
INTERNATIONAL
STANDARD

ISOIIEC
9899
First edition

1990-12-15

Programming languages - C

Langages de programmation - C

E w - = - = = E = = = = = =

E-

z z 2 = = 3 = =. s = - = E C Z -
Reference number

ISOAEC 9899 : 1990 (El

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Contents

1 Scope .

2 Normative references . 1

3 Definitions and conventions . 2

4 Compliance .

5 Environment 5
5.1 Conceptual models 5

51.1 Translation environment 5
51.2 Execution environments 6

5.2 Environmental considerations 10
5.2.1 Character sets 10
5.2.2 Character display semantics 12
5.2.3 Signals and interrupts 12
5.2.4 Environmental limits 12

6 Language
6.1 Lexical elements

6.1.1 Keywords
6.1.2 Identifiers
6.1.3 Constants
6.1.4 String literals
6.1.5 Operators
6.1.6 Punctuators
6.1.7 Header names
6.1.8 Preprocessing numbers
6.1.9 Comments

6.2 Conversions
6.2.1 Arithmetic operands
6.2.2 Other operands

6.3 Expressions
6.3.1 Primary expressions
6.3.2 Postfix operators
6.3.3 Unary operators
6.3.4 Cast operators
6.3.5 Multiplicative operators
6.3.6 Additive operators
6.3.7 Bitwise shift operators
6.3.8 Relational operators
6.3.9 Equality operators
6.3.10 Bitwise AND operator
6.3.11 Bitwise exclusive OR operator
6.3.12 Bitwise inclusive OR operator
6.3.13 Logical AND operator
6.3.14 Logical OR operator
6.3.15 Conditional operator

1

3

18
18
19
19
25
30
31
32
32
33
33
34
34
36
38
39
39
43
45
46
46
48
48
49
50
50
50
51
51
51

0 ISO/IEC 1990
All rights reserved. No part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without permission
in writing from the publisher.

ISO/IEC Copyright Office l Case postale 56 l CH-1211 Geneve 20 l Switzerland
Printed in Switzerland

ii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.4
6.5

6.6

6.7

6.8

6.9

6.3.16
6.3.17

Assignment operators
Comma operator 1 . Constant expressions

Declarations
6.5.1 Storage-class specifiers . .
6.5.2 Type specifiers
6.5.3 Type qualifiers
6.5.4 Declarators
6.5.5 Type names
6.5.6 Type definitions
6.5.7 Initialization
Statements
6.6.1 Labeled statements
6.6.2 Compound statement, or block
6.6.3 Expression and null statements
6.6.4 Selection statements . . .
6.6.5 Iteration statements . . .
6.6.6 Jump statements
External definitions
6.7.1 Function definitions .
6.7.2 External object definitions l .
Preprocessing directives . . .
6.8.1 Conditional inclusion . . .
6.8.2 Source file inclusion . . .
6.8.3 Macro replacement
6.8.4 Line control
6.8.5 Error directive
6.8.6 Pragma directive
6.8.7 Null directive . .
6.8.8 Predefined macro’names’ . .
Future language directions
6.9.1 External names
6.9.2 Character escape sequences .
6.9.3 Storage-class specifiers . .
6.9.4 Function declarators . . .
6.9.5 Function definitions . . .
6.9.6 Array parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . l

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7 Library
7.1 Introduction

7.1.1 Definitibns’of ‘terms ’
7.1.2 Standard headers
7.1.3 Reserved identifiers
7.1.4 Errors <errno.h>
7.1.5 Limits <float.h> and <limits.h>'
7.1.6 Common definitions <stddef. h>
7.1.7 Use of library functions

7.2 Diagnostics <assert.h>
7.2.1 Program diagnostics

7.3 Character handling <ctype . h>
7.3.1 Character testing functions
7.3.2 Character case mapping functions

7.4 Localization <locale.h>
7.4.1 Locale control
7.4.2 Numeric formatting convention inquiry

53
54
55
57
58
58
64
65
69
70
71
75
75
75
76
77
78
79
81
81
83
85
86
87
89
93
93
93
94
94
95
95
95
95
95
95
95

96
96
96
96
97
97
98
98
99

101
101
102
102
104
106
107
108

. . .
111

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.5 Mathematics <math.h> 111

7.5.1 Treatment of error conditions 111
7.5.2 Trigonometric functions 111
7.5.3 Hyperbolic functions 113
7.5.4 Exponential and logarithmic functions 114
7.5.5 Power functions
7.5.6 Nearest integer, absoke value, and rem’ainder’fun’ctions’

..... . . 115

....... 116
7.6 Nonlocaljumps <set jmp. h> 118

7.6.1 Save calling environment 118
7.6.2 Restore calling environment 119

7.7 Signal handling <signal.h> 120
7.7.1 Specify signal handling 120
7.7.2 Send signal 121

7.8 Variable arguments <stdarg . h> 122
7.8.1 Variable argument list access macros 122

7.9 Input/output <stdio.h> 124
7.9.1 Introduction 124
7.9.2 Streams 125
7.9.3 Files 126
7.9.4 Operations on files 127
7.9.5 File access functions 128
7.9.6 Formatted input/output functions 131
7.9.7 Character input/output functions 141
7.9.8 Direct input/output functions 144
7.9.9 File positioning functions 145
7.9.10 Error-handling functions 147

7.10 General utilities <&dlib.h> 149
7.10.1 String conversion functions 149
7.10.2 Pseudo-random sequence generation functions 153
7.10.3 Memory management functions 154
7.10.4 Communication with the environment 155
7.10.5 Searching and sorting utilities 157
7.10.6 Integer arithmetic functions 158
7.10.7 Multibyte character functions 159
7.10.8 Multibyte string functions 161

7.11 String handling <string.h> 162
7.11.1 String function conventions 162
7.11.2 Copying functions 162
7.11.3 Concatenation functions 163
7.11.4 Comparison functions 164
7.11.5 Search functions
7.11.6 Miscellaneous functions’

. 165

. 168
7.12 Dateandtime<time.h> 170

7.12.1 Components of time 170
7.12.2 Time manipulation functions 170
7.12.3 Time conversion functions 172

7.13 Future library directions 176
7.13.1 Errors<errno.h> 176
7.13.2 Character handling <ctype . h> 176
7.13.3 Localization <locale.h> 176
7.13.4 Mathematics <math. h> 176
7.13.5 Signal handling <signal. h> 176
7.13.6 Input/output <stdio.h>
7.13.7 General utilities <stdlib. h;

............... 176

............... 176
7.13.8 String handling <string. h> 176

iv

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Annexes

. 177

. e . .

. . . .

. . . .

. . . .

. .

. .

. .

. .

. . .
.

. . .
. .

178
178
182
187

. 189

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.
.

.
.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .
. .

. .
. .

.
. .

. .
. . .

190
190
190
190
190
190
191
191
191
192
192
194
195
195

E Implementation limits l
. 196

. 198

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. .

. .

. .

. .

. .

. .

. .

. .

. . .
.

199
199
200
204
207
208

Index - 210

A Bibliography

B Language syntax summary
B.1 Lexical grammar
B.2 Phrase structure grammar
B.3 Preprocessing directives

C Sequence points

D Library summary
D.1 Errors <errno.h>
D.2 Common definitions <stddef . h>
D.3 Diagnostics <assert.h> . .
D.4 Character handling <ctype . h> .
D.5 Localization <locale.h> . .
D.6 Mathematics <math. h> . . .
D.7 Nonlocal jumps <set jmp. h> .
D.8 Signal handling <signal. h> .
D.9 Variable arguments <stdarg . h>
D.10 Input/output <stdio.h> . . .
D.11 General utilities <stdlib. h> .
D.12 String handling <string. h> .
D.13 Date and time <time. h> . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

.

.

.

.

.

F Common warnings

G Portability issues
G.l Unspecified behavior
G.2 Undefined behavior
G.3 Implementation-defined behavior
G.4 Locale-specific behavior
G.5 Common extensions

.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Foreword
IS0 (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide standardiz-
ation. National bodies that are members of IS0 or IEC participate in the development
of International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. IS0 and IEC technical
committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with IS0 and IEC, also take part in the
work.

In the field of information technology, IS0 and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint
technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 ?70 of the national bodies casting
a vote.

International Standard ISO/IEC 9899 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology.

Annexes A, B, C, D, E, F and G are for information only.

vi

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Introduction
With the introduction of new devices and extended character sets, new features may be added to

this International Standard. Subclauses in the language and library clauses warn implementors and
programmers of usages which, though valid in themselves, may conflict with future additions.

