TECHNICAL ISO/TS
SPECIFICATION 18234-10

First edition
2013-10-15

Intelligent transport systems’— Traff
and travel information via transport
protocol experts group, generation 1
(TPEG1) binary data format —

Part 10:
Conditional access information
(TPEG1-CAlD

Systemes intelligénts de transport — Informations sur le trafic €
tourisme vialles données de format binaire du groupe d'experts
protocole@e transport, génération 1 (TPEG1)

Partie~10: Information d'acces conditionnel (TPEG1-CAlI)

iC

t le
du

s Reference number
= — ISO/TS 18234-10:2013(E)

©

ISO 2013

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

COPYRIGHT PROTECTED DOCUMENT

© 1802013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax +41 2274909 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

Contents Page
L oL =7 o o iv
Lo Yo 1T o) Vi
1 £ o - PSR F | FOSRR 1
2 Normative ReferencCes........cccccciiiiiiiicciiirrrrr s sssnn s ssmnne e s sessssssssmnnn e e sf o) Sbhnnmns fressnnnans 1
K Abbreviated terms ... e ssn e P Pede s nnne e e e fe s 1
4 Application identification and version number signallingcccceeviiiiieccccmdnnnnnnsicnne s 2
4.1 Application identification............cci i T s 2
4.2 Version number signalling ... B e e 2
§ Service Component Data.........cccoooiiiiiiiii e rsmnr e vdemn s fre e nanas 3
6 Conditional Access Methodology.........cccccueeemrrrrssrernnssmeresssens e e fer e 3
1 Message COMPONENLEScccoerrreeierrresrerrnssnrerrssssrresssssnresessbtreibeesneerssssnsesssssnnesssssnsesssssnsessassnes fasssnnenaas 4
1.1 List of Generic Component Idsccccciiriiccciicrnnnnnnnicss e e ssnne e e e e s s ssmnees fosssssnnnne 4
1.2 CAIMESSAGE ..cceeiecienmmrrreririsssssssmsrerersssssssssmsessesessasssssnnesdPasiesssssssnnenssssssnsssssnnsnnssessasssssnssnnssssssssnns fesenssnnnss 5
1.3 L0 N T 1 - 101 1 7 Y R 5
Annex A (normative) Binary SSF and Data Types..........iiiieerinemnmissssissssssssesssssssessssssssssssssss frasssssens 6
A1 Conventions and SYMDOIS ... s e 6
. Wt P R 0o 1= 1 T o =N I 6
A2 SYMDOIS..... e e n e s ann e nennanns frnsnnennas 6
A.2 Representation of SyntaX........ccccccimeGirtinnn s frss 7
N7y B € 1= T - | . S 7
A.2.2 Data type Notation ...t e 7
A.2.3 Application dependent data types..........coccciiimiiiiiinncci e . 10
A.2.4 Toolkits and external definitioncccoceeceriicccer i | e 14
A.2.5 Application design PrinCiplesccoccciriiiiiiiiini e e 15
A3 TPEG data stream deSCriptioncooccccceiiiiiiiiccccsserse s sssssses e e s s s ss s sssss e s e s e ssssssssmsenssnsens fassmennns 15
A.3.1 Diagrammatic hierarchy representation of frame structurecccccerreiccciirnecccccceeeeen s ferseens 15
A.3.2 Syntactical Representation of the TPEG Streamcccccoiiiiicccccrrinininscccsssceree s ssssssssseeseees fassessnne 16
A.3.3 Description of-data on Transport level...........cccccoiiiriiciiinnicr e e 20
A.3.4 Description®©f data on Service level..........ccciiiiiiini e 22
A.3.5 Description'of data on Service component level ..., 22
A4 General binary data typescccccvriiinim i e 23
A.4.1 Primitive data types.......cccciiiiiiinir e 23
. N S 0 o o T o YW T Lo e F- T 2= TR T o = 28
N ST - Y | (= e 1= 13 11T T E 31
N B A -] = Y F 32
BIbliography ...t ns fee e e ne s 48
© ISO 2013 — Al rights reserved iii

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS

18234-10:2013(E)

Foreword

ISO (the

International Organization for Standardization) is a worldwide federation of national standards bodies

(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been

establish
non-gov
Internati

Internati

The mai
adopted
Internati

In other
technica

— anl
an |
of th

ed has the right to be represented on that committee. International organizations, governmental anfl
ernmental, in liaison with 1SO, also take part in the work. 1SO collaborates closely with\ th
bnal Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

W

bnal Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

|72}

h task of technical committees is to prepare International Standards. Draft International Standard
by the technical committees are circulated to the member bodies for voting.“Publication as a
bnal Standard requires approval by at least 75 % of the member bodies casting.a vote.

-

circumstances, particularly when there is an urgent market requirement for such documents, f
committee may decide to publish other types of normative document:

=]

50 Publicly Available Specification (ISO/PAS) represents an agreement between technical experts i
50 working group and is accepted for publication if it is approved by more than 50 % of the member|
e parent committee casting a vote;

)

— an|l

committee and is accepted for publication if it is approved-\by 2/3 of the members of the committee casting
a vdte.

An ISO/PAS or ISO/TS is reviewed after three years 'in order to decide whether it will be confirmed for
further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS i

confirme
Internati

Attention]
rights. IS

ISO/TS
CEN/TC
ISO/TC
between

ISO/TS
and trav

O Technical Specification (ISO/TS) represents an agreement between the members of a technica

- U J

d, it is reviewed again after a further three years, at which time it must either be transformed into a
bnal Standard or be withdrawn.

—

is drawn to the possibility that.some of the elements of this document may be the subject of pater
O shall not be held responsgible for identifying any or all such patent rights.

8234-10 was prepared by the European Committee for Standardization (CEN) Technical Committe
278, Road transport and traffic telematics, in collaboration with ISO Technical Committe
P04, Intelligent transport systems, in accordance with the Agreement on technical cooperatio
ISO and CEN,(Vienna Agreement).

- (U U

8234 cofisists of the following parts, under the general title Intelligent transport systems — Traffic
bl information via transport protocol experts group, generation 1 (TPEG1) binary data format:

— Part

1~Introduction, numbering and versions (TPEG1-INV)

— Part 2: Syntax, semantics and framing structure (TPEG1-SSF)

— Part 3: Service and network information(TPEG1-SNI)

— Part 4: Road Traffic Message application (TPEG1-RTM)

— Part 5: Public Transport Information (PTI) application

— Part 6: Location referencing applications

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

— Part 7: Parking information (TPEG1-PK1)

— Part 8: Congestion and travel-time application (TPEG1-CTT)
— Part 9: Traffic event compact (TPEG1-TEC)

— Part 10: Conditional access information (TPEG1-CAl)

— Part 11: Location Referencing Container (TPEG1-LRC)

© 1SO 2013 — All rights reserved Vv

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

Introduction

TPEG technology uses a byte-oriented data stream format, which may be carried on almost any digital bearer
with an appropriate adaptation layer. TPEG-messages are delivered from service providers to end-users and
used to transfer information from the database of a service provider to an end-user’s equipment.

The brief history of TPEG technology development dates back to the European Broadcasting Union (EBU
Broadcapt Management Committee establishing the B/TPEG project group in autumn 1997 with the mandat
to develpp, as soon as possible, a new protocol for broadcasting traffic and travel-related informatiori in th
multimedia environment. TPEG technology, its applications and service features are designed.to enabl
travel-related messages to be coded, decoded, filtered and understood by humans (visually and/or audibly i
the user]s language) and by agent systems.

- W W U

One yedr later in December 1998, the B/TPEG group produced its first EBU specifications. Two Technica
Specifications were released. ISO/TS 18234-2, described the Syntax, Semantics\and Framing Structurg
which is| used for all TPEG applications. ISO/TS 18234-4 (TPEG-RTM) described the first application, fg
Road Traffic Messages.

=

Subseqyently, CEN/TC 278/WG 4, in conjunction with ISO/TC 204, established a project group comprising th
memberg of B/TPEG and they have continued the work concurrently since March 1999. Since then two furthg
parts wegre developed to make the initial complete set of four_parts, enabling the implementation of
consisteft service. ISO/TS 18234-3 (TPEG-SNI) describes the Service and Network Information Application
which should be used by all service implementations to ensure” appropriate referencing from one servic
source tp another. ISO/TS 18234-1 (TPEG-INV), completes.the’series, by describing the other parts and the
relationship; it also contains the application IDs used within‘the other parts. Additionally ISO/TS 18234-5 th
Public Transport Information Application (TPEG-PTI) and;ISO/TS 18234-6 (TPEG-LRC), were developed.

W = W< W = W

=3

TPEG applications are developed using UML modelling and a software tool is used to automatically seled
content which then populates this TS. Diagrammatic extracts from the model are used to show the capabilit
of the bipary coding in place of lengthy text descriptions; the diagrams do not necessarily include all relevar
content possible.

—_ o~

This Tedhnical Specification describes\the binary data format of the on-air interface of the Conditional Acces
Informatfon application, (TPEG-CAIl)with the technical version number TPEG-CAI_1.0/001.

L

CAl application

The bas|c concept behind the CAI application is to transport CAl in separate TPEG service components of
dedicated application type and to define an SNI table that contains the link between scrambled content an
related QA

L\

vi © 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

TECHNICAL SPECIFICATION ISO/TS 18234-10:2013(E)

Intelligent transport systems — Traffic and travel information

via transport protocol experts group, generation 1 (TPEG1)
binary data format —

art 10:
JF;onditionaI access information (TPEG-CAI)

1 Scope

This Technical Specification contains the definition of the TPEG Conditional Access Informati
dpplication. It enables dedicated conditional access data, such as_management messages (e.g
Words and Entitlement Control Messages) to be delivered to recipient client devices. This TPEG appl
designed for a service provider to: establish setup, prolongation or‘revocation of services to a spec
device, using a limited capacity unidirectional broadcast channel and without recourse to serv
RHandshaking.

This TPEG application defines:

— the logical channel, for the transmission of the additional CA information (CAl);

— how the CAl is linked and synchronized to\the scrambled content.

his Technical Specification is related to(conditional access applied at the service component level of
ervice. It is an open design for the-integration of various different conditional access systems, ¢
pecified, which are signalled by the TPEG service Encryption Indicator to allow client devices to
orrectly.

