point but omit an end-time. Each
TimeToolkit attribute has a number of optional attributes. Each attribute can be used as a stand-alone attribute
or in combination with other attributes. Every TimeToolkit must specify at least one attribute. For a timestamp
the DateTime type should be used.

<TimeToolkit>:=
 <BitArray>(selector), : 1 byte containing 5 switches

 if (bit 0 of selector is set)
 <TimePoint>(startTime), : An event time point (e.g. flight departure) or an event

starting time (e.g. open from)

 if (bit 1 of selector is set)
 <TimePoint>(stopTime), : An event stopping time (e.g. open to). The stop time

can be used only together with a start time

 if (bit 2 of selector is set)
 <TimeInterval>(duration), : A time interval (e.g. free parking limit)

 if (bit 3 of selector is set)
 <typ002:SpecialDay>(specialDay), : Relevant days of a certain type (e.g. weekdays or

holiday)

 if (bit 4 of selector is set)
 <DaySelector>(daySelector); : Gives the option to specify days of the week

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 31

A.4.3 Table definitions

A.4.3.1 Table entry

In TPEG much information is based on tables. These tables represent clearly defined groupings of pre-defined
concepts. The idea is to inform the device about the concept and let the device choose the best possible
presentation of this concept in the context of the other parts of the TPEG message. This approach means that
devices can present concepts e.g. in any language or even as graphical icons. This Table data type only
serves as a basis for all tables used in the toolkits and applications.

A table can have up to 256 entries.

<Table>:=
 <IntUnTi>(entry);

: The corresponding table defines valid entries of a
table

A.4.3.2 Tables of general use

Some tables are of general use in different TPEG Applications, therefore this clause describes the content of
those tables.

A.4.3.3 Typ001:LanguageCode

ISO 639: 2002 - Codes for the representation of names of languages. See Clause A.4.4.1 for values.

<Typ001:LanguageCode>:=
 <Table>;

: Specifies the language

A.4.3.4 Typ002:SpecialDay

The SpecialDay table lists special types of days, such as “public holiday” or “weekdays” and similar. See
Clause A.4.4.2 for values.

<Typ002:SpecialDay>:=
 <Table>;

: Identifies the special day

A.4.3.5 Typ003:CurrencyType

CurrencyType, based on the three-alpha codes of ISO 4217. See Clause A.4.4.3 for values.

<Typ003:CurrencyType>:=
 <Table>;

: Three-alpha codes of ISO 4217

A.4.3.6 Typ004:NumericalMagnitude

At a number of places within TPEG’s applications there is a need to use a number to describe a quantity of
people, animals, objects, etc. The range of the number needs to be at least from 0 to a few million. At the
bottom end of this range, numbers need to be in unit intervals, up to 50. Above 50, tens may be used up to
500, then hundreds up to 5000. This same principle is required for each decade. The table contains unsigned
integer values in the range 0 to 3000000 with decreasing precision. See Clause A.4.4.4 for the translated
values. For a formal mathematical definition of numerical magnitude values, refer to Annex B of
ISO/TS 18234-2.

<Typ004:NumericalMagnitude>:=
 <Table>(n);

: Numerical magnitude

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

32 © ISO 2013 – All rights reserved

A.4.3.7 Typ005:CountryCode

This table lists countries as defined by ISO 3166-1. See Clause A.4.4.5 for values.

NOTE "undecodable country" is to be used by a client device unable to read the typ005 code used by a service
provider - no code value for this word is ever transmitted.

<Typ005:CountryCode>:=
 <Table>;

: Countries as defined by ISO 3166-1

A.4.3.8 Typ006:OrientationType

This is the table of values of the compass orientation like “north-west”. See Clause A.4.4.6 for values.

<Typ006:OrientationType>:=
 <Table>;

: Denotes a compass orientation

A.4.3.9 Typ007:Priority

This is the table of values of the priority of messages. See Clause a.4.4.7 for values.

<Typ007:Priority>:=
 <Table>;

: Denotes priority of a message

A.4.4 Tables

A.4.4.1 typ001:LanguageCode

ISO 639:2002 - Codes for the representation of names of languages. The Comment column lists the
2-alpha codes of ISO 639-1.

Code Reference-English Language Name
Comment
2-alpha code

000 Unknown
001 Afar aa
002 Abkhazian ab
003 Avestan ae
004 Afrikaans af
005 Akan ak
006 Amharic am
007 Aragonese an
008 Arabic ar
009 Assamese as
010 Avaric av
011 Aymara ay
012 Azerbaijani az
013 Bashkir ba
014 Belarusian be
015 Bulgarian bg
016 Bihari bh
017 Bislama bi
018 Bambara bm
019 Bengali bn
020 Tibetan bo

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 33

021 Breton br
022 Bosnian bs
023 Catalan ca
024 Chechen ce
025 Chamorro ch
026 Corsican co
027 Cree cr
028 Czech cs
029 Church Slavic cu
030 Chuvash cv
031 Welsh cy
032 Danish da
033 German de
034 Divehi dv
035 Dzongkha dz
036 Ewe ee
037 Greek el
038 English en
039 Esperanto eo
040 Spanish es
041 Estonian et
042 Basque eu
043 Persian fa
044 Fulah ff
045 Finnish fi
046 Fijian fj
047 Faroese fo
048 French fr
049 Western Frisian fy
050 Irish ga
051 Scottish Gaelic gd
052 Galician gl
053 Guaraní gn
054 Gujarati gu
055 Manx gv
056 Hausa ha
057 Hebrew he
058 Hindi hi
059 Hiri Motu ho
060 Croatian hr
061 Haitian ht
062 Hungarian hu
063 Armenian hy
064 Herero hz
065 Interlingua (International Auxiliary Language Association) ia
066 Indonesian id
067 Interlingue ie
068 Igbo ig
069 Sichuan Yi ii
070 Inupiaq ik