Certain features are obsolescent, which means that they may be considered for withdrawal in future
revisions of this International Standard. They are retained because of their widespread use, but their
use in new implementations (for implementation features) or new programs (for language [6.9] or
library features [7.13]) is discouraged.

This International Standard is divided into four major subdivisions:

- the introduction and preliminary elements;

- the characteristics of environments that translate and execute C programs;

- the language syntax, constraints, and semantics;

- the library facilities.

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
International Standard. References are used to refer to other related subclauses. A set of annexes
summarizes information contained in this International Standard. The introduction, the examples, the
footnotes, the references, and the annexes are not part of this International Standard.

The language clause (clause 7) is derived from ‘ ‘The C Reference Manual” (see annex A).

The library clause (clause 8) is based on the 1984 lusr-/group Standard (see annex A).

vii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

This page intentionally left blank

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

INTERNATIONAL STANDARD ISO/IEC 9899 : 1990 (E)

Programming languages - C

1 Scope
This International Standard specifies the form and establishes the interpretation of programs

written in the C programming language.’ It specifies

- the representation of C programs;

- the syntax and constraints of the C language;

- the semantic rules for interpreting C programs;

- the representation of input data to be processed by C programs;

- the representation of output data produced by C programs;

- the restrictions and limits imposed by a conforming implementation of C.

This International Standard does not specify

- the mechanism by which C programs are transformed for use by a data-processing system;

- the mechanism by which C programs are invoked for use by a data-processing system;

- the mechanism by which input data are transformed for use by a C program;

- the mechanism by which output data are transformed after being produced by a C program;

- the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

- all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

2 Normative references
The following standards contain provisions which, through reference in this text, constitute

provisions of this International Standard. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this International
Standard are encouraged to investigate the possibility of applying the most recent editions of the
standards indicated below. Members of IEC and IS0 maintain registers of currently valid
International Standards.

IS0 646: 1983, Information processing - IS0 7-bit coded character set for information
interchange .

IS0 4217: 1987, Codes for the representation of currencies and funds.

1 This International Standard is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementors and programmers. It is accompanied by
a Rationale document that explains many of the decisions of the Technical Committee that produced it.

General

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

3 Definitions and conventions
In this International Standard, “shall” is to be interpreted as a requirement on an

implementation or on a program; conversely, “shall not” is to be interpreted as a prohibition.

For the purposes of this International Standard, the following definitions apply. Other terms
are defined at their first appearance, indicated by italic type. Terms explicitly defined in this
International Standard are not to be presumed to refer implicitly to similar terms defined
elsewhere. Terms not defined in this International Standard are to be interpreted according to
IS0 2382.

3.1 alignment: A requirement that objects of a particular type be located on storage boundaries
with addresses that are particular multiples of a byte address.

3.2 argument: An expression in the comma-separated list bounded by the parentheses in a
function call expression, or a sequence of preprocessing tokens in the comma-separated list
bounded by the parentheses in a function-like macro invocation. Also known as “actual
argument’ ’ or “actual parameter.”

3.3 bit: The unit of data storage in the execution environment large enough to hold an object
that may have one of two values. It need not be possible to express the address of each
individual bit of an object.

3.4 byte: The unit of data storage large enough to hold any member of the basic character set of
the execution environment. It shall be possible to express the address of each individual byte of
an object uniquely. A byte is composed of a contiguous sequence of bits, the number of which is
implementation-defined. The least significant bit is called the low-order bit; the most significant
bit is called the high-order bit.

3.5 character: A bit representation that fits in a byte. The representation of each member of
the basic character set in both the source and execution environments shall fit in a byte.

3.6 constraints: Syntactic
elements is to be interpreted.

3.7 diagnostic
implementation’

message: A message belonging to an implementation-defined subset of the
s message

3.8 forward references:

and semantic restrictions by which the exposition of language

output.

References
contain additional information relevant

to later subclauses
to this subclause.

of this International Standard that

3.9 implementation: A particular set of software, running in a particular translation
environment under particular control options, that performs translation of programs for, and
supports execution of functions in, a particular execution environment.

3.10 implementation-defined behavior: Behavior, for a correct program construct and correct
data, that depends on the characteristics of the implementation and that each implementation shall
document.

3.11 implementation limits: Restrictions imposed upon programs by the implementation.

3.12 locale-specific
culture, and language

behavior: Behavior that depends on local
that each implementation shall document.

conventions of nationality,

3.13 multibyte character: A sequence of one or more bytes representing a member of the
extended character set of either the source or the execution environment. The extended character
set is a superset of the basic character set.

3.14 object: A region of data storage in the execution environment, the contents of which can
represent values. Except for bit-fields, objects are composed of contiguous sequences of one or
more bytes, the number, order, and encoding of which are either explicitly specified or
implementation-defined. When referenced, an object may be interpreted as having a particular
type; see 6.2.2.1.

2 General

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

3.15 parameter: An object declared as part of a function declaration or definition that acquires
a value on entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition. Also
known as “formal argument” or “formal parameter.”

3.16 undefined behavior: Behavior, upon use of a nonportable or erroneous program construct,
of erroneous data, or of indeterminately valued objects, for which this International Standard
imposes no requirements. Permissible undefined behavior ranges from ignoring the situation
completely with unpredictable results, to behaving during translation or program execution in a
documented manner characteristic of the environment (with or without the issuance of a
diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic
message).

If a “shall” or “shall not’ ’ requirement that appears outside of a constraint is violated, the
behavior is undefined. Undefined behavior is otherwise indicated in this International Standard
by the words “undefined behavior” or by the omission of any explicit definition of behavior.
There is no difference in emphasis among these three; they all describe “behavior that is
undefined. ”

3.17 unspecified
which this Intema

behavior: Behavior, for a correct
.tional Standard explicitly imposes no

program construct and
requirements.

Examples

2.

3.

4.

correct data, for

An example of unspecified behavior is the order in which the arguments to a function
evaluated.

An example of undefined behavior is the behavior on integer overflow.

An example of imple mentation -defined
when a signed i nteger is shifted right.

are

behavior is the propagation of the high-order bit

An example of locale-specific behavior is whether the islower function returns true for
characters other than the 26 lowercase English letters.

Forward references: bitwise shift operators (6.3.7), expressions (6.3), function calls (6.3.2.2),
the islower function (7.3.1.6), localization (7.4).

4 Compliance
A strictly conforming program shall use only those features of the language and library

specified in this International Standard. It shall not produce output dependent on any unspecified,
undefined, or implementation-defined behavior, and shall not exceed any minimum
implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming
hosted implementation shall accept any strictly conforming program. A conforming fi-eestanding
impzementation shall accept any strictly conforming program in which the use of the features
specified in the library clause (clause 7) is confined to the contents of the standard headers
<float.h>, <limits.h>, <stdarg. h>, and <stddef. h>. A c,onforrning implementation
may have extensions (including additional library functions), provided they do not alter the
behavior of any strictly conforming program.”

A conforming program is one that is acceptable to a conforming implementation.”

2 This implies that a conforming implementation reserves no identifiers other than those explicitly reserved
in this International Standard.

3 Strictly conforming programs are intended to be maximally portable among conforming implementations.
Conforming programs may depend upon nonportable features of a conforming implementation.

General

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

An
defined

implementation shall be accompanied
characteristics and all extensions.

Forward references: limits <float .h> and <limit s.h>
<stdarg . h> (7.8), common definitions <St ddef .h> (7.1. 6) .

bY a document that defines all implementation-

(7.1 S), variable arguments

General

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

5 Environment
An implementation translates C source files and executes C programs in two data-processing-

system environments, which will be called the translation environment and the execution
environment in this International Standard. Their characteristics define and constrain the results
of executing conforming C programs constructed according to the syntactic and semantic rules for
conforming implementations.

Forward references: In the environment clause (clause 5), only a few of many possible forward
references have been noted.

5.1 Conceptual models
51.1 Translation environment
5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept in
units called source files in this International Standard. A source file together with all the headers
and source files included via the preprocessing directive #include, less any source lines
skipped by any of the conditional inclusion preprocessing directives, is called a translation unit.
Previously translated translation units may be preserved individually or in libraries. The separate
translation units of a program communicate by (for example) calls to functions whose identifiers
have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: conditional inclusion (6.8. l), linkages of identifiers (6.1.2.2), source file
inclusion (6.8.2).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following phases.4

1. Physical source file characters are mapped to the source character set (introducing new-line
characters for end-of-line indicators) if necessary. Trigraph sequences are replaced by
corresponding single-character internal representations.

2. Each instance of a new-line character and an immediately preceding backslash character is
deleted, splicing physical source lines to form logical source lines. A source file that is not
empty shall end in a new-line character, which shall not be immediately preceded by a
backslash character.