QO o o

2

2 Normative References

The following referenced documents are indispensable for the application of this Technical Specificg
dated references,/only the edition cited applies. For undated references, the latest edition of the re
document (including any amendments) applies.

IBO/TS™8234-1, Intelligent transport systems — Traffic and travel information via transport protoco
group, generation 1 (TPEG1) binary data format — Part 1: Introduction, numbering and versions (TPH

bn (CAl)

Control
cation is
fic client
ce-client

a TPEG
xternally
operate

tion. For
ferenced

experts
G1-INV)

ISOITS 18234-Z, Intelligent transport systems — Traffic and travel information via transport protoco

experts

group, generation 1 (TPEG1) binary data format— Part 2: Syntax, semantics and framing structure

(TPEG1-SSF)

ISO/TS 18234-3, Intelligent transport systems — Traffic and travel information via transport protocol experts
group, generation 1 (TPEG1) binary data format — Part 3: Service and network information (TPEG1-SNI)

3 Abbreviated terms

For the purposes of this document, the following abbreviated terms apply.

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS

AID
CA
CAl
CRC

ECM

18234-10:2013(E)

Application Identification
Conditional Access

Conditional Access Information
Cyclic redundancy check

Entitlement Control Message

EMM

TPEG

SSF

TTI

4 Application identification and version number signalling

4.1 Application identification

The worf 'application’ is used in the TPEG specifications to describe.Specific subsets of the TPEG structursg.
An appli¢ation defines a limited vocabulary for a certain type of messages, for example parking information g
road traffic information. Each TPEG application is assigned.a-'unique number, called the Applicatio

Identific
ISO/TS

The app
TPEG c(

4.2 Vg

Version
deploym

The vers

Table 1

Entitlement Management Message
Transport Protocol Expert Group
Syntax, Semantics and Framing Structures

Traffic and Traveller Information

o pa

tion (AID). An AID is defined whenever a new application is developed and these are all listed i
8234-1.

L2

lication identification number is used within.the* TPEG-SNI application to indicate how to proces
ntent and facilitates the routing of information\to the appropriate application decoder.

rsion number signalling

=N

numbering is used to track the separate versions of an application through its development an
ent. The differences betweentthese versions may have an impact on client devices.

ion numbering principle is-defined in ISO/TS 18234-1.

Ehows the current.version numbers for signalling CAl within the SNI application:

Table 1 — Current version numbers for signalling of CAIl

major version number 1

minor version number 0

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

5 Service Component Data

TPEG-CAI makes use of the "Service component data with dataCRC" according to Annex A,
A.3.2.6.2.1. For explanatory purposes, this is repeated here.

section

< ServCompFrameProtected >:= : CRC protected service component frame
<ServCompFrameHeader>(header), : Component frame header as defined in A.3.2.6.1
external <ApplicationContent>(content), : Content specified by the individual application
<CRC>(dataCRC); : CRC starting with first byte after the header

The main frame of CAl defines ApplicationContent as follows:

4ApplicationContent>:= : application content

messageCount * <CAlMessage>(msg); : Any number of any CAl message-components

6 Conditional Access Methodology

Londitional access (CA) is specified within TPEG-SSF and TPEG-3NI as a function being applied o
[ame or service component level. The method used is indicatedwia the Encryption Identifier (EnclD
n the service frame or for components via the SNI Fast Tuning Table (Guide to the Services
pecification is related to conditional access applied on service component level.

D == —h ~

Generally, a broadcast based CA-system requires cencryption related data to be transmitted
hdependent from the content, but necessary for decryption and subscriber management.

may be encrypted using the same "encryption key", while others remain unencrypted or use
"encryption keys". Therefore, several service components can share the same conditional access inf
,|if they are supposed to be offered as ehe bundle and hence are encrypted with the same keys.

Fach of the aforementioned bundles may require CA-management-messages, which have to be trg

=h (p M

br the transport is the use of separate service components of a dedicated application type.

 service
directly
1). This

which is

If a conditional access system is applied on the’ TPEG service component level, some service components

different
brmation

nsmitted

eparated from the (encrypted) content in the corresponding service components. The most appropfiate way

Ror each encrypted TPEG-Service component a link or reference to the service component carfying the
relevant CA information is required. This is handled by TPEG-SNI GST-Table 6, Conditionall Access
Ihformation Reference.

BXAMPLE
A TPEG_Service may contain the following service components:

SCID Application

0 SNI

2 TEC

5 TEC (encrypted)

7 TEC (encrypted)

8 PTI

10 PKI (encrypted)

20 CAl

21 CAl

30 CAl
© 1SO 2013 — All rights reserved 3

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

The service components 5 and 7 are encrypted with key 1, while service component 10 is encrypted using key
2. Hence two components with CA-meta information for the corresponding component are required, in the
example listed as SCID 20 and 21. A third CAl component, in the example number 30, contains CA-meta
information that relates to all encrypted components independent which key is applied.

This specification describes the generic containers for the CAIl application. The container content will be
proprietary and specified individually for each CA-System indicated by the encryption indicator (EnclID). The
linking between encrypted service components and related CAl-Components is achieved via a reference table
within the TPEG-SNI application.

7 Message Components

Unlike other TPEG applications, TPEG-CAI does not use a Message Management Container and-does nqt
use a Location Referencing Container; it only uses an Application Event Container.

Figure 1|visualises the logical structure of the Conditional Access Information (CAl) application.

class ConditionaIAc.../

CAlMessage

\> g o3

NN

-_—

«External»
CAIDataUnit

Figure 1 — Logical structure of CAl application

7.1 List of Generic Component Ids

Name Id
CAlMessage 1

4 © 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

7.2 CAlMessage
A TPEG-CAI Message includes solely one single container for proprietary CA data.

The CAl Message Container is available to carry data, which is defined within the CA system specific
specifications. The CAlDataUnit is directly following after the lengthAttr of the CAIMessage.

<CAlMessage(1)>:=
<IntUnTi>(id), : Identifier = 1
<IntUnLoMB>(lengthComp), : Length of component in bytes, excluding
: the id and length indicator
<IntUnLoMB>(lengthAttr), : Length of attributes
<CAlDataUnit>(data); : CAl data

1.3 CAlDataUnit

The CAIDataUnit carries the data that is specified by the corresponding conditional access specificatin.

<CAlDataUnit>:= CAl data
m*<byte>; :proprietary CA data

© 1SO 2013 — All rights reserved 5

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS

18234-10:2013(E)

Annex A
(normative)

Binary SSF and Data Types

A.1 Cc

A11 C

A1.1.1

All nume
Where 4
significa

A1.1.2

TPEG u
protocol
does not

Data typ
built into
primitive
to all TP
local onl

A results

A113

If any p3
future us
provider
when re
aware o
informat

A1.2 S

A1.21

)nventions and symbols
onventions

Byte ordering
ric values using more than one byte are coded in “Big Endian” format (most significant byte first).

byte is subdivided into bits, the most significant bit (“b7”) is at the left-hand end and the least
nt bit (“b0”) is at the right-hand end of the structure.

Method of describing the byte-oriented protocol

-

5es a data-type representation for the many structures that ar€ integrated to form the transmissio
This textual representation is designed to be unambiguous, €asy to understand and to modify, an
require a detailed knowledge of programming languages.

L

es are built up progressively. Primitive elements, which*may be expressed as a series of bytes arj
compound elements. More and more complex structures are built up with compound elements an
5. Some primitives, compounds and structures arg specified in this Technical Specification, and appl
FEG Applications. Other primitives, compounds@nd structures are defined within applications and arj
/ to that application.

< & D

nt byte-stream coded using C-type nofation is shown in ISO/TS 18234-2:2006, Annex E.

Reserved data fields

rt of a TPEG data structure is'not completely defined, then it should be assumed to be available fg
e. The notation is UAV (unassigned value). This unassigned value should be encoded by the servic
as the value 00 hex. This allows newer decoders using a future TPEG Standard to ignore this dat
Ceiving a service frem/a provider encoding to this older level of specification. A decoder which is ng
the use of any-farmer UAVs can still make use of the remaining data fields of the correspondin
on entity. However, the decoder will not be able to process the newly defined additional information.

O = O =

ymbols

Literal numbers

Whenever literal numbers are quoted in TPEG Standards, the following applies:

123

123

123 decimal

hex 123 hexadecimal

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

A.1.2.2 Variable numbers

Symbols are used to represent numbers whose values are not predefined within the TPEG Standards. In
these cases, the symbol used is always local to the data type definition. For example, within the definition of a

data type, symbols such as “n” or “m” are often used to represent the number of bytes of data within the
structure, and the symbol “id” is used to designate the occurrence of the identifier of the data type.

A.1.2.3 Implicit numbers

—

AMithin tha daofinition—of-a-data ctructiira it ic frocqiantlyy nacaccary ta daceriha tha inclucion of 4 co. Onent
Vithin-the-definition—of-a—data-structure—it-is-freguently—n ary-to-deseribe-the-inclusion—ef-a—somp

which is repeated any number of times, zero or more. In many of these cases it is convenietyio use a
numerical symbol to show the component structure being repeated a number of times, but the numbgr itself is
not explicitly included within the definition of the data structure. Often, the symbol “m” is used fot,this gurpose.

A.2 Representation of syntax

A.2.1 General

This clause introduces the terminology and the syntax that is usedto_define TPEG data elem¢nts and
gtructures.

A.2.2 Data type notation
A.2.2.1 Rules for data type definition representation
The following general rules are used for defining data-types:

L a data type is written in upper camel casedétters in one single expression.! The data type may contain
letters (a-z), number (0-9), underscore " <) round brackets "()" and colon ":"; the first must be a lefter;

BXAMPLE 1 IntUnLo stands for Integer Unsigned Long

-+ adata type is framed by angle brackets “<>";

-+ the content of a data type js~défined by a colon followed by an equal sign “ :=”;
- the end of a data type-is.indicated by a semicolon “; ”;

-+ adescriptor written in lower camel case may be added to a data type as one single expression without spacgs;
-+ adescriptor’is framed by round brackets “ () ”;

-+ the.descriptor contains either a value or a name of the associated type;

-t-¢.data types in a definition list of another one are separated by commas “, ”. The order of definition is defined as the
order of accurrence in a data stream:

— curly brackets (braces) “ { } ” group together a block of data types;

» o«

— control statements (“if’, “infinite”, “unordered” or “external”) are noted in lower case letters. A control statement is
followed by a block statement or only one data type:

1 Camel case is the description given to the use of compound words wherein each individual word is signalled by a
capital letter inside the compound word. Upper camel case means that the compound word begins with an upper-case
(capital) letter, and lower camel case means the compound word begins with a small letter.