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

34 © ISO 2013 – All rights reserved

071 Ido io
072 Icelandic is
073 Italian it
074 Inuktitut iu
075 Japanese ja
076 Javanese jv
077 Georgian ka
078 Kongo kg
079 Kikuyu ki
080 Kuanyama kj
081 Kazakh kk
082 Kalaallisut kl
083 Khmer km
084 Kannada kn
085 Korean ko
086 Kanuri kr
087 Kashmiri ks
088 Kurdish ku
089 Komi kv
090 Cornish kw
091 Kirghiz ky
092 Latin la
093 Luxembourgish lb
094 Ganda lg
095 Limburgish li
096 Lingala ln
097 Lao lo
098 Lithuanian lt
099 Luba-Katanga lu
100 Latvian lv
101 Malagasy mg
102 Marshallese mh
103 Ma-ori mi
104 Macedonian mk /sl
105 Malayalam ml
106 Mongolian mn
107 Moldavian mo
108 Marathi mr
109 Malay ms
110 Maltese mt
111 Burmese my
112 Nauru na
113 Norwegian Bokmål nb
114 North Ndebele nd
115 Nepali ne
116 Ndonga ng
117 Dutch nl
118 Norwegian Nynorsk nn
119 Norwegian no
120 South Ndebele nr

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 35

121 Navajo nv
122 Chichewa ny
123 Occitan oc
124 Ojibwa oj
125 Oromo om
126 Oriya or
127 Ossetian os
128 Panjabi pa
129 Pa-li pi
130 Polish pl
131 Pashto ps
132 Portuguese pt
133 Quechua qu
134 Raeto-Romance rm
135 Kirundi rn
136 Romanian ro
137 Russian ru
138 Kinyarwanda rw
139 Sanskrit sa
140 Sardinian sc
141 Sindhi sd
142 Northern Sami se
143 Sango sg
144 Serbo-Croatian sh
145 Sinhalese si
146 Slovak sk
147 Slovenian sl
148 Samoan sm
149 Shona sn
150 Somali so
151 Albanian sq
152 Serbian sr
153 Swati ss
154 Southern Sotho st
155 Sundanese su
156 Swedish sv
157 Swahili sw
158 Tamil ta
159 Telugu te
160 Tajik tg
161 Thai th
162 Tigrinya ti
163 Turkmen tk
164 Tagalog tl
165 Tswana tn
166 Tonga to
167 Turkish tr
168 Tsonga ts
169 Tatar tt
170 Twi tw

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

36 © ISO 2013 – All rights reserved

171 Tahitian ty
172 Uighur ug
173 Ukrainian uk
174 Urdu ur
175 Uzbek uz
176 Venda ve
177 Vietnamese vi
178 Volapük vo
179 Walloon wa
180 Wolof wo
181 Xhosa xh
182 Yiddish yi
183 Yoruba yo
184 Zhuang za
185 Chinese zh
186 Zulu zu

A.4.4.2 typ002:SpecialDay

The SpecialDay table lists special types of days, such as public holiday and similar.

Code Reference-English ‘word’ Comment Example
000 unknown
001 weekdays Monday to Friday
002 weekends Saturday and Sunday
003 holiday
004 public holiday
005 religious holiday e.g. Christmas Day
006 federal holiday
007 regional holiday
008 national holiday e.g. In UK: Mayday
009 school days
010 every day

A.4.4.3 typ003:CurrencyType

CurrencyType, based on the three-alpha codes of ISO 4217.

Code Reference-English ‘word’ Comment
000 unknown
001 AED
002 AFA
003 ALL
004 AMD
005 ANG
006 AOA
007 ARS
008 AUD
009 AWG
010 AZM

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

© ISO 2013 – All rights reserved 37

011 BAM
012 BBD
013 BDT
014 BGN
015 BHD
016 BIF
017 BMD
018 BND
019 BOB
020 BRL
021 BSD
022 BTN
023 BWP
024 BYR
025 BZD
026 CAD
027 CDF
028 CHF
029 CLP
030 CNY
031 COP
032 CRC
033 CSD
034 CUP
035 CVE
036 CYP
037 CZK
038 DJF
039 DKK
040 DOP
041 DZD
042 EEK
043 EGP
044 ERN
045 ETB
046 EUR
047 FJD
048 FKP
049 GBP
050 GEL
051 GGP
052 GHC
053 GIP
054 GMD
055 GNF
056 GTQ
057 GYD
058 HKD
059 HNL
060 HRK

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

38 © ISO 2013 – All rights reserved

061 HTG
062 HUF
063 IDR
064 ILS
065 IMP
066 INR
067 IQD
068 IRR
069 ISK
070 JEP
071 JMD
072 JOD
073 JPY
074 KES
075 KGS
076 KHR
077 KMF
078 KPW
079 KRW
080 KWD
081 KYD
082 KZT
083 LAK
084 LBP
085 LKR
086 LRD
087 LSL
088 LTL
089 LVL
090 LYD
091 MAD
092 MDL
093 MGA
094 MKD
095 MMK
096 MNT
097 MOP
098 MRO
099 MTL
100 MUR
101 MVR
102 MWK
103 MXN
104 MYR
105 MZM
106 NAD
107 NGN
108 NIO
109 NOK
110 NPR

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/TS 18

23
4-1

0:2
01

3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

	1 Scope
	2 Normative References
	3 Abbreviated terms
	4 Application identification and version number signalling
	4.1 Application identification
	4.2 Version number signalling

	5 Service Component Data
	6 Conditional Access Methodology
	7 Message Components
	7.2 CAIMessage
	7.3 CAIDataUnit