3. The source file is decomposed into preprocessing tokens5 and sequences of white-space
characters (including comments). ,4 source file shall not end in a partial preprocessing
token or comment. Each comment is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of white-space characters other than new-
line is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed and macro invocations are expanded. A #include
preprocessing directive causes the named header or source file to be processed from phase
1 through phase 4, recursively.

4 Implementations must behave as if these separate phases occur, even though many are typically folded
together in practice.

5 As described in 6.1, the process of dividing a source file’s characters into preprocessing tokens is
context-dependent. For example, see the handling of < within a #include preprocessing directive.

Environment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

5.

6.

Each source character set member and escape sequence in character
literals is converted to a member of the execution character set.

Adjacent character string literal tokens are concatenated and adjacent
tokens are concatenated.

constants and string

wide string literal

7. White-space characters separating tokens are no longer significant. Each preprocessing
token is converted into a token. The resulting tokens are syntactically and semantically
analyzed and translated.

8. All-external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation.
All such translator output is collected into a program image which contains information
needed for execution in its execution environment.

Forward references: lexical elements (6.1) preprocessing directives (6.8), trigraph sequences
(5.2.1.1).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in an
implementation-defined manner) for every translation unit that contains a violation of any syntax
rule or constraint. Diagnostic messages need not be produced in other circumstances.6

51.2 Execution environments
Two execution environments are defined: Ji-eestanding and hosted. In both cases, program

startup occurs when a designated C function is called by the execution environment. All objects
in static storage shall be initialized (set to their initial values) before program startup. The
manner and timing of such initialization are otherwise unspecified. Program termination returns
control to the execution environment.

Forward references: initialization (6.5.7).

5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program startup are
implementation-defined. There are otherwise no reserved external identifiers. Any library
facilities available to a freestanding program are implementation-defined.

The effect of program termination in a freestanding environment is implementation-defined.

5.1.2.2 Hosted environment

if
A hosted

present.
environment need not be provided, but shall conform to the following specificati ons

5.1.2.2.1 Program startup

The function called at program startup is named main. The implementation declares no
prototype for this function. It can be defined with no parameters:

int main(void) 11 *...*/
or with two parameters (referred to here as argc and argv, though any names may be used, as
they are local to the function in which they are declared):

6 The intent is that an implementation should identify the nature of, and where possible localize, each
violation. Of course, an implementation is free to produce any number of diagnostics as long as a valid
program is still correctly translated. It may also successfully translate an invalid program.

Environment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

int main(int argc, char *argv[]) { /*...*/)

If they are defined, the parameters to the main function shall obey the following constraints:

- The value of argc shall be nonnegative.

- argv [argc] shall be a null pointer.

- If the value of argc is greater than zero, the array members argv [0] through
argv [argc-1] inclusive shall contain pointers to strings, which are given implementation-
defined values by the host environment prior to program startup. The intent is to supply to
the program information determined prior to program startup from elsewhere in the hosted
environment. If the host environment is not capable of supplying strings with letters in both
uppercase and lowercase, the implementation shall ensure that the strings are received in
lowercase.

- If the value of argc is greater than zero, the string pointed to by argv [0] represents the
program name; argv [0] [0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to
by argv [l] through argv [argc- 1] represent the program parameters.

- The parameters argc and argv and the strings pointed to by the argv array shall be
modifiable by the program, and retain their last-stored values between program startup and
program termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may
objects described in the library clause (clause

use all the
7).

functions, macros, type definitions, and

5.1.2.2.3 Program termination

A return from the initial call to the main function is equivalent to calling the exit function
with the value returned by the main function as its argument. If the main function executes a
return that specifies no value, the termination status returned to the host environment is
undefined.

Forward references: definition of terms (7.1. l), the exit function (7.10.4.3).

5.1.2.3 Program execution

The seman tic descriptions in this
achine in wh ich issues of optimizati

Intern
.on are

ational
irrelev

Stand
ant.

ard d .escri be the behavior of an abstract

Accessing a volatile object, modifying an object, modifying a file, or calling a function that
does any of those operations are all side efjCects, which are changes in the state of the execution
environment. Evaluation of an expression may produce side effects. At certain specified points
in the execution sequence called sequence points, all side effects of previous evaluations shall be
complete and no side effects of subsequent evaluations shall have taken place.

In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no needed side effects are produced (including any caused by calling a function or
accessing a volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, only the
values of objects as of the previous sequence point may be relied on. Objects that may be
modified between the previous sequence point and the next sequence point need not have
received their correct values yet.

An instance of each object with automatic storage duration is associated with each entry into
its block. Such an object exists and retains its last-stored value during the execution of the block
and while the block is suspended (by a call of a function or receipt of a signal).

Environment 7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

The least requirements on a conforming implementation are:

- At sequence
complete and

points, volatile objects are stable in the sense that previous evaluations are
subsequent evaluations have not yet occurred.

- At program termination, all data
of the program according to the

written
abstract

into files shall be identical to the
semantics would have produced.

result that execution

- The input and output dynamics .of interactive devices shall take place as specified in 7.9.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

What constitutes an interactive device is implementation-defined.

More stringent correspondences
each implementation.

between abstract and actual semantics may be defined by

Examples

1. An implementation might define a one-to-one correspondence between abstract and actual
semantics: at every sequence point, the values of the actual objects would agree with those
specified by the abstract semantics. The keyword volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each
translation unit, such that the actual semantics would agree with the abstract semantics only
when making function calls across translation unit boundaries. In such an implementation,
at the time of each function entry and function return where the calling function and the
called function are in different translation units, the values of all externally linked objects
and of all objects accessible via pointers therein would agree with the abstract semantics.
Furthermore, at the time of each such function entry the values of the parameters of the
called function and of all objects accessible via pointers therein would agree with the
abstract semantics. In this type of implementation, objects referred to by interrupt service
routines activated by the signal function would require explicit specification of
volatile storage, as well as other implementation-defined restrictions.

2. In executing the fragment

char cl, c2;
/*...*/
cl = cl + c2;

the “integral promotions” require that the abstract machine promote the value of each
variable to int size and then add the two ints and truncate the sum. Provided the
addition of two chars can be done without creating an overflow exception, the actual
execution need only produce the same result, possibly omitting the promotions.

3. Similarly, in the fragment

float fl, f2;
double d;
/*...*/
fl = f2 * d;

the multiplication may be executed using single-precision arithmetic if the implementation
can ascertain that the result would be the same as if it were executed using double-
precision arithmetic (for example, if d were replaced by the constant 2 . 0, which has type
double). Alternatively, an operation involving only ints or floats may be executed
using double-precision operations if neither range nor precision is lost thereby.

4. To illustrate the grouping behavior of expressions, in the following fragment

8 Environment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

int a, b;
/*...*/
a = a + 32760 + b + 5;

the expression statement behaves exactly the same as

a= (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum “ (a
+ 32760)" is next added to b, and that result is then added to 5 which results in the
value assigned to a. On a machine in which overflows produce an exception and in which
the range of values representable by an int is [-32768,+32767], the implementation
cannot rewrite this expression as

a= ((a + b) + 32765);

since if the values for a and b were, respectively, -32754 and - 15, the sum a + b would
produce an exception while the original expression would not; nor can the expression be
rewritten either as

a= ((a + 32765) + b);
or

a= (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or - 17 and 12.
However on a machine in which overflows do not produce an exception and in which the
results of overflows are reversible, the above expression statement can be rewritten by the
implementation in any of the above ways because the same result will occur.

5. The grouping of an expression does not completely determine its evaluation. In the
following fragment

#include <stdio.h>
int sum;
char *p;
/* . . . */
sum = sum * 10 - '0' + (*p++ = getchar(

the express ion statement is grouped as if it were written as

sum = (((sum * 10) - ‘0’) + U*tp++H = (getchar(

but the actual increment of p can occur at any time between the previous sequence point
and the next sequence point (the ;), and the call to getchar can occur at any point prior
to the need of its returned value.

Forward references: compound statement, or block (6.6.2), expressions (6.3), files (7.9.3),
sequence points (6.3, 6.6), the signal function (7.7), type qualifiers (6.5.3).

Environment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

5.2 Environmental considerations
5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in
which source files are written, and the set interpreted in the execution environment. The values
of the members of the execution character set are implementation-defined; any additional
members beyond those required by this subclause are locale-specific.

In a character constant or string literal, members of the execution character set shall be
represented by corresponding members of the source character set or by escape sequences
consisting of the backslash \ followed by one or more characters. A byte with all bits set to 0,
called the null character, shall exist in the basic execution character set; it is used to terminate a
character string literal.