© 1SO 2013 — All rights reserved 7

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

1) “if” defines a condition statement. The block’s (or data type’s) occurrence is conditional to the condition
statement being valid. The condition statement is framed with round brackets. This statement applies to any
data type;

2) “infinite” defines endless repetition of the block (or data type). This is only used to mark the main TPEG stream
as not ending stream of data;

3) “unordered” defines that the following block contains data types which may occur in any order, not only the one
used to specify subsequent data types. This statement applies to components only. (See Clause A2.3.3 -

Components);

4) :
The control statement “external” must be followed by only one data. A reference to the correspondihf
specification should follow in the comment. All types specified in TYP specification are treated as being ifnscopp
of any application

EXAMPLE 2
<MMCLink(1)>:= : externally defined component
external <MessageManagementContainer(1)>; :id =1, See Annex B (Message Management
Container)

EXAMPL

EXAMPLE 4
<Template(x)> := : x defines the template parameter
<IntdnTi>(x); —descriptorxdefimes positiomofsettmgthe
parameter in the list

11

the pxpression “ n * 7 indicates multiplicity of occurrence of a data type-The lower and upper bound ar
implicitly from 0 to infinite; other bounds are described in square brackets between two points " .. " an
beh|nd the data type descriptor. The " * " stands for no limitation at upper bound

==

3

m | <IntUnTi>(Attribute) [1..*] , : The “Attribute” must occur once at least and up
to infinite.

—

a fupction “ f,, () ” that is calculated over a data-type is indicated by italic lower case letters. The commer
behind the definition of the function shall exptain which function is used;

any|text after a colon “: ” is regarded as’a comment;

a data type definition can be_a template (i.e. not fully defined declarative structure) having a parametg
insige of round brackets "(x)_Jat the end of the data type name. Templates define structures, whos
strugtural definition is included as a basis for other data type definitions. To declare the given templat
(making it identifiable) the/name of the parameter is repeated as a descriptor in a nested data type of th
subgequent definitionlist. Templates allow for reading the generalised part of different instances i.e. t
spegify data type/nterfaces. (See Clause A2.3.2 - Using templates as interfaces for further description)

L 2 4 e

a data type can inherit a template by concatenating the data type name of the template including the
square brackets to its own name. The data type itself can again be a template having the "(x)" at its end
of name, or it instantiates the inherited template by defining the value of the parameter in the brackets. In
the latter case the brackets shall contain the decimal number of the identifier and the value shall be set in
the subsequent definition list. The structural definition of the inherited template is repeated as the first part
of the definition list before new data types are specified. (See Clause A2.3.2 - Using templates as
interfaces for further description)

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

EXAMPLE 5
<AnotherTemplate(x)<Template(x)>>:= : second template inherits first
<IntUnTi>(x), : repeated definition from 1 template
<IntUnLi>(n); : additional structural definition
<Instance<AnotherTemplate(1)>>:= : instantiation of the second template
<Intl InTi>(1)1 - definition of Ir_\::rnmnfnr inthe stream
<IntUnLi>(n), : structural definition from template
<IntUnTi>(value); : some more definition

-+ in the definition list a specific instance of a template (i.e. declarative structure)\is)described without the
brackets. Any inherited data type of this template may occur at that position inthe’data stream

BXAMPLE 6

<SomeData>:=

<AnotherTemplate>(anyAnotherTemplate); : Data stream coptains e.g. <Instance>
The following additional guidelines help to improve the readability of data type definitions:

-+ data type names are written in bold;
—+ nested data type definitions are defined from-fop to bottom (i.e. higher levels first, then lower levels);
-+ abox is drawn around a data type definition;

-+ for clear graphical presentation;.lines in a coding box if they are too long to fit, are broken with a
backslash “\” followed by a cartiage return. The broken line restarts with an additional backslash

BXAMPLE 7
<LongLinesExample>:=
<DateTimeVeryLongType\ : First line
\NameMayBelnSeveralLines>, : Second line
<DateTime>,
<ShortString>;

A.2:2.2 Description of data type definition syntax

A data type is an interpretation of one or more bytes. Each data type has a structure, which may describe the
data type as a composition of other defined data types. The data type structure shows the composition and
the position of each data element. TPEG defines data structures in the following manner:

<NewDataType>:= : Description of data type
<DataTypeA>(descriptorA), : Description of data A
<DataTypeB>(descriptorB); : Description of data B

© 1SO 2013 — All rights reserved 9

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

This shows an example data structure, which has just two parts, one of type <DataTypeA> and the other of
<DataTypeB>. A descriptor may be assigned to the data type, to relate the element to another part of the
definition. Comments about the data structure are included at the right-hand side delimited by the colon “”
separator. Each of the constituent data types may be itself composed of other data types, which are defined

separately. Eventually each data type is expressible as one or more bytes.

Where a data structure is repeated a number of times, this may be shown as follows:

<NewDataType>:= : Description of data type
<DataTypeA>, : Description of data A
m|* <DataTypeB>[0..*]; : Description of data B

Often, irl such cases it is necessary to explicitly deliver to the decoder the number of times a data type i
repeated; sometimes it is not, because other means like framing or internal length coding allows knowledge d
the end [of the list of the repeated data type. In other cases the overall length of a data structure in byte
needs t¢ be specified. Additionally the constraint on occurrences can be added, whieh tells how man
instancep of the data type must be expected by the decoder. The “*” as upper bound méans in this case thg
at this plpce no restriction is given to the upper bound; in other words, infinite elements-may follow.

—+ < U =0

Where the number of repetitions must be signalled, it may be accomplished using another data element a
follows:

7

<NewDataType>:= : Description of data type
<IntUnTi>(n), : An integer represénting the value of "n"
n 1 <DataTypeA>[0..255], : Description of data A
<DataTypeB>; : Description of'data B

—h

In the aove example a decoder has to have the value of £n”in order to correctly determine the n’th position @
the <DafaTypeB> in the list. Here as consequence of.data type IntUnTi not more as 255 instances of the dat
type can|be coded.

o

In the following example the decoder uses the value of “n” to determine the overall length of the data
structurg, and the value of “m” determines that.<DataTypeB> is repeated m times:

<NewDataType>:= : Description of data type
<IptUnTi>(n), : Length, n, of data structure in bytes
m[* <DataTypeA>; : Description of data A

This datd type definition is-used to describe a variable structure switched by the value of x:

<NewDataType>:= : Description of data type
<IntUnTi>(x), : Select parameter, x
if (x=1) then-<DataTypeA>, : Included if x equals 1
if (x=2)thén <DataTypeB>, : Included if x equals 2

A.2.3 Application dependent data types

This clause describes the methodology and syntax by which application data types may be constructed within
TPEG Applications. Two basic forms are described: data structures (being non-declarative) and components
(being declarative). Components contain an identifier which labels the structure, and which can be used by a
decoder to determine the definition of content of the structure. As such, components are used where options
are required, or where an application needs to build in ‘future proofing’. Data structures do not contain such
information, and are used in all other positions.

10 © 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

This Annex does not specify the structures, which are actually used in TPEG Applications. Such specifications
are made in the respective parts of the Standard. However examples are given to show how such structures
may be built from the primitive elements already described above.

A.2.3.1 Data structures

Data structures are built up from several (i.e. more than one) elements: primitive, compound or other
structures (both non-declarative and declarative). As such, any application specific data type definition having
no component identifier is per definition a data structure. The term data structure is specifically used for data

t /pe definitions ho\ling more-than-one-sub-slement-defined-

Examples of data structure might be:

BXAMPLE 1
<Activity>:= : Activity
<DateTime>, : Beginning
<DateTime>, :End
<ShortString>; : Text
BXAMPLE 2
<Wave>:= : Sound sample
<IntUnLi>(n), : Length of'samples, n
n * <IntSiTi>(sample)[0..8000]; : Between 0 and 8000 occurrences of a sample

Another example making use of a condition within axdata type definition is shown below.

BEXAMPLE 3 An application could use the example data types above in the following way

<Appointment>:= : Appointment
<IntUnTi>(at), : Alarm type
if (at=1)
<WaveAlarm>, : Remind with a sound
if (at = 2)
<TextAlarm>, : Remind with a text
<Activity>; : Let some action follow
<WaveAlarm>:= : Sound alarm
<DateTime>, : When to wake up
<Wave>: : Sound to wake up to!
<TextAlarm>:= : Text alarm
<DateTime> - \When to display
<ShortString>; : Text to display

For optional values a general mechanism is provided, using a bitarray for signalling optional values. In the
case that a corresponding bit of the bitarray is set (=1), the optional attribute is stored in the stream. In case
the bit is unset the attribute is not available and the next following attribute shall be processed in the stream.

EXAMPLE 4 Data structure with optional elements, signalled by a preceding bitarray as selector

© 1SO 2013 — All rights reserved 11

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

<Timelnterval>:=

<BitArray>(selector),

if (bit O of selector is set)
<IntUnTi>(years),

if (bit 1 of selector is set)
<IntUnTi>(months),

if (bit 2 of selector is set)
<IntUnTi>(days),

if (bit 3 of selector is set)

: DaySelector
: Number of years between 0 and 100
: Number of months between 0 and twelve

: Number of days between 0 and 31

= Nk £ oy hat A-O-ard-24
=

HFi=theurs)
if (Ibit 4 of selector is set)
<IntUnTi>(minutes),

if (bit 5 of selector is set)
<IntUnTi>(seconds);

o AL
o o CT O ot ottwe troart

: Number of minutes between 0 and 60

: Number of seconds between 0 and 60

A.2.3.2 | Using templates as interfaces

In additipn to the possibility of coding the complete and static structural definition“of a data structure, th
syntax dpes foresee that parts of the structure are conditionally different; signalledby a well defined first pa

some other data types are different.