Both the basic source and basic execution character sets shall have at least the following
members: the 26 uppercase letters of the English alphabet

ABCDEFGHI J K L M
NOPQRS TUVWXYZ

the 26 lowercase letters of the English alphabet

abcdefghij klm
n 0 pqrstuvwxyz

the 10 decimal digits

0123456789

the following 29 graphic characters

! II # % &’ () * +, - l / :

;
< = > ? [\ 1 h 1 I 1 - -

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
In both the source and execution basic character sets, the value of each character after 0 in the
above list of decimal digits shall be one greater than the value of the previous. In source files,
there shall be some way of indicating the end of each line of text; this International Standard
treats such an end-of-line indicator as if it were a single new-line character. In the execution
character set, there shall be control characters representing alert, backspace, carriage return, and
new line. If any other characters are encountered in a source file (except in a character constant,
a string literal, a header name, a comment, or a preprocessing token that is never converted to a
token), the behavior is undefined.

Forward references: character constants (6.1.3.4), preprocessing directives (6.8), string literals
(6.1.4), comments (6.1.9).

5.2.1.1 Trigraph sequences

All occurrences in a source file of the following sequences of three characters (called trigraph
sequences7) are replaced with the corresponding single character.

7 The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as
described in IS0 646: 1983, which is a subset of the seven-bit ASCII code set.

10 Environment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

??= #
?? (1
??/ \
??) 1
33’ A . .
??< i
??! I
??> 1
??- N

No other trigraph sequences exist. Each ?
is not changed.

that does not begin one of the trigraphs listed above

The following source line

printf("Eh???/n");

becomes (after replacement of the trigraph sequence ? ? /)

printf("Eh?\n");

5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters, which
need not have the same encoding as for the source character set. For both character sets, the
following shall hold:

- The single-byte characters defined in 5.2.1 shall be present.

- The presence, meaning, and representation of any additional members is locale-specific.

- A multibyte character may have a state-dependent encoding, wherein each sequence of
multibyte characters begins in an initial shift state and enters other implementation-defined
shift states when specific multibyte characters are encountered in the sequence. While in the
initial shift state, all single-byte characters retain their usual interpretation and do not alter the
shift state. The interpretation for subsequent bytes in the sequence is a function of the current
shift state.

- A byte with all bits zero shall be interpreted as a null character independent of shift state.

- A byte with all bits
character.

zero shall not occur in the second or subsequent bytes of a multi byte

For the source character set, the following shall hold:

- A comment,
shift state.

string literal, character constant, or header name shall begin and end in the initial

- A comment, string literal, character constant, or header name shall consist of a sequence of
valid multibyte characters.

Environment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

5.2.2 Character display semantics
The active position is that location on a display device where the next character output by the

f put c function would appear. The intent of writing a printable character (as defined by the
isprint function) to a display device is to display a graphic representation of that character at
the active position and then advance the active position to the next position on the current line.
The direction of writing is locale-specific. If the active position is at the final position of a line
(if there is one), the behavior is unspecified.

are
Alphabetic escape sequences representing nongraphic characters
intended to produce actions on display devices as follows:

in the execution character set

\a (alert) Produces an audible or visible alert. The active position shall not be changed.

\b (backspace) Moves the active position to the previous position on the current line.
active position is at the initial position of a line, the behavior is unspecified.

If the

\f vorm feed) Moves the active position to the initial position at the start of the next logical
page*

\n (new line) Moves the active position to the initial position of the next line.

\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the
current line. If the active position is at or past the last defined horizontal tabulation position,
the behavior is unspecified.

\v (vertical tab) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which
can be stored in a single char object. The external representations in a text file need not be
identical to the internal representations, and are outside the scope of this International Standard.

Forward references: the fputc function (7.9.7.3), the isprint function (7.3.1.7).

52.3 Signals and interrupts
Functions shall be implemented such that they may be interrupted at any time by a signal, or

may be called by a signal handler, or both, with no alteration to earlier, but still active,
invocations’ control flow (after the interruption), function return values, or objects with automatic
storage duration. All such objects shall be maintained outside the function image (the
instructions that comprise the executable representation of a function) on a per-invocation basis.

The
objects

functions
with static

in the standard
storage duration.

library are not guaranteed to be reentrant and may modify

52.4 Environmental limits
Both the translation and execution environments constrain the implementation of language

translators and libraries. The following summarizes the environmental limits on a conforming
implementation.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at
at least one instance of every one of the following limits:*

least one program that contains

8 Implementations should avoid imposing fixed translation limits whenever possible.

12 Envi ronment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

- 15 nesting levels of compound statements, iteration control structures, and selection control
structures

- 8 nesting levels of conditional inclusion

- 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic, a
structure, a union, or an incomplete type in a declaration

- 31 nesting levels of parenthesized declarators within a full declarator

- 32 nesting levels of parenthesized expressions within a full expression

3 1 significant initial characters in an internal identifier or a macro name

6 signi ficant initial characters in an external identifier

- 5 11 external identifiers in one translation unit

- 127 identifiers with block scope declared in one block

- 1024 macro identifiers simultaneously defined in one translation unit

- 31 parameters in one function definition

- 3 1 arguments in one function call

- 31 parameters in one macro definition

- 3 1 arguments in one macro invocation

- 509 characters in a logical source line

- 509 characters in a character string literal or wide string literal (after concatenation)

- 32767 bytes in an object (in a hosted environment only)

- 8 nesting levels for #included files

- 257 case labels for a switch statement (excluding those for any nested switch
statements)

- 127 members in a single structure or union

- 127 enumeration constants in a single enumeration

- 15 levels of nested structure or union definitions in a single struct-declaration-list

5.2.4.2 Numerical limits

A conforming implementation shall document all the limits specified in this subclause, which
shall be specified in the headers <limits . h> and <float. h>.

5.2.4.2.1 Sizes of integral types <limits . h>

The values given below shall be replaced by constant expressions suitable for use in #if
preprocessing directives. Moreover, except for CHAR BIT and MB LEN MAX, the following - - -
shall be replaced by expressions that have the same type as would an expression that is an object
of the corresponding type converted according to the integral promotions. Their implementation-
defined values shall be equal or greater in magnitude (absolute value) to those shown, with the
same sign.

- number of bits for sma
CHAR BIT -

- minimum value for an
SCHAR MIN -

- maximum value for an
SCHAR MAX -

Nest object that is not a bit-fiel
8

object of type signed char
-127

objectoftype signed char
+127

d (byte)

Environment 13

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

maximum value for an object of type unsigned char
UCHAR MAX 255

minimum value for an object of type char
CHAR MIN see below

maximum value for an object of type char
CHARMAX see below

maximum number of bytes in a multibyte character, for any supported locale
MB LEN MAX 1 - -
minimum value for an object of type short int
SHRT MIN -32767 -
maximum value for an object of type short int
SHRT MAX +32767

maximum value for an object of type unsigned short int
USHRT MAX 65535

minimum value for an object of type int
INT MIN -32767

maximum value for an object of type int
INT MAX +32767 -
maximum value for an object of type unsigned int
UINT MAX 65535

minimum value for an object of type long int
LONG MIN -2147483647

maximum value for an object of type long int
LONG-MAX +2147483647

maximum value for an object of type unsigned long int
ULONG MAX 4294967295 -
If the value of an object of type char is treated as a signed integer when used in an

expression, the value of CHAR MIN shall be the same as that of SCHAR MIN and the value of
CHAR MAX shall be the same E that of SCHAR MAX. Otherwise, the value of CHAR MIN shall
be 0 af;d the value of CHAR MAX shall be the same as that of UCHAR MAX." - -
5.2.4.2.2 Characteristics of floating types <float . h>

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic. lo The following parameters are used to define the
model for each floating-point type:

9 See 6.1.2.5.
10 The floating-poi nt model is intended to clarify the description of each floating-point

does not require the floating- ,point arithmetic of the i mplementation to be identical.
characteristic and

14 Environment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

S sign (+l)
b base or radix of exponent representation (an integer > 1)
4
P
h

exponent (an integer between a minimum e min and a maximum e,,,)
precision (the number of base-b digits in the significand)
nonnegative integers less than b (the significand digits)

A normalized floating-point number x (fl > 0 if x # 0) is defined by the following model:

x = s x b’ x i fk x bBk , e,i, 2 e 5 e,,,
k=l

Of the values in the <float . h> header, FLT RADIX shall be a constant expression suitable
for use in #if preprocessing directives; all other-values need not be constant expressions. All
except FLT-RADIX and FLT-ROUNDS have separate names for all three floating-point types.
The floating-point model representation is provided for all values except FLT ROUNDS.

The rounding mode for floating-point addition is characterized by the value of FLT ROUNDS:

-1
0
1
2
3

indeterminable
toward zero
to nearest
toward positive infinity
toward negative infinity

All other values for FLT ROUNDS - characterize implementation-defined rounding behavior.

The values given in the following list shall be replaced by implementation-defined expressions
that shall be equal or greater in magnitude (absolute value) to those shown, with the same sign:

- radix of exponent representation, b
FLT RADIX 2

- number of base-FLT-RADIX digits in the floating-point significand, p

FLT MANT DIG
DBL-MANT-DIG
LDBE MANF DIG -

- number of decimal digits, 4, such that any floating-point number with 4 decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to

the 4 decimal digits,
1

1
(I

if b is a power of 10 ~
0 otherwise

FLT DIG 6
DBL-DIG 10
LDB: DIG 10 -

- minimum negative integer such that FL IX raised to that power minus 1 is a
normalized floating-point number, e min

FLT MIN EXP
DBL-MIN-EXP - D
LDBL MIN EXP 0 -

- minimum negative integer such that
floating-point numbers, loglObCmin-l

FLT MIN 10 EXP
DBL-MIN-10EXP
LDB: MIN 10 EXP - D -

10 raised to that power is in the range of normalized

-37
-37
-37

Environment 15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

- maximum integer such that FLT RADIX raised to that power minus 1 is a representable finite
- floating-point number, e rnax

FLT MAX EXP
DBL-&ii-EXP
LDBE MAii EXP

- maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers,

1 logio((l - b-p) x bemax
)1

FLT MAX 10 EXP +37
DBL-MAX-10EXP +37
LDB; MAii l?i EXP +37 0 -0

The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or greater than those shown:

- maximum representable finite floating-point number, (1 - b-P) x bemax

FLT MAX 1E+37
DBL-kC 1E+37
LDBE MAX lE+37

The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or less than those shown:

- the difference between 1 and the least value greater than 1 that is representable in the given
floating point type, b ‘-P

FLT EPSILON 1E-5
DBL-EPSILON lE-9
LDBii EPSILON lE-9

- minimum normalized positive floating-point number, b emin-

FLT MIN 1E-37
DBL-MIN 1E-37
LDB; MIN lE-37

Examples

1. The following describes an artificial floating-point representation that meets the minimum
requirements of this International Standard, and the appropriate values in a <float. h>
header for type float:

6
x = s x 16’ x c fk x 16-k , -31 5 e < +32

k=l

FLT RADIX 16
FLT-MANT DIG 6
FLT-EPSILON 9.536743163.07F
FLT-DIG 6
FLT-MIN EXP -31
FLT-MIN- 2.938735883-39F
FLT-MIN 10 EXP -38
FLT-MAX-Eg +32
FLT-iAX- 3.402823473+38F
FLT-MAX 10 EXP +38 w --

16 Environment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISOJIEC 9899: 1990 (E)

2. The following describes floating-point representations that also meet the requirements for
single-precision and double-precision normalized numbers in ANSI/IEEE 754- 1985,’ ’ and
the appropriate values in a <float. h> header for types float and double:

-v =s x2’x 5 j-.,x2-5 -125 <, e 5 -t128
k=l

53

xd = s X 2' X c fk X zBk, -1021 < e 2 +1024
k=l

FLT RADIX 2
FLT-MANT DIG 24
FLT-EPSIT;ON 1.192092903-07F
FLT-DIG 6
FLT-MIN EXP -125
FLT-MIN- 1.175494353938F
FLT-MIN 10 EXP -37
FLT-!WX-EG +128
FLT-MAX- 3.402823473+38F
FLT-MZU 10 EXP +38
DBL-MAN? Dk 53
DBL-EPSILON 2.2204460492503131E-16
DBL-DIG 15
DBL-MIN EXP -1021
DBL-MIN- 2.2250738585072014E-308
DBL-MIN 10 EXP -307
DBL-MAX-EG +1024
DBL-MAX- 1.7976931348623157E+308
DBL-MAX 10 EXP +308 0 -0

Forward references: conditional inclusion (6.8.1).

11 The floating-point model in that standard sums powers of h from zero, so the values of the exponent
limits are one less than shown here.

Env ironment 17

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6 Language
In the syntax notation used in the language clause (clause 6), syntactic categories

(nonterminals) are indicated by italic type, and literal words and character set members
(terminals) by bold type. A colon (:) following a nonterminal introduces its definition.
Alternative definitions are listed on separate lines, except when prefaced by the words “one of.”
An optional symbol is indicated by the subscript “opt,” so that

(expression
opt 1

indicates an optional expression enclosed in braces.

6.1 Lexical elements
Syntax

token:
keyword
identifier
constant
string-literal
operator
punctuator

preprocessing-token:
header-name
iden tiJier
pp-number
character-constant
string-literal
operator
punctuator
each non-white-

Constraints

Each preprocessing token that is converted
keyword, an identifier, a constant, a string literal,

character that cannot be one of the above

to a token shall have the lexical form of a
an operator, or a punctuator.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The
categories of tokens are: keywords, identifiers, constants, string literals, operators, and
punctuators. A preprocessing token is the minimal lexical element of the language in translation
phases 3 through 6. The categories of preprocessing token are: header names, identifiers,
preprocessing numbers, character constants, string literals, operators, punctuators, and single
non-white-space characters that do not lexically match the other preprocessing token categories.
If a I or a ‘1 character matches the last category, the behavior is undefined. Preprocessing tokens
can be separated by white space; this consists of comments (described later), or white-space
characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in
6.8, in certain circumstances during translation phase 4, white space (or the absence thereof)
serves as more than preprocessing token separation. White space may appear within a
preprocessing token only as part of a header name or between the quotation characters in a
character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token.

18 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Examples

1. The program fragment 1Ex is parsed as a preprocessing number token (one that is not a
valid floating or integer constant token), even though a parse as the pair of preprocessing
tokens 1 and Ex might produce a valid expression (for example, if Ex were a macro
defined as +l). Similarly, the program fragment 1El is parsed as a preprocessing number
(one that is a valid floating constant token), whether or not E is a macro name.

2. The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on
increment operators, even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (6.1.3.4), comments (6.1.9), expressions (6.3), floating
constants (6.1.3.1), header names (6.1.7), macro replacement (6.8.3), postfix increment and
decrement operators (6.3.2.4), prefix increment and decrement operators (6.3.3. l), preprocessing
directives (6.8), preprocessing numbers (6.1.8), string literals (6.1.4).

6.1.1 Keywords
Syntax

keyword: one of
auto
break
case
char
const
continue
default
do

Semantics

as

double
else
enum
extern
float
for
got0
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

The above tokens (entirely in lowercase) are reserved (in
keywords, and shall not be used otherwise.

6.1.2 Identifiers

translation phases 7 and 8) for use

identifier :
nondigit
identifier nondigit
identifier digit

nondigit: one of
a b c d e f ghij klm -
n 0 pqrstuvwxyz
ABCDEFGHIJKLM
N 0 P Q RSTUVWXYZ

digit: one of
0123456789

Description

An identifier is a sequence of nondigit characters (including the underscore and -
lowercase and uppercase letters) and digits. The first character shall be a nondigit character.

Constraints

In translation phases 7 and 8, an identifier shall not consist of the same sequence of characters

the

as a key word.

Language 19

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Semantics

An identifier denotes an object, a function, or one of the following entities that will be
described later: a tag or a member of a structure, union, or enumeration; a typedef name; a label
name; a macro name; or a macro parameter. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here,
because prior to the semantic phase of program translation any occurrences of macro names in
the source file are replaced by the preprocessing token sequences that constitute their macro
definitions.

There is no specific limit on the maximum length of an identifier.

Implementation limits

The implementation shall treat at least the first 31 characters of an internal name (a macro
name or an identifier that does not have external linkage) as significant. Corresponding lowercase
and uppercase letters are different. The implementation may further restrict the significance of an
external name (an identifier that has external linkage) to six characters and may ignore
distinctions of alphabetical case for such names.‘* These limitations on identifiers are all
implementation-defined.

Any
differ in

identifiers that differ in a
a nonsignificant character,

significant
the behavi

ch
.or

.aracter are di
is undefined.

fferen t identifiers. If two identifiers

Forward references: linkages of identifiers (6.1.2.2), macro replacement (6.8.3).