EXAMPL

A tagged|value (also known as TaglLengthValue-Coding) starts with a type atd length; afterwards the value follows. Let
assume the type is an enumeration of some possible values, one would\first specify the interface having only the typ
defined. The different tagged value types would now inherit this interface,"i.e. would have the type defined as first elemer
amended| with the definition of the tagged value data type. The decoder now reads the interface information (the typ

attribute) pnd knows how to proceed for reading the rest of the tagged value from the stream.

<DifferpntDataList>:=
n 1 <TaggedValue>(value);

: Alist of 'data
: Different instances can have different types

<TaggedValue(x)>:=
<tav001:ValueType>(type),

<IptUnTi>(length);

: Template for tagged value
: Type of this tagged value
: Length in bytes in case that value type is

unknown
Examplg table tav001:ValueFype:
Code Reference-English ‘word’ [Comment
001 Service name
002 Rrice per month

—

W =~ U0

Then the resulting list of inherited tagged value data types would be:

<ServiceName<TaggedValue(1)>>:=
<tav001:ValueType>(1),

<IntUnTi>(length),

<ShortString>(serviceName);

: Template for tagged value
: Type of this tagged value

: Length in bytes in case that value type is
unknown

: Service name

12

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

<ServiceName<TaggedValue(2)>>:= : Template for tagged value
<tav001:ValueType>(2), : Type of this tagged value
<IntUnTi>(length), : Length in bytes in case that value type is
unknown
<Float>(pricePerMonth); : Price per month

This interface allows a subsequent list of data types which can easily be extended, by using the same interface.

A23-3—Geompoenents

component is understood as a declarative structure having an interface as described in the previou
decoder of the data stream can identify the content of the structure with the help of the_identifier
nique in the scope of any one TPEG Application Standard. In addition to the identifier ‘@ length
llows the decoder to step over those components whose ids are unknown to it. This enables the pos|
htroducing new components in the data stream although decoders in the market do not know their,
he old decoder does expect the content of the first version of a protocol and ignorés simply unre
ata with small performance loss. The new decoder expects the second version of the protocol and
ecode that version of the protocol. Components should be used wherever future extensions are en
nd where ‘future proofing’ is a strong requirement.

A O 0O =0 C I T

Having a migration period being backward compatible and then later cutting of not longer supported devices, ev
il is expected that the migration will take its time.

N Addition to the concept of declarative structuring a second ‘step of improvement of size efficiency G
ith the backward compatibility is specified. The first part following the header of a component in
tream is defined as attribute block. The attribute block-starts with the length of the block in bytes wh
llows the decoder to step over attributes that are not specified in a first version of the protocol.

Q N < —

=]

he decoder reads the attribute block length and decreases the count of bytes while reading the att
dase that the last known attribute is read, and-the attribute block count is not zero, the remaining by
data stream are omitted to step over to thésnext well-known part of the data stream.

A.2.3.3.1 Definition of standard component interface

5 clause.
which is
indicator
Sibility of
content.
cognhized
can fully
visioned,

NOTE With this method even non-backwards compatible changes can be introduced into the existing market by

en though

ombined
the data
ch again

ibutes in
s in the

"generic
attribute

A component, including attributes, which is the general standard component, containing a unique

gomponent id", a length indicating count of bytes following as data after the component length and an

Iength indicating the countof bytes in the attribute block (as first part of the component data). The stiucture is

defined by:

<Component(x)>:= : Component template used for standard components

<IntUnTi>(x), - id is unique within the scope of the application.
<IntUnLoMB>(compLengthInByte), : length of the component counted in bytes.
<intUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes.

A.2.3.3.2 Example for jumping over unknown content types
— let C1 be a component with an attribute a1 as Shortint and a sub component C2;
— let C2 be a component with an attribute a2 as one IntUnTi and a second a3 as ShortString;

— let C3 be a component being the successor of C1.

© 1SO 2013 — All rights reserved

13

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

<C1<Component(1)>>:=
<IntUnTi>(1), pid = 1.
<IntUnLoMB>(compLengthInByte), : length of the component counted in bytes
<IntUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes
<Shortint>(a1), : first attribute in C1
<C2>(c2); : sub component from C1
<C2<Component(2)>>:=
<IptUnTi>(2), 1id = 2.
<IptUnLoMB>(compLengthInByte), : length of the component counted in bytes
<IptUnLoMB>(attributeBlockLengthinByte); : length of the attribute block in bytes
<IptUnTi>(a2), : first attribute in C2
<§hortString>(a3); : second attribute in C2
<C3<Cpmponent(3)>>:=
<IntUnTi>(3), 1id = 3.
<IptUnLoMB>(compLengthInByte), : length of the component counted in bytes
<IptUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes

-

For example to demonstrate the method some padding bytes with valde’CD hex could be added to the strear
whereby| a decoder could still read C1 — C3. In Figure A.1 one can-see a first line with a position number, g
second ljne with the abbreviated function of that byte and a third.line with sample content. The arrows unde
the tablg show the possible jumps allowing the seeking over.the’different padding bytes.

=

Line function abbreviations mean:

CL : component (data) length in bytes AL 3y attribute block length in bytes
P : padding bytes Ad, A2, A3 : attributes

1, C2, C3: component identifier, begin of the’component

7 8 9 10 | 11 12 | 13 | 14 | 15 | 16 17 18 19 20
pnc | C1 | CL | AL | AT | AT” C3 CL | AL
al 1 15| 4 | 42 | 12 | CDhyjCDh | 2 8 7 3 4 | T |'E|['S [T |CDh 3 1 0

mn|o
T|o
T
Q
N
o]
-
>
[
>
N
>
w
>
w
>
w
>
w
>
w
)

Figure A.1 — Example for jumping over unknown content with component header information

A.2.4 Tloolkits and external definition

Some functionatity 15 shared between different TPEG Appliications. This 15 for exampie the case for focation
referencing container and message management container. A TPEG Application therefore can refer to a data
type definition not specified in the same Technical Specification.

Toolkits are designed, so that the root components usable as external reference are defined as templates. A
TPEG Application using a toolkit template therefore needs to specify a unique generic component id for this
instantiation of the interface.

All subsequent components in a toolkit are defined as out of scope of the TPEG Application; i.e. the toolkit on
its own defines subcomponents beginning with 0. With that on one hand application decoder must be aware

14 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

that component ids of the application may be repeated in sub components of a toolkit. On the other hand
further development of application and toolkit can be done independently.

A.2.5 Application design principles

This clause describes design principles that will be helpful in building TPEG applications. A fundamental
assumption is that applications will develop and new features will be added. If design principles are adopted
properly then older decoders will still operate properly after extending features. Correct design should permit
applications to be upgraded and extended over time, providing new features to new decoders, and yet permit

A.2.5.1 Variable data structures
bwitches may be included within an application, which permit variations in the subsequent data gtructure.
owever, the switch fixes the values of variations. A new type cannot be introdugéd without preaking
hackward compatibility. This may be achieved by using components. When newfeadtures are likgly to be
incorporated, attention should be given to the fact that old decoders just ‘skip over ‘'new data fields| and still
gxpect the old components if they were mandatory.

A.2.5.2 Re-usable and extendable structures

ithin an application there will be data structures, which are used repeatedly in a variety of places. There will
Iso certainly be an ever-growing set of structures, as the application protocol develops and incorporates new
features. Component templates may be used to minimize the) humber of occasions within the decoder’s
Joftware in which the structure needs to be defined, and to\permit an increasing variety of structuies to be
sed in a given location.

A.2.5.3 Validity of declarative structures
he Identifier of a component is uniquely definéd within each application. The same number may beg used in
different applications for completely different purposes. Within an application one identifier designates one

definition of a component. The design of an-application may use components to implement placeholders or to
ghange the composition of elements in@&fixed structure.

A.3 TPEG data stream description

A.3.1 Diagrammatic hierarchy representation of frame structure

Transport Frame: | Sync Word | Field Length | Header CRC Fram=e0Type Service Frame
. Number | Service 1 | Service 2 | Service 3 | Service ... | Service n
Service Frame: of (SID-A, (SID-A, (SID-A, (SID-A, (SID-A, CRC
Services SID-B, SID-B, SID-B, SID-B, SID-B,
=n SID-C) SID-C) SID-C) SID-C) SID-C)

Figure A.2 — TPEG Frame Structure, Frame Type = 0 (i.e. stream directory)

© 1SO 2013 — All rights reserved 15

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

A3.2 S

A3.2.1

The follg
The bytg

The bytd
one tran

Transport Frame: | Sync Word | Field Length | Header CRC Fram=e1Type Service Frame
Service Service Service Encrvption
Service Frame: Identification | Identification | Identification Ind?t,:gtor f, (component multiplex)
SID-A SID-B SID-C
Encryption/Compression
Function
Service Service Service
Service Component Multiplex: Component Component_[|Component
Frame 1 Frame ..: Frame n
Service
Service Component Frame: Component | Field Length |~CRC | Component data
Identifier

TPEG transport frame structure

THe synchronization word (syncword)

THe length of the service frame in bytes (field length)
THe header CRC

THe frame type indicator

THe service frame

yntactical Representation of the TPEG\Stream

2 bytes
2 bytes
2 bytes
1 byte

Figure A.3 — TPEG Frame Structure, Frame Type'= 1 (i.e. conventional data)

wing boxes are the syntactical representation of the TPEG frame structure shown in Clause A.3.|
stream contains consecutive transport frames. Each frame includes:

(See Clause A.3.3.1)
(See Clause A.3.3.2)
(See Clause A.3.3.3)
(See Clause A.3.3.4)
n bytes (n = Field Length)

stream is built according to the above-mentioned repetitive structure of transport frames. Normall
sport frame should follow another directly, however if any spacing bytes are required these should b

~

11

set to 0 fex (paddilly bytca).

<TpegStream>:=

infinite {

n * <IntUnTi>(0),
<TransportFrame>

b

: The data stream.