6.1.2.1 Scopes of identifiers

An identifier is visible (i.e., can be used) only within a region of program text called its
scope. There are four kinds of scopes: function, file, block, and function prototype. (A function
prototype is a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto
statement) anywhere in the function in which it appears, and is declared implicitly by its syntactic
appearance (followed by a : and a statement). Label names shall be unique within a function.

Every other identifier has scope determined by the placement of its declaration (in a declarator
or type specifier). If the declarator or type specifier that declares the identifier appears outside of
any block or list of parameters, the identifier has file scope, which terminates at the end of the
translation unit. If the declarator or type specifier that declares the identifier appears inside a
block or within the list of parameter declarations in a function definition, the identifier has Ho&
scope, which terminates at the } that closes the associated block. If the declarator or type
specifier that declares the identifier appears within the list of parameter declarations in a function
prototype (not part of a function definition), the identifier has function prototype scope, which
terminates at the end of the function declarator. If an outer declaration of a lexically identical
identifier exists in the same name space, it is hidden until the current scope terminates, after
which it again becomes visible.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of the
tag in a type specifier that declares the tag. Each enumeration constant has scope that begins just
after the appearance of its defining enumerator in an enumerator list. Any other identifier has
scope that begins just after the completion of its declarator.

12 See “future language directions” (6.9.1).

20 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Forward references: compound statement, or block (6.6.2), declarations (6.5), enumeration
specifiers (6.5.2.2), function calls (6.3.2.2), function declarators (including prototypes) (6.5.4.3),
function definitions (6.7. l), the goto statement (6.6.6.1), labeled statements (6.6.1), name spaces
of identifiers (6.1.2.3), scope of macro definitions (6X3.5), source file inclusion (6X2), tags
(6.5.2.3), type specifiers (6.5.2).

6.1.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be made to
refer to the same object or function by a process called linkage. There are three kinds of linkage:
external, internal, and none.

In the set of translation units and libraries that constitutes an entire program, each instance of
a particular identifier with external linkage denotes the same object or function. Within one
translation unit, each instance of an identifier with internal linkage denotes the same object or
function. Identifiers with no linkage denote unique entities.

If the declaration of a file scope identifier for an object
class specifier static, the identifier has internal linkage. l3

or a function contains the storage-

If the declaration of an identifier for an object or a function contains the storage-class
specifier extern, the identifier has the same linkage as any visible declaration of the identifier
with file scope. If there is no visible declaration with file scope, the identifier has external
linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is
determined exactly as if it were declared with the storage-class specifier extern. If the
declaration of an identifier for an object has file scope and no storage-class specifier, its linkage is
external.

The following identifiers have no linkage: an identifier declared to be anything other than an
object or a function; an identifier declared to be a function parameter; a block scope identifier for
an object declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external
linkage, the behavior is undefined.

Forward references: compound statement, or block (6.6.2), declarations (6.5), expressions (6.3),
external definitions (6.7).

6.1.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a translation
unit, the syntactic context disambiguates uses that refer to different entities. Thus, there are
separate name spaces for various categories of identifiers, as follows:

- label names (disambiguated by the syntax of the label declaration and use);

- the tags of structures, unions, and enumerations (disambiguated by following any14 of the
keywords struct,union, or enum);

- the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the .
or -> operator);

13 A function declaration can contain the storage-class specifier static only if it is at file scope; see
6.51.

14 There is only one name space for tags even though three are possible.

Language 21

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

- all other identifiers, called ordinary iden tiflers (declared in ordinary declarators or as
enumeration constants).

Forward references: enumeration specifiers (6.5.2.2), labeled statements (6.6. l), structure and
union specifiers (6.5.2.1), structure and union members (6.3.2.3), tags (6.5.2.3).

6.1.2.4 Storage durations of objects

An object has a storage duration that determines its lifetime. There are two storage
durations: static and automatic.

An object whose identifier is declared with external or internal linkage, or with the storage-
class specifier static has static storage duration. For such an object, storage is reserved and
its stored value is initialized only once, prior to program startup. The object exists and retains its
last-stored value throughout the execution of the entire program?

An object whose identifier is declared with no linkage and without the storage-class specifier
static has automatic storage duration. Storage is guaranteed to be reserved for a new
instance of such an object on each normal entry into the block with which it is associated, or on
a jump from outside the block to a labeled statement in the block or in an enclosed block. If an
initialization is specified for the value stored in the object, it is performed on each normal entry,
but not if the block is entered by a jump to a labeled statement. Storage for the object is no
longer guaranteed to be reserved when execution of the block ends in any way. (Entering an
enclosed block suspends but does not end execution of the enclosing block. Calling a function
suspends but does not end execution of the block containing the call.) The value of a pointer that
referred to an object with automatic storage duration that is no longer guaranteed to be reserved
is indeterminate.

Forward references: compound statement, or block (6.6.2), function calls
(6.5.7).

6.1.2.5 Types

(6.3.2.2), initialization

The meaning of a value stored in an object or returned by a function is determined by the
type of the expression used to access it. (An identifier declared to be an object is the simplest
such expression; the type is specified in the declaration of the identifier.) Types are partitioned
into object types (types that describe objects), function types (types that describe functions), and
incomplete types (types that describe objects but lack information needed to determine their
sizes).

An object declared as type char is large enough to store any member of the basic execution
character set. If a member of the required source character set enumerated in 5.2.1 is stored in a
char object, its value is guaranteed to be positive. If other quantities are stored in a char
object, the behavior is implementation-defined: the values are treated as either signed or
nonnegative integers.

There are four signed integer types, designated as signed char, short int, int, and
long int. (The signed integer and other types may be designated in several additional ways, as
described in 6.5.2.)

An object declared as type signed char occupies the same amount of storage as a “plain”
char object. A “plain” int object has the natural size suggested by the architecture of the
execution environment (large enough to contain any value in the range INT MIN to INT MAX -
as defined in the header <limits . h>). In the list of signed integer types above, the range of
values of each type is a subrange of the values of the next type in the list.

15 In the case of a volatile object, the last store may not be explicit in the program.

22 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

For each of the signed integer types, there is a corresponding (but different) unsigned integer
type (designated with the keyword unsigned) that uses the same amount of storage (including
sign information) and has the same alignment requirements. The range of nonnegative values of
a signed integer type is a subrange of the corresponding unsigned integer type, and the
representation of the same value in each type is the same? A computation involving unsigned
operands can never overflow, because a result that cannot be represented by the resulting
unsigned integer type is reduced modulo the number that is one greater than the largest value that
can be represented by the resulting unsigned integer type.

There are three floating types, designated as float, double, and long double. The set
of values of the type float is a subset of the set of values of the type double; the set of
values of the type double is a subset of the set of values of the type long double.

The type char, the signed and unsigned integer types, and the floating types are collectively
called the basic types. Even if the implementation defines two or more basic types to have the
same representation, they are nevertheless different types.

The three types char, signed char, and unsigned char are collectively called the
character types l

An enumeration comprises a set of named integer constant values. Each distinct enumeration
constitutes a different enumerated type.

The void
completed.

type comprises an empty set of values; it is an incomplete type that cannot be

Anv number of derived types can be constructed from the object, function, and incomplete
types, as follows:

- An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the eZement type .17 Array types are characterized by their element
type and by the number of elements in the array. An array type is said to be derived from its
element type, and if its element type is T, the array type is sometimes called “array of T.”
The construction of an array type from an element type is called “array type derivation.”

- A structure type describes a sequentially allocated nonempty set of member objects, each of
which has an optionally specified name and possibly distinct type.

- A union
optional1

type describes an overlapping
y specified name and possibly

nonempty set
distinct type.

of member objects, each of which has an

- A function type describes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A function type
is said to be derived from its return type, and if its return type is T, the function type is
sometimes called “function returning T. ’ ’ The construction of a function type from a return
type is called “function type derivation.”

- A pointer type may be derived from a function type, an object type, or an incomplete type,
called the referenced type. A pointer type describes an object whose value provides a
reference to an entity of the referenced type. A pointer type derived from the referenced type
T is sometimes called “pointer to T.” The construction of a pointer type from a referenced
type is called “pointer type derivation.”

16 The same representation and alignment requirements are meant to imply interchangeability as arguments
to functions, return values from functions, and members of unions.

17 Since object types do not include incomplete types, an array of incomplete type cannot be constructed.

Language 23

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

These methods of constructing derived types can be applied recursively.

The type char, the signed and unsigned integer types, and the enumerated types are
collectively called integraZ types. The representations of integral types shall define values by use
of a pure binary numeration system. l8 The representations of floating types are unspecified.

Integral and floating types are collectively called arithmetic types. Arithmetic types and
pointer types are collectively called scalar types. Array and structure types are collectively called
aggregate types. ’ 9

An array type of unknown size is an incomplete type. It is completed, for an identifier of that
type, by specifying the size in a later declaration (with internal or external linkage). A structure
or union type of unknown content (as described in 6.5.2.3) is an incomplete type. It is
completed, for all declarations of that type, by declaring the same structure or union tag with its
defining content later in the same scope.

Array, function, and pointer types are collectively called derived declarator types. A
declarator type derivation from a type T is the construction of a derived declarator type from T
by the application of an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a
derived type (as noted above in the construction of derived types), or the type itself if the type
consists of no derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has three
corresponding quaZiJied versions of its type:*’ a const-qualified version, a volatile-qualified
version, and a version having both qualifications. The qualified or unqualified versions of a type
are distinct types that belong to the same type category and have the same representation and
alignment requirements. l6 A derived type is not qualified by the qualifiers (if any) of the type
from which it is derived.

A pointer to void shall have the same representation and alignment requirements as a pointer
to a character type. Similarly, pointers to qualified or unqualified versions of compatible types
shall have the same representation and alignment requirements. l6 Pointers to other types need not
have the same representation or alignment requirements.

Examples

1. The type designated as ‘ ‘ float *” has type “pointer to float .’ ’ Its type category is
pointer, not a floating type. The const-qualified version of this type is designated as
"f&oat * const" whereas the type designated as “const float *” is not a qualified
type - its type is “pointer to const-qualified float" and is a pointer to a qualified type.

2. The type designated as "struct tag (*[5]) (float) ” has type “array of pointer to
function returning struct tag." The array has length five and the function has a single
parameter of type float. Its type category is array.

Forward references: character constants (6.1.3.4), compatible type and composite type (6.1.2.6),
declarations (6.5), tags (6.5.2.3), type qualifiers (6.5.3).

18 A positional representation for integers that uses the binary digits 0 and 1, in which the values
represented by successive bits are additive, begin with 1, and are multiplied by successive integral
powers of 2, except perhaps the bit with the highest position. (Adapted from the American National
Dictionary for Information Processing Systems .>

19 Note that aggregate type does not include union type because an object with union type can only contain
one member at a time.

20 See 6.5.3 regarding qualified array and function types.

24 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.1.2.6 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for determining
whether two types are compatible are described in 6.5.2 for type specifiers, in 6.5.3 for type
qualifiers, and in 6.5.4 for declarators.*l Moreover, two structure, union, or enumeration types
declared in separate translation units are compatible if they have the same number of members,
the same member names, and compatible member types; for two structures, the members shall be
in the same order; for two structures or unions, the bit-fields shall have the same widths; for two
enumerations, the members shall have the same values.

All declarations that
otherwise, the behavior is

A composite
compatible with

type can be constructed from two types that are compatible; it is a type that is
both of the two types and satisfies the following conditions:

refer to the same
undefined.

object or function shall have compatible type;

- If one type is an array of known size, the composite type is an array of that size.

- If only one type
composite type is

is a function type with
a function prototype with

- If both types are function
composite parameter type

a parameter type list (a
the parameter type list.

types wi th parameter type lists, the type of each parameter in the
.ist is the composite ty pe of the corresponding parameters.

prototype), the

These rules apply recursively to the types from which the two types are derived.

For an
declaration

identifier with external or internal linkage declared in the same scope
for that identifier, the type of the identifier becomes the composite type.

as

Given the following two file scope declarations:

int f(int (*) 0, double (*)[3]);
int f(int (*) (char *), double (*)[I);

The resulting composite type for the function is:

int f(int (*) (char *), double (*)[3]);

Forward references: declarators (6.5.4), enumeration specifiers (6.5.2.2), structure and union
specifiers (65.2. I), type definitions (6.5.6), type qualifiers (6.5.3), type specifiers (6.5.2).

6.1.3 Constants

constant:
jloating-constant
integer-constant
enumeration-constant
character-constant

Constraints

The value of a constant shall be in the range of representable values for its type.

21 Two types need not be identical to be compatible.

Language 25

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Semantics

Each constant has a type, determined by its form and value, as detailed later.

6.1.3.1 Floating constants

Syntax

floating-constant:
fractional-constant exponent-part0 t floating-sufJix
digit-sequence exponent-part jloaf?ng-suflxoPt opt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e sign
E sign

opt digit-sequence
opt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-sufJix: one of
fl F L

Description

A floating constant has a significand part that may be followed by an exponent part and a
suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a period (.), followed by a digit
sequence representing the fraction part. The components of the exponent part are an e or E
followed by an exponent consisting of an optionally signed digit sequence. Either the whole-
number part or the fraction part shall be present; either the period or the exponent part shall be
present.

Semantics

The significand part is interpreted as a decimal rational number; the digit sequence in the
exponent part is interpreted as a decimal integer. The exponent indicates the power of 10 by
which the significand part is to be scaled. If the scaled value is in the range of representable
values (for its type) the result is either the nearest representable value, or the larger or smaller
representable value immediately adjacent to the nearest representable value, chosen in an
implementation-defined manner.

An unsuffixed floating constant has type double. If suffixed by the letter f or F, it has type
float. If suffixed by the letter 1 or L, it has type long double.

6.1.3.2 Integer constants

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-s&4x

OPf hexadecimal-constant integer-suffixopt

26 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
12 3 4 5 6 7 8 9

octal-digit: one of
012 3 4 5 6 7

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-su$Jix

opt long-suflx unsigned-suflxopt

unsigned-sufix: one of
u u

long-sufJix: one of
1 L

Description

An integer constant begins with a digit, but has no
prefix that specifies its base and a suffix that specifies its

period
type*

or exponent part. It may have a

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits.
An octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0
through 7 only. A hexadecimal constant consists of the prefix Ox or OX followed by a sequence
of the decimal digits and the letters a (or A) through f (or F) with values 10 through 15
respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal constant, base 8; that of
a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can be
represented. Unsuffixed decimal: int, long int, unsigned long int; unsuffixed octal or
hexadecimal: int, unsigned int, long int, unsigned long int; suffixed by the letter
u or U: unsigned int, unsigned long int; suffixed by the letter 1 or L: long int,
unsigned long int; suffixed by both the letters u or U and 1 or L: unsigned long int.

Language 27

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.1.3.3 Enumeration constants

Syntax

enumeration-constant:
identiJier

Semantics

An identifier declared as an enumeration constant has type int.

Forward references: enumeration specifiers (6.5.2.2).

6.1.3.4 Character constants

Syntax

character-constant:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence.*
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ‘ , backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence.* one of
\ I \ \3 \\
\a \;5 \; \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description

An integer character constant is a sequence of one or more multibyte characters enclosed in
single-quotes, as in ’ x’ or ’ ab’ . A wide character constant is the same, except prefixed by the
letter L. With a few exceptions detailed later, the elements of the sequence are any members of
the source character set; they are mapped in an implementation-defined manner to members of the
execution character set.

The single-quote ’ , the double-quote I’, the question-mark ?, the backslash \, and arbitrary
integral values, are representable according to the following table of escape sequences:

28 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

single-quote ’ \ I
double-quote ” \ II
question-mark ? \’ .
backslash \ \\
octal integer \octal digits
hexadecimal integer ixhexadecimal digits

The double-quote I1 and question-mark ? are representable either by themselves or by the
escape sequences \ ‘I and \?, respectively, but the single-quote ’ and the backslash \ shall be
represented, respectively, by the escape sequences \ I and \\.

The octal digits that follow the backslash in an octal escape sequence are taken to be part of
the construction of a single character for an integer character constant or of a single wide
character for a wide character constant. The numerical value of the octal integer so formed
specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer character
constant or of a single wide character for a wide character constant. The numerical value of the
hexadecimal integer so formed specifies the value of the desired character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

In addition, certain nongraphic characters are representable by escape sequences consisting of
the backslash \ followed by a lowercase letter: \a, \b, \f, \n, \r, \t, and \v.~~ If any other
escape sequence is encountered, the behavior is undefined.23

Constraints

The value of an octal or hexadecimal escape sequence shall
values for the type unsigned char for an integer character
corresponding to wchar t for a wide character constant. -

be in the range of representable
constant, or the unsigned type

Semantics

An integer character constant has type int. The value of an integer character constant
containing a single character that maps into a member of the basic execution character set is the
numerical value of the representation of the mapped character interpreted as an integer. The
value of an integer character constant containing more than one character, or containing a
character or escape sequence not represented in the basic execution character set, is
implementation-defined. If an integer character constant contains a single character or escape
sequence, its value is the one that results when an object with type char whose value is that of
the single character or escape sequence is converted to type int.