: Control element, (loop continues infinitely)
: Any number of padding bytes (0 hex)

: Transport frames

16

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:

2013(E)

<TransportFrame>:=
<IntUnLi>(FFOF hex),
<IntUnLi>(m),

<CRC>(headCRC),
<IntUnTi>(x),
<ServiceFrame(x)>;

: Sync word (FFOF hex)
: Number of bytes in Service Frame
: Header CRC, (See Clause A.3.3.4)

: Frame type of service frame
: Any service frame follows

A.3.2.2 TPEG service frame template structure

This service frame comprises:

<ServiceFrame(x)>:=
n * <byte>;

: Template for service frame
: Content of service frame

A.3.2.3 Service frame of frame type =0

Number of services (n)
n *(SID-A, SID-B, SID-C)
CRC

The service frame is solely used to transport the stream directory information;

1 byte
n * (3 bytes)
2 bytes

<StreamDirectory<ServiceFrame(0)>>:=
<IntUnTi>(n),
n * <Serviceldentifier>,
<CRC>;

: Stream»directory

: Number of services

_’Any number of Service IDs
: CRC of Service IDs

A.3.2.4 Service frame of frame type ="
Each service frame comprises:

SID-A, SID-B, SID-C
The encryption indicator
The component data

=

[¢))

erviceprovider.

framan oo bha o

3 bytes (See Clause A.3.4.2)
1byte (See Clause A.3.4.1)
m bytes

he service levél)is defined by the service frame. Each transport frame carries one and only oné
rame. The seryice frame includes a component multiplex comprising one or more component frames

Bach service frame may contain a different range and number of component frames as require

service

] by the

adh-tranconart icad-byvaoanb i ona-carndeca - nrovadar and oana - dadicat capdea—ahich o1 or-tS a
CattarsporcareTay ot oSC U oy- oy Ot SCTviCCPoTrovitaCTant—onC O U atC U~ STTviICT T WinCr—oSu pp

mixture of applications. A multiplex of service providers or services is realized by concatenation of multiple
transport frames. Each service frame includes service information that comprises the service identification

elements and the encryption indicator.

<ConventionalData<ServiceFrame(1)>>:=
<Serviceldentifier>,

<IntUnTi>(encldentifier),
f(<ServCompMultiplex>);

: Conventional data
: Service identification
: Encryption indicator n. 0 = no encryption

: Function £, (...) is utilized according to the chosen
encryption algorithm

© 1SO 2013 — All rights reserved

17

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS

A.3.2.5

18234-10:2013(E)

TPEG service component frame multiplex

The component multiplex is a collection of one or more component frames, the type and order of which are
freely determined by the service provider. The resultant multiplex is transformed according to the encryption

method

required (if the encryption indicator is not 0) or is left unchanged (if the encryption indicator = 0). The

length of the resultant data must be less than or equal to 65531 bytes.

<ServCompMultiplex>:=
n * <ServCompFrame>(data);

: Any number of any component frames

A.3.2.6

The serjice component frame introduces the application specific code. This means further details of the dat
stream dre specified by the application specification. In the history for different needs slightly-different frame

have be

new developments of specifications, this clause specifies not only a basic frame, whichis required for an

applicati

the need to specify its own frame.

An appli

base selvice component frame as first sub type.

A.3.2.6.1 TPEG base service component frame structure

In a TPHG data stream it shall be possible to have not only one cantent stream but more; even different fror

the sam
which is
for any g

specific frame. In other words the frame starts not with_a&typical interface template, but with a header, definin

three fir:
frame is

Interface to application specific frames

en defined in the existing application specifications. To harmonize this kind of frames; especially fo

-, < = U

bn but also a selection of possible other frames, whereof an application can just choose one withol

cation specification, however, can specify its own frame, which shall at‘minimum include the following

=)

e application. This is possible with the help of the Seryvice and Network Information (SNI) Application
served like variable directory information in the datastream. Therein a table defines a unique numbsg
ontent stream being transmitted. This includes also the definition which application is expected in on

— T W~ <

5t values being in common with all service~component frames. Therefore, any service componer

<Serv(
<§
<A

built as shown below:

ompFrame>:= : Service component frame
ervCompFrameHeader>(header), : Common service component header
\pplicationData>(data); : Component data

Where the service component header is specified as:

<Serv(
<|

N|
<(

ompFrameHeader>= : Common service component frame header

ntUnTi>(scld), : Service component identifier (scid is defined by SNI
service component designating the application in this
service component frame)

1tUnLi>(lengthinByte), : Length, n, of component data in bytes

RC>(headerCRC); : Header CRC (See Clause A.3.5.3)

At the component level data is carried in component frames which have a limited length. If applications require
greater capacity then the application must be designed to distribute data between component frames and to
recombine this information in the decoder.

The inclusion of the field length enables the decoder to skip a component.

The maximum field length of the component data (assuming that there is no transformation, and only one
component is included in the service frame) = 65526.

18

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:

A.3.2.6.2 TPEG specialized service component data schemata

2013(E)

It is in interest of consistency to make sure that service component frames still become defined in as similar

as possible in different applications. Specifically with three further attributes being of general nat

ure. The

following proposed specialized service component data schemata can be used to inform on this general level

about following information:
a) The application data of a component frame with dataCRC is error-free.

ata CRC on this level makes it possible, that in case of errors only the service component frame

e.g. one

D

gtill be used. (See Clause A.3.5.4)

k) Count of messages the service component frame contains named messageCount.

—

D be expected by the decoder (e.g. for displaying purpose).
d) Prioritization can be made by assigning a groupPriority.
ith some qualification of priority of messages. In this case high prigrity-message may take precede

ther messages in the decoder. These may be presented to the user-even before low priority mess
ecoded.

o0 < —

™

\.3.2.6.2.1 Service component data with dataCRC

Any application should at least specify a data CRC as @efined in Clause A.3.5.4 at the end of applica
gnsuring that bit errors can be detected on service cemponent frame level.

relatively small package of data) would be lost. Other parts of the service multiplex may still be validhgnd could

$ometimes it is useful not only to know the opaque count of bytes, but also how manydifferent messgge have

N some cases the different service components received shall not just-be_handled by a FIFO buffer|but also

nce over
Hges are

tion data

< ServCompFrameProtected >:= : CRC protected service component frame
<ServCompFrameHeader>(header), : Component frame header as defined in A.3.2.6.1
external <ApplicationContent>(content), : Content specified by the individual application
<CRC>(dataCRC); : CRC starting with first byte after the header

A.3.2.6.2.2 Service component data with dataCRC and messageCount

This service frame is-used for applications containing messages more or less directly presented to
which indicate already’on frame level how many messages are to be expected. Data CRC is cont
well.

the user
nined as

< ServCompFrameCountedProtected>:= : CRC protected service component frame with
message count
2ServCompFrameHeader>(header), : Component frame header as defined in A.3.2.6.1
<IntUnTi>(messageCount), : count of messages in this ApplicationContent

external <ApplicationContent>{content), g
<CRC>(dataCRC); : CRC starting with first byte after the header

A.3.2.6.2.3 Service component data with dataCRC and groupPriority

When messages need to be grouped by priority, this service component frame is used. If not all messages
within the frame have the same priority, 'typ007_000: undefined' shall be used. Data CRC is contained as

well.

© 1SO 2013 — All rights reserved

19

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS

18234-10:2013(E)

< ServCompFramePrioritisedProtected>:= : CRC protected service component frame with
message count
<ServCompFrameHeader>(header), : Component frame header as defined in A.3.2.6.1
<typ007:Priority>(groupPriority), : group priority applicable to all messages in this
ApplicationContent
external <ApplicationContent>(content), : actual payload of the application
<CRC>(dataCRC); : CRC starting with first byte of after the header
A.3.2.6.2.4 Service component frame with dataCRC, groupPriority, and messageCount
Additionglly, an application can also make use of all features described in previous clauses.
< Serv@ompFramePrioritisedCountedProtected>:= : CRC protected service component frame with group
priority and message count
<§ervCompFrameHeader>(header), : Component frame header as defined in A.3.2.6.
<typ007:Priority>(groupPriority), : group priority applicable to all messages-in the
ApplicationContent
<IntUnTi>(messageCount), : count of messages in this ApplicationContent
external <ApplicationContent>(content), : actual payload of the application
<GRC>(dataCRC); : CRC starting with first byte. after the header
A.3.2.6.3 Example of an application implementing a service component frame
An application specification is required to specify first the copidponent frame just as a written sentence. It ma

for inforn

supersedled by a future release of this specification.

As second definition tree of application starts with;

nation repeat the definition of the frame, but in this“ease it shall add a note, that this definition can b

T <

<AppligationContent>:= : link provided by SSF
n 1 <MyComponent>(comp); : n root components of the application
<MyComponent<Component(0)>>:3
<IptUnTi>(0), tid=1
<IptUnLoMB>(compLengthinByte), : length of the component in bytes
<IntUnLoMB>(attributeBlockLengthInByte), : length of the attribute block in bytes
<ShortString>(my¥ext), : some first attribute of the application
<§ubComp>(sub); : some sub components of Component(0)
A.3.3 Description of data on Transport level
A.3.3.1 Syncword

The syncword is 2 bytes long, and has the value of FFOF hex.

The nibbles F hex and 0 hex have been chosen for simplicity of processing in decoders. The
0000 hex and FFFF hex were deprecated to avoid the probability of false triggering in the cases of some

common

20

ly used transmission channels.

patterns

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

A.3.3.2 Field length
The field length consists of 2 bytes and represents the number of bytes in the service frame.

This derives from the need of variable length frames.

A.3.3.3 Header CRC

The Header CRC is two bytes long, and is based on the ITU-T polynomial x'®+ x'?+ x°+ 1. The Header CRC

lae—ealendatad an 16 oo tneolbiidina tha oA d_tha fiald lanath tha feaman fianan A tha firect 44 by b fth
is-calewtated-on—+6-bytes-ineluding-the-synewerd—the-fieldHength—the-frame-type-and-thefirst-+-byies of the

gervice frame. In the case that a service frame is shorter than 11 bytes, the sync word, the field' lepgth, the
frame type and the whole service frame shall be taken into account.

Ih this case the Header CRC calculation does not run into the next transport frame.

=]

he calculation of the CRC is described in ISO/TS 18234-2, Annex C.

A.3.3.4 Frame type

The frame type (FTY) indicates the content of the service frame. Its length'is 1 byte. The following taple gives
the meaning of the frame type:
FTY value (dec): | Content of service frame: Kind of information in service frame|:
0 Number of services, n * (SID-A, SID-B, SID-C) Stream directory information
1 SID-A, SID-B, SID-C, Encryption ID, Conventional service frame data
Component Multiplex

If FTY = 0, an extra CRC calculation is done oyer the whole service frame, i.e. starting with n (ndmber of
gervices) and ending with the last SID-C of the\last service.

The calculation of the CRC is describedyin- ISO/TS 18234-2, Annex C.

A.3.3.5 Synchronization method

A three-step synchronization algorithm can be implemented to synchronize the receiver:
g) search for an FFOE hex value;

) calculate and-check the header CRC, which follows;

d) check the two bytes, which follow the end of the service frame as defined by the field length.

=]

he twe bytes following the end of the service frame should either be a sync word or 00 hex, when spaces are
inserted.

A.3.3.6 Error detection

The CRC header provides error detection and protection for the synchronization elements and not for the data
within the service frame (except the first 11 bytes, when applicable).

© 1SO 2013 — All rights reserved 21

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

A.3.4 Description of data on Service level

A.3.4.1 Encryption indicator
Length: 1 byte

The encryption indicator is defined as one byte according to TPEG primitive syntax. If the indicator has value
00 hex all data in the component multiplex are non-encrypted. Every other value of the encryption indicator
indicates that one of several mechamsms for data encrypt|on or compressmn has been utilized for all data in

th f ” dat Tk L $ 29 2| H AN b £ k. I
e Tollo VIIIH uata |||u|u|.J|UA TTIC UIIUIleI.IUIIIUUIII'JIUDOIUII LUulllllquc [=1R1V] GIHUIILIIIIIO mayoc ||UU|y CITOSTIT U

the service provider.

0 = no encryption/compression
1to 127 = reserved for standardized methods
128 tp 255 = may be freely used by each service provider, may indicate the/use of proprietary

methods

A.3.4.2 | Service identification

The senfice IDs are structured in a similar way to Internet IP addresses as follows:

SID-A . SID-B . SID-C
The conbination of these three SID elements must be uniquely allocated on a worldwide basis.

The follgwing address allocation system applies:

— SlID|range for TPEG technical tests SIDs = 000.000:000 - 000.127.255

— SID|range for TPEG public tests SIDs = 000,128.000 - 000.255.255

— SIDfrange for TPEG regular public services':-SIDs = 001.000.000 - 100.255.255
— SID|range: reserved for future use SIBs = 101.000.000 - 255.255.255

NOTE The above allocations and strugture is significantly changed from that originally specified in ISO/TS 18234-2.
A.3.5 Description of data on Service component level

A.3.5.1 | Service component identifier

The serfice component identifier with the value 0 is reserved for the SNI Application. (See ISO/TS 18234-3).

A.3.5.2 | Field'length

Th fl 1 o HY £ Lot | taklo o £ Lotk £ 4l ol
eflie ICTTYUT CUTTSIOS UT' 2 UyIlTOo allu TTUTTOTTIS UTT TIUTTTUTT UT UYy1To UT U'TC CUTTTPUTICTTU Udla.

A.3.5.3 Service component frame header CRC

The component header CRC is two bytes long, and based on the ITU-T polynomial X C+x 24X +1.

The component header CRC is calculated from the service component identifier, the field length and the first
13 bytes of the component data. In the case of component data shorter than 13 bytes, the component

identifier, the field length and all component data shall be taken into account.

The calculation of the CRC is described in ISO/TS 18234-2 Annex C.

22 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

A.3.5.4 Service component frame data CRC

The DataCRC is two bytes long, and is based on the ITU polynomial x"%+x"*+x°+1. This CRC is calculated
from all the bytes of the service component frame data after the service component frame header.

The calculation of the CRC is described in ISO/TS 18234-2 Annex C.

A.4 General binary data types

his clause describes the primitive elements and compound elements that are used by TPEG applicafions.
4.1 Primitive data types
The fundamental data element in TPEG technology is the byte, which is represented by 8 bits. [All other
grimitive data types are expressed in terms of bytes as follows:
A.41.1 Basic numbers
The following data type represent the general notation of integral aumbers either coded as s|gned or
ynsigned.
<IntUnTi>:= : Integer Unsigned Tiny, range 0..255
<byte>; : Primitive
<IntSiTi>:= : Integer Signed Tiny, range -128..(+)127
<byte>; ;, Two's complement
<IntUnLi>:= : Integer Unsigned Little, range 0..65 535
<byte>, : MSB, Most Significant Byte
<byte>; : LSB, Least Significant Byte
<IntSiLi>:= : Integer Signed Little, range -32 768..(+)32 767
<byte>, : MSB, Two’s complement
<byte>; : LSB, Two's complement
<IntUnLo>:= : Integer Unsigned Long, range 0..4 294 967 295
<byte>, : MSB
<byte>,
<byte>,
<byte>; :LSB
<IntSiLo>:= : Integer Signed Long, range -2 147 483 648..(+)2 147
483 647
<byte>, : MSB, Two’s complement
<byte>,
<byte>,
<byte>; : LSB, Two’s complement

© 1SO 2013 — All rights reserved 23

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS

A.41.2

18234-10:2013(E)

MultiByte

A.41.21 Unsigned Long MultiByte

A multi-byte integer consists of a series of bytes, where the most significant bit is the continuation flag and the

remainin
byte seq

g seven bits are a scalar value. The continuation flag indicates that a byte is not the end of the multi-
uence. A single integer value is encoded into a sequence of N bytes. The first N-1 bytes have the

continuation flag set to a value of one (1). The final byte in the series has a continuation flag value of zero (0).
This allows to know exactly the end of a series of bytes belonging to one multi-byte, being the one with

MSB=0.

The byt

concatenated bytes is 5, so that the maximum unsigned integer, which can be encoded is 2

this speq
use’, to

)

s are encoded in “big-endian” order i.e. most significant byte first. The maximum number g
199 _ 1. Howeve
ification defines the three most significant bits of the fifth, most significant byte as “reserved.for futur
be set to 000. This leads into the maximum number 2% - 1 which is the maximum value_of a four byt

W W <

unsigned integer.
<IntUnl oMB>:= : Integer Unsigned Long, range 0..4 294 967 295
mi<byte>[1..5]; : MS-Bit = 1 signals one more byte follows.
EXAMPLE
Positive humber to be encoded
— in Dgcimal: 1093567633
— Binary (32bit): 0100 0001001 0111010 0001001 0010001
Multibyte lencoded:
Byte [5]| (MSB) Byte [4] Byte [3] Byte [2] Byte [1] (LSB)
(1)"000"p100 (1)0001001 (1)04110100 (1)0001001 (0)0010001
Bits in brackets are continuity flags, the ones in quotes are reserved and set to 0.
Multibyte lencoded hex: 8489ba8911.
A.4.1.2.2 Signed Long MultiByte
The signed multi-byte is-defined in the same way as IntUnLoMB except in case of signed value interpretatiory;

the com

1M1 inc
introduc
bytes, tg

magnituPe of the positive value to be stored in multi-byte. The three reserved bits in byte #5 shall be set t

blement on twois used on the 7 bit wide byte series. The count of bytes is then defined by th

se of negative numbers with 5 byte length and 000 otherwise, to be up-ward compatible in case g
ion of-a:64-bit integer value in future. Signed values from 0 to -2% are stored in one byte, to 2" in tw
-2%%n three bytes, to -2?’in four bytes and to -2°? in five bytes.

O = O W<

For example a value 0x62 (0110 0010) would be encoded with the one byte 0x62. The integer value 0xA7
(1010 0111) would be encoded with a two-byte sequence 0x8127. The signed representation of -1 is Ox7F.
And -2345 is represented in two bytes so that the complement on two is 0x36D7 = (110 1101.101 0111). A
serialisation in multi-byte then results in 1110 1101.0101 0111 = OXEDS57.

<IntSiLoMB>:= : Integer Signed Long, range -2 147 483 648..(+)2 147
m*<byte>[1..5]; 483 647

: Two’s complement after elimination of continuation
flags.

MS-Bit = 1 signals one more byte follows.

24

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

EXAMPLE

Positive number to be encoded
1093567633
0100 0001001 0111010 0001001 0010001

in Decimal:
Binary (32bit):

Multibyte encoded:

ISO/TS 18234-10:2013(E)

Byte [5] (MSB) Byte [4] Byte [3] Byte [2]

Byte [1] (LSB)

(1)"000"0100 (1)0001001 (1)01110100 (1)0001001

(0)0010001

Bits in brackets are continuity flags, the ones in quotes are reserved and set to 0.
Nlultibyte encoded hex: 8489bag8911.

Negative number to be encoded
-1093567633
1011 1110110 1000101 1110110 1101111

-+ in Decimal:

— Binary (two's complement):

Nultibyte encoded:

Byte [5] (MSB) Byte [4] Byte [3] Byte [2]

Byte [1] (LSB)

(1)"111"1'011 (1)1110110 (1)1000101 (1)1110110

(0)1101111

Bits in brackets are continuity flags, the ones in quotes are reserved and set to 1.

Nultibyte encoded hex: FBF6C5F66F.

A.41.3 BitArray

gain in that order, and.so'oh.

gncoding of numeric values which use a Big-endian bit and byte order.

This is an encoding specific data typé_used for encoding an array of Booleans. The bits are enco
gequence of bytes, where the first bif of each byte is a continuation flag (shown as c in A.4). If this
(F1) there follows at least one moare byte in this bit array. The last byte always has this bit cleared (=0). A
BitArray represents a list of Boolean values which is implemented in the same way as for all lists.
Ryte holds bits numbered from zero to six in that order. The second byte holds bits numbered sevén to 13,

The ordering is sequertial from first to last bit. This use, to ensure consistency with other lists, differs

Byte 0 Byte 1

Bit NR Bit NR

c o ¢t 2 B @4 P B |C (7 B 9 [10 11 (2

Figure A.4 — BitArray coding format

<BitArray>:=
m * <byte>[1..*];

: byte of flags; MS-Bit = 1 signals one more byte follows

© 1SO 2013 — All rights reserved

ded in a
bit is set

The first

from the

25

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

A.4.1.4 Boolean
A single true or false value. The Boolean is differently defined for the following cases:
A.41.41 Mandatory Boolean

Mandatory Booleans are defined directly in the selector bitarray used for signalling optional attributes. This
saved additional bytes for Boolean values. If bit x of selector is set, the Boolean value is interpreted as being
true, otherwise false.

A.4.1.4. Mandatory Multiple Booleans

For mulfiple Boolean values (Boolean value with multiplicity higher then 1) the coding requires-~as“first

multibyte "n" as counter how many bit of the then following extra bitarray are in use. The bitarray then’ contain
n valid b|ts, coding the same as single Booleans. If n = 0 the bitarray attribute is not existing.

o

L'

A.4.1.5 | Date and time information:

The number of seconds elapsed since the start 1970-01-01T00:00:00 Universal Coordinated Time (UTC).
This gives values for 136 years until 2106, i. e. 2°? seconds from the year 1970.

The exa¢t formula for the date and time calculation can be found in ISO/TS 18234-2 Annex D.

<DateT|ime>:= : Date and time
<IntUnLo>; : Number of seconds since 1970-01-01T00:00:00
Universal Coaordinated Time (UTC)

A.4.1.5.1 Day selection
This typg gives the possibility to select one or more days’of the week to indicate the repetition of an event.
A DaySelector attribute can be used to select 'ane or more week days. The Boolean attributes indicat

whetherja particular day is included in the selection, if the attribute value is "true", the day is selected. Thes
seven affributes are mandatory Booleans, encoded using a BitArray.

WD

<DaySeglector>:=

<BitArray>(selector), : DaySelector
if (bit 0 of selector is set)

<Boolean>(saturday); - every Saturday
if (bit 1 of selector is set)

<Boolean>(friday), : every Friday
if (bit 2 of selectoris set)

<Boolean>(thursday), - every Thursday
if (bit 3,0f selector is set)

<Boolean>(wednesday), - every Wednesday
if (bitdof-setector-is—set)

<Boolean>(tuesday), - every Tuesday
if (bit 5 of selector is set)

<Boolean>(monday), - every Monday
if (bit 6 of selector is set)

<Boolean>(sunday), - every Sunday

EXAMPLE 1 <DaySelector> = 05 hex - Meaning: The event (e. g. service) is repeated every Sunday and Tuesday.

EXAMPLE 2 <DaySelector> = 7E hex - Meaning: The event (e. g. service) is repeated every day except Sunday.

26 © 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:

A.4.1.5.2 Duration

Values of this type define temporal duration, expressed in a number of whole seconds. Values

2013(E)

must be

between 0 and 4294967295. Because it is expected that in many cases the amount of the value is low,

variable length coding is used.

<Duration>:= : Time duration
<IntUnLoMB>; : Number of seconds

A.4.1.6 DistanceMetres

Distance in integer units of metres.

<DistanceMetres>:=

<IntUnLoMB>; : Distance in integer units of metres)

A.4.1.7 DistanceCentiMetres

Distance in integer units of centimetres.

<DistanceCentiMetres>:=

<IntUnLoMB>; : Distancg)invinteger units of centimetres.

A.41.8 CRC-word data type

inition of

The Cyclic redundancy check (CRC) is a calculated hash value over a defined array of bytes. The def
4 CRC must include the definition of the array:
<CRC>:= : Cyclic redundancy check
<IntUnLi>; : According to ITU-T polynomial, over an indicated

Range of elements. (See ISO/TS 18234-2 Annex C)

A.41.9 FixedPercentage
RixedPercentage defines a fixed percentage value in integer units in the range 0 and 100.

A fixed percentage can not be used as an indication of a change, where both negative values an
larger than.a100% might be required.

d values

<FixedPercentage>:=

<IntUnTi>; : valid values of percentage from 0 to 100

A.4.1.10 Probability

Probability defines a percentage value between zero and one with a precision of two decimals. Wh
denotes no probability and one hundred certainty.

ere zero

<Probability>:=

<FixedPercentage>; - valid values from 0 to 100

© 1SO 2013 — All rights reserved

27

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

A.4.1.11 Float

A float defines a number with decimal precision. It is encoded as an IEC 60559 single precision floating point
number (32 bit).

<Float>:=
<IntUnLo>; : IEC 60559 single precision floating point number

A.4.1.12] Severity

11

Severity|is application specific and defined in the range from 1 to 255 where higher values are expected.to b
more seyere. Value 0 is predefined as undefined.

<Sevelrjity>:=
<IptUnTi>; : Application specific value of severity

A.4.1.13| Velocity

Velocity jn integer units of metres per second in the range from 0 to 255.

<Velocjty>:=
<IptUnTi>; : Speed in m/s

A.4.1.14 Weight

Weight ip integer units of kilogram’s. The value is in the‘range from 0 to 4294967295, encoded as IntUnLoMB|.

<Weight>:=
<IntUnLoMB>; : Weight in kg

A.4.2 Gompound data types

A.4.2.1 | Serviceldentifier

A servicg identifier is an,data type that defines a single service identifier.

<Servig¢eldentifier>:=

:: ::S:R:Ez:ggg : Service identification part A

<l 1tUnTi>(sidC)’; : Service identification part B
: Service identification part C

A.4.2.2 FixedPointNumber

Defines a value from -2147483648.99 to 2147483647.99 with a fixed precision of 2 decimals.

<FixedPointNumber>:=
<IntSiLoMB>(integralPart), : integral part of the number
<IntUnTi>(decimalPart); : fraction of 2 decimal digits
values from 0 to 99

28 © 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

A.4.2.3 Strings

The string of characters is represented by a series of n bytes. These bytes need to be interpreted according to
a character table, which will designate the byte width of each character. The encoding of the characters is
defined in ISO/TS 18234-3. Where multiple code tables are used, an application needs mechanisms to set the

scope of applicability of each table.

<ShortString>:= : Short string
<IntUnTi>(n), : Number of bytes, n
n * <byte>; : String of characters; count of characters depends on

chosen coding

<LongString>:= : Long string
<IntUnLi>(n), : Number of bytes, n
n * <byte>; : String of characters; count of characters depends on

chosen coding

A.4.2.4 Localised Strings

A string accompanied with a language code that identifies the language that the string is given| in. The
typ001:LanguageCode is derived from ISO 639: 2002 - Codes for the, representation of names of languages.
<LocalisedShortString>:=
<typ001:LanguageCode>(languageCode), : Specifies'the language used for this string.
<ShortString>(string); : Shortstring
<LocalisedLongString>:=
<typ001:LanguageCode>(languageCode), : Specifies the language used for this string.
<LongString>(string); : Long string
A.4.2.5 Compound time information
A.4.2.51 Timelnterval
The Timelnterval data structure can be used when an interval in time must be specified with more [flexibility
than the simple Duration type allows.
Bach Timelnterval attribute has a number of optional attributes. It is maximally 101 years long. Each|attribute
dan be used as, stand-alone attribute or in combination with other attributes. When an attribute is npt given,
the value zerosisiimplied. Every Timelnterval must specify at least one attribute.
<Timelnterval>:=
<BitArray>(selector), : DaySelector
if (bit O of selector is set)
<IntUnTi>(years) - Number of years in the range from 0 to 100
if (bit 1 of selector is set)
<IntUnTi>(months), : Number of months in the range from 0 to 12.
if (bit 2 of selector is set)
<IntUnTi>(days), : Number of days in the range from 0 to 31.
if (bit 3 of selector is set)
<IntUnTi>(hours), : Number of hours in the range from 0 to 24.
if (bit 4 of selector is set)
<IntUnTi>(minutes), : Number of minutes in the range from 0 to 60.
if (bit 5 of selector is set)
<IntUnTi>(seconds); : Number of seconds in the range from 0 to 60.
© 1SO 2013 — All rights reserved 29

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

A.4.25.2 TimePoint

The TimePoint data structure can be used when a point in time must be specified with fewer granularities than
the simple DateTime allows. Each TimePoint attribute has a number of optional attributes. Each attribute can
be used as stand-alone attribute or in combination with other attributes. Every TimePoint must specify at least
one attribute. In binary encoding, 1970 is subtracted from the year, mapping the range 1970-2100 to the
values 0-130.

<TimePoint>:=

<BitArray>(selector), - DaySelector
if (Ibit 0 of selector is set)
<IntUnTi>(year), : The year in the range from 1970 to 2100.
if (bit 1 of selector is set)
<IntUnTi>(month), : Number of months in the range from 1 to 12.
if (bit 2 of selector is set)
<IntUnTi>(day), : Number of days in the range from 1 to 31,
if (bit 3 of selector is set)
<IntUnTi>(hour), : Number of hours in the range from 0.to 23.
if (bit 4 of selector is set)
<IntUnTi>(minute), : Number of minutes in the range~from 0 to 59.
if (bit 5 of selector is set)
<IntUnTi>(second); : Number of seconds in the range from 0 to 59.

A.4.2.5.3 TimeToolkit

The time
start but
TimeTog
or in con

the Date[lime type should be used.

toolkit allows different date and time information to be,described. For example where an event has
no known end-time. In such a case we should uséd only a start point but omit an end-time. Eac
Ikit attribute has a number of optional attributes. Each attribute can be used as a stand-alone attribut
hbination with other attributes. Every TimeToolkit must specify at least one attribute. For a timestam

<TimeToolkit>:=

<BitArray>(selector), : 1 byte containing 5 switches
if (bit O of selector is set)

<TimePoint>(startTime), : An event time point (e.g. flight departure) or an event
starting time (e.g. open from)

if (bit 1 of selector is set)

<TimePoint>(stopTime), : An event stopping time (e.g. open to). The stop time
can be used only together with a start time

if (bit 2 of selectoris set)

O W o0\

<Timelnterval>(duration), : A time interval (e.g. free parking limit)
if (bit.3 of selector is set)
qumﬁﬁmmmpmw—ﬁ. i i ; —Refevantdaysof acertaim type(e.g- weekdays or
holiday)

if (bit 4 of selector is set)

<DaySelector>(daySelector); : Gives the option to specify days of the week

30

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

A.4.3 Table definitions

A.4.3.1 Table entry

In TPEG much information is based on tables. These tables represent clearly defined groupings of pre-defined
concepts. The idea is to inform the device about the concept and let the device choose the best possible
presentation of this concept in the context of the other parts of the TPEG message. This approach means that
devices can present concepts e.g. in any language or even as graphical icons. This Table data type only
serves as a basis for all tables used in the toolkits and applications.

A table can have up to 256 entries.

<Table>:=
<IntUnTi>(entry); : The corresponding table defines valid entries of a
table

A.4.3.2 Tables of general use

fda)

ome tables are of general use in different TPEG Applications, therefore this clause describes the cpntent of
nose tables.

—

h

\.4.3.3 Typ001:LanguageCode

IBO 639: 2002 - Codes for the representation of names of languages. See Clause A.4.4.1 for values.

<Typ001:LanguageCode>:=
<Table>; . Specifies the language

h

\.4.3.4 Typ002:SpecialDay

The SpecialDay table lists special types of days, such as “public holiday” or “weekdays” and simijlar. See
Clause A.4.4.2 for values.

<Typ002:SpecialDay>:=
<Table>; : Identifies the special day

™

\.4.3.5 Typ003:CurrencyType

GurrencyType, based on the three-alpha codes of ISO 4217. See Clause A.4.4.3 for values.

<Typ003:CurrencyType>:=
<Table>; : Three-alpha codes of ISO 4217

A.4.3.6 Typ004:NumericalMagnitude

At a number of places within TPEG’s applications there is a need to use a number to describe a quantity of
people, animals, objects, etc. The range of the number needs to be at least from 0 to a few million. At the
bottom end of this range, numbers need to be in unit intervals, up to 50. Above 50, tens may be used up to
500, then hundreds up to 5000. This same principle is required for each decade. The table contains unsigned
integer values in the range 0 to 3000000 with decreasing precision. See Clause A.4.4.4 for the translated
values. For a formal mathematical definition of numerical magnitude values, refer to AnnexB of
ISO/TS 18234-2.

<Typ004:NumericalMagnitude>:=
<Table>(n);

: Numerical magnitude

© 1SO 2013 — All rights reserved 31

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS

A.4.3.7

This table lists countries as defined by ISO 3166-1. See Clause A.4.4.5 for values.

NOTE

provider - no code value for this word is ever transmitted.

18234-10:2013(E)

Typ005:CountryCode

"undecodable country" is to be used by a client device unable to read the typ005 code used by a service

<Typ005:CountryCode>:=
<Table>;

: Countries as defined by ISO 3166-1

A.4.3.8

This is th

Typ006:OrientationType

e table of values of the compass orientation like “north-west”. See Clause A.4.4.6 for values.

<Typ00

6:OrientationType>:=

<Table>;

: Denotes a compass orientation

A.4.3.9

This is th

Typ007:Priority

e table of values of the priority of messages. See Clause a.4.4.7 foryalues.

<Typ00

f:Priority>:=

<Table>;

: Denotes priority obavmessage

A44 T

A.4.4.1

ables

typ001:LanguageCode

w

ISO 639]2002 - Codes for the representation eofJnames of languages. The Comment column lists th
2-alpha ¢odes of ISO 639-1.
Code Reference-English Language Name g-zmw:gtode
000 Unknown
001 Afar aa
002 Abkhazian ab
003 Avestan ae
004 Afrikaans af
005 Akan ak
006 Amharie am
007 Aragonese an
008 Arabic ar
009 Assamese as
010 Avaric av
011 Aymara ay
012 Azerbaijani az
013 Bashkir ba
014 Belarusian be
015 Bulgarian bg
016 Bihari bh
017 Bislama bi
018 Bambara bm
019 Bengali bn
020 Tibetan bo
32 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

021 Breton br
022 Bosnian bs
023 Catalan ca
024 Chechen ce
025 Chamorro ch
026 Corsican [efe]
027 Cree cr
028 Czech cs
029 Church Slavic cu
030 Chuvash CV
031 Welsh cy
032 Danish da
033 German de
034 Divehi dv
035 Dzongkha dz
036 Ewe ee
037 Greek el
038 English en
039 Esperanto eo
040 Spanish es
041 Estonian et
042 Basque eu
043 Persian fa
044 Fulah ff

045 Finnish fi

046 Fijian fj

047 Faroese fo
048 French fr

049 Western Frisian fy
050 Irish ga
051 Scottish Gaelic gd
052 Galician gl
053 Guarani gn
054 Gujarati gu
055 Manx gv
056 Hausa ha
057 Hebrew he
058 Hindi hi
059 Hiri Motu ho
060 Croatian hr
061 Haitian ht
062 Hungarian hu
063 Armenian hy
064 Herero hz
065 Interlingua (International Auxiliary Language Association) |ia
060 mdonesian o
067 Interlingue ie
068 Igbo ig
069 Sichuan Yi ii

070 Inupiaq ik

© 1SO 2013 — All rights reserved

33

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

071 Ido io
072 Icelandic is
073 Italian it
074 Inuktitut iu
075 Japanese ja
076 Javanese v
077 Georgian ka
078 Kongo kg
079 Kikuyu ki
080 RUanyama K]
081 Kazakh kk
082 Kalaallisut ki
083 Khmer km
084 Kannada kn
085 Korean ko
086 Kanuri kr
087 Kashmiri ks
088 Kurdish ku
089 Komi kv
090 Cornish kw
091 Kirghiz ky
092 Latin la
093 Luxembourgish Ib
094 Ganda [fe}
095 Limburgish li
096 Lingala In
097 Lao lo
098 Lithuanian It
099 Luba-Katanga lu
100 Latvian Iv
101 Malagasy mg
102 Marshallese mh
103 Ma-ori mi
104 Macedonian mk /sl
105 Malayalam ml
106 Mongolian mn
107 Moldavian mo
108 Marathi mr
109 Malay ms
110 Maltese mt
111 Burmese my
112 Nauru na
113 Nerwegian Bokmal nb
114 North Ndebele nd
115 Nepali ne
116 Ndonga ng
117 Dutch nl
118 Norwegian Nynorsk nn
119 Norwegian no
120 South Ndebele nr
34 © 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

121 Navajo nv
122 Chichewa ny
123 Occitan ocC
124 Ojibwa 0j
125 Oromo om
126 Oriya or
127 Ossetian os
128 Panjabi pa
129 Pa-li pi
T30 Polish Pl
131 Pashto ps
132 Portuguese pt
133 Quechua qu
134 Raeto-Romance rm
135 Kirundi m
136 Romanian ro
137 Russian ru
138 Kinyarwanda w
139 Sanskrit sa
140 Sardinian SC
141 Sindhi sd
142 Northern Sami se
143 Sango sg
144 Serbo-Croatian sh
145 Sinhalese Si
146 Slovak sk
147 Slovenian sl
148 Samoan sm
149 Shona sn
150 Somali SO
151 Albanian sq
152 Serbian sr
153 Swati SS
154 Southern Sotho st
155 Sundanese su
156 Swedish sV
157 Swahili sw
158 Tamil ta
159 Telugu te
160 Tajik tg
161 Thai th
162 Tigrinya ti
163 Turkmen tk
164 Tagalog tl
165 Tswana tn
19]9) Tonga o]
167 Turkish tr
168 Tsonga ts
169 Tatar tt
170 Twi tw

© 1SO 2013 — All rights reserved

35

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS

18234-10:2013(E)

171 Tahitian ty
172 Uighur ug
173 Ukrainian uk
174 Urdu ur
175 Uzbek uz
176 VVenda ve
177 Vietnamese Vi
178 \olapuk VO
179 Walloon wa
180 VVolot WO
181 Xhosa xh
182 Yiddish yi
183 Yoruba yo
184 Zhuang za
185 Chinese zh
186 Zulu zu
A.4.4.2 | typ002:SpecialDay
The SpegialDay table lists special types of days, such as public holiday and similar.
Code Reference-English ‘word’ [Comment Example
000 unknown
001 weekdays Monday to Friday
002 weekends Saturday and Sunday
003 holiday
004 public holiday
005 religious holiday e.g. Christmas Day
006 federal holiday
007 regional holiday
008 national holiday e.g. In UK: Mayday
009 school days
010 every day
A.4.4.3 | typ003:CurrencyType
CurrencyType, based on the.three-alpha codes of ISO 4217.
Code Reference-English ‘word’ [Comment
000 unknown
001 AED
002 AFA
003 ALL
004 AMD
005 ANG
006 AOA
007 ARS
008 AUD
009 AWG
010 AZM
36 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

011 BAM
012 BBD
013 BDT
014 BGN
015 BHD
016 BIF
017 BMD
018 BND
019 BOB
UZU BRL
021 BSD
022 BTN
023 BWP
024 BYR
025 BZD
026 CAD
027 CDF
028 CHF
029 CLP
030 CNY
031 COP
032 CRC
033 CSD
034 CUP
035 CVE
036 CYP
037 CZK
038 DJF
039 DKK
040 DOP
041 DZD
042 EEK
043 EGP
044 ERN
045 ETB
046 EUR
047 FJD
048 FKP
049 GBP
050 GEhL
051 GGP
052 GHC
053 GIP
054 GMD
055 GNF
056 GTQ
057 GYD
058 HKD
059 HNL
060 HRK

© 1SO 2013 — All rights reserved

37

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

ISO/TS 18234-10:2013(E)

061 HTG
062 HUF
063 IDR
064 ILS
065 IMP
066 INR
067 IQD
068 IRR
069 ISK
070 JEP
071 JMD
072 JOD
073 JPY
074 KES
075 KGS
076 KHR
077 KMF
078 KPW
079 KRW
080 KWD
081 KYD
082 KZT
083 LAK
084 LBP
085 LKR
086 LRD
087 LSL
088 LTL
089 LVL
090 LYD
091 MAD
092 MDL
093 MGA
094 MKD
095 MMK
096 MNT
097 MOP
098 MRO
099 MTL
100 MUR
101 MVR
102 MWK
103 MXN
104 MYR
105 MZM
106 NAD
107 NGN
108 NIO
109 NOK
110 NPR
38 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=56544befd35b21f6045eaefafa55f35f

	1 Scope
	2 Normative References
	3 Abbreviated terms
	4 Application identification and version number signalling
	4.1 Application identification
	4.2 Version number signalling

	5 Service Component Data
	6 Conditional Access Methodology
	7 Message Components
	7.2 CAIMessage
	7.3 CAIDataUnit