A wide character constant has type wchar t, an integral type defined in the <stddef . h>
header. The value of a wide character constantcontaining a single multibyte character that maps
into a member of the extended execution character set is the wide character (code) corresponding
to that multibyte character, as defined by the mbtowc function, with an implementation-defined
current locale. The value of a wide character constant containing more than one multibyte
character, or containing a multibyte character or escape sequence not represented in the extended
execution character set, is implementation-defined.

22 The semantics of these characters were discussed in 5.2.2.
23 See “future language directions” (6.9.2).

Language 29

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Examples

1. The construction ’ \O I is commonly used to represent the null character.

2. Consider implementations that use two’s-complement representation for integers and eight
bits for objects that have type char. In an implementation in which type char has the
same range of values as signed char, the integer character constant ’ \xFF' has the
value - 1; if type char has the same range of values as unsigned char, the character
constant ’ \XFF' has the value +255 .

3. Even if eight bits are used for objects that have type char, the construction ’ \x123'
specifies an integer character constant containing only one character. (The value of this
single-character integer character constant is implementation-defined and violates the above
constraint.) To specify an integer character constant containing the two characters whose
values are 0x12 and ’ 3’ , the construction ’ \0223 I may be used, since a hexadecimal
escape sequence is terminated only by a nonhexadecimal character. (The value of this
two-character integer character constant is implementation-defined also.)

4. Even if 12 or more bits are used for objects that have type wchar t, the construction
L’ \1234 ’ specifies the implementation-defined value that results fro; the combination of
the values 0123 and ‘4’.

Forward references: characters and integers (6.2.1.1) common definitions <stddef . h>
(7.1.6), the mbtowc function (7.10.7.2).

6.1.4 String literals
Syntax

string-literal:
I1 s-char-sequence I’

opt L ‘I s-char-sequence I1
opt

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote “, backslash \, or new-line character
escape-sequence

Description

A characte
double-quotes,

r string literal is a sequence of zero or more multibyte characters enclosed
as in ” xyz 1’. A wide string literal is the same, except prefixed by the letter L.

in

The same considerations apply to each element of the sequence in a character string literal or
a wide string literal as if it were in an integer character constant or a wide character constant,
except that the single-quote ’ is representable either by itself or by the escape sequence \’ , but
the double-quote I’ shall be represented by the escape sequence \ ‘I.

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of
adjacent character string literal tokens, or adjacent wide string literal tokens, are concatenated into
a single multibyte character sequence. If a character string literal token is adjacent to a wide
string literal token, the behavior is undefined.

30 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

In translation phase 7, a byte or code of value zero is appended to each multibyte character
sequence that results from a string literal or literals.24 The multibyte character sequence is then
used to initialize an array of static storage duration and length just sufficient to contain the
sequence. For character string literals, the array elements have type char, and are initialized
with the individual bytes of the multibyte character sequence; for wide string literals, the array
elements have type wchar t, - and are initialized with the sequence of wide characters
corresponding to the multibyte character sequence.

Identical string literals of either form need not be distinct. If the program attempts to modify
a string literal of either form, the behavior is undefined.

This pair of adjacent character string literals

“\X=” “3”

produces a single character string literal containing the two characters whose values are \x12
and ’ 3’) because escape sequences are converted into single members of the execution character
set just prior to adjacent string literal concatenation.

Forward references: common definitions <stddef . h> (7.1.6).

6.1.5 Operators

operator: one of
1 1 (1 l ->
++ -- & * + - - ! sizeof
/ % << >> < > <= >= == != h 1 && 11
? :
= *k= /= %= += -= <<= >>= &= AZ I=
1 # ##

Constraints

The operators [1, () , and ? : shall occur in pairs, possibly separated by expressions. The
operators # and ## shall occur in macro-defining preprocessing directives only.

Semantics

An operator specifies an operation to be performed (an evaluation) that yields a value, or
yields a designator, or produces a side effect, or a combination thereof. An operand is an entity
on which an operator acts.

Forward references: expressions (6.3), macro replacement (6.8.3).

24 A character string literal
by a \O escape sequence

need not be a string (see 7.1 .I), because a null character may be embedded in it

Language 31

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.1.6 Punctuators
Syntax

punctuator: one of
[] .() { } * f : = ; l -- #

Constraints

The punctuators [1, () , and { } shall occur (after translation phase 4) in pairs, possibly
separated by expressions, declarations, or statements. The punctuator # shall occur in
preprocessing directives only.

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance but does
not specify an operation to be performed that yields a value. Depending on context, the same
symbol may also represent an operator or part of an operator.

Forward references: expressions (6.3), declarations (6.5), preprocessing directives (6.8),
statements (6.6).

6.1.7 Header names
Syntax

header-name:
<h-char-sequence>
“q-char-sequence”

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

the new-line character and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except

the new-line character and ”

Constraints

Header name preprocessing tokens shall only appear within a #include preprocessing
directive.

Semantics

The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 6.8.2.

If the characters ’ , \, I’, or /* occur in the sequence between the < and > delimiters, the
behavior is undefined. Similarly, if the characters ’ , \, or /* occur in the sequence between the
VV delimiters, the behavior is undefined.25

25 Thus, sequences of characters that resemble escape sequences cause undefined behavior.

32 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

The following sequence of characters:

Ox3<l/a.h>le2
#include <l/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token
delimited by a { on the left and a } on the right).

-wxw~lwulbl~ l lDGPl~ le2 l

(#}(include} {<l/a.h>}
{#>{defin& { const}{.}{member}{@)($)

Forward references: source file inclusion (6.8.2).

6.1.8 Preprocessing numbers

pp-number:
digit

digit
ip-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

Description

A preprocessing number begins with a digit optionally preceded by a period (.) and may be
followed by letters, underscores, digits, periods, and e+, e-, E+, or E- character sequences.

Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

con
A preprocessing number does not have type or a value; it acquires both after a successful
version (as part of translation phase 7) to a floati ng con stant token or an integer constant

6.1.9 Comments
Except within a character constant, a string literal, or a comment, the characters /* introduce

a comment. The contents of a comment are examined only to identify multibyte characters and
to find the characters */ that temnnate it.26

26 Thus, comments do not nest.

Language 33

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.2 Conversions
Several operators convert operand values from one type to another automatically. This

subclause specifies the result required from such an implicit conversion, as well as those that
result from a cast operation (an explicit conversion). The list in 6.2.1.5, summarizes the
conversions performed by most ordinary operators; it is supplemented as required by the
discussion of each operator in 6.3.

Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (6.3.4).

6.2.1 Arithmetic operands
6.2.1.1 Characters and integers

A char, a short int, or an int bit-field, or their signed or unsigned varieties, or an
enumeration type, may be used in an expression wherever an int or unsigned int may be
used. If an int can represent all values of the original type, the value is converted to an int;
otherwise, it is converted to an unsigned int. These are called the integral promotions.27
All other arithmetic types are unchanged by the integral promotions.

“PI
The integral promotions preserve value including sign.
.ain ’ ’ char is treated as signed is implementation-defined.

As discussed earlier, whether a

Forward references: enumeration specifiers (6.5.2.2), structure and union specifiers (6.521).

6.2.1.2 Signed and unsigned integers

When a value
represented by the new

integral
type, its

type
value

is
1s

converted to
unchanged.

another integral type, if the value can be

When a signed integer is converted to an unsigned integer with equal or greater size, if the
value of the signed integer is nonnegative, its value is unchanged. Otherwise: if the unsigned
integer has greater size, the signed integer is first promoted to the signed integer corresponding to
the unsigned integer; the value is converted to unsigned by adding to it one greater than the
largest number that can be represented in the unsigned integer type.2”

When a value with integral type is demoted to an unsigned integer with smaller size, the
result is the nonnegative remainder on division by the number one greater than the largest
unsigned number that can be represented in the type with smaller size. When a value with
integral type is demoted to a signed integer with smaller size, or an unsigned integer is converted
to its corresponding signed integer, if the value cannot be represented the result is
implementation-defined.

27 The integral promotions are applied only as part of the usual arithmetic conversions, to certain argument
expressions, to the operands of the unary +, -, and w operators, and to both operands of the shift
operators, as specified by their respective subclauses.

28 In a two’s-complement representation, there is no actual change in the bit pattern except filling the
high-order bits with copies of the sign bit if the unsigned integer has greater size.

34 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.2.1.3 Floating and integral

When a value of floating type is converted to integral type, the fractional part is discarded. If
the value of the integral part cannot be represented by the integral type, the behavior is
undefined.29

When a value of integral type is converted to floating type, if the value being converted is in
the range of values that can be represented but cannot be represented exactly, the result is either
the nearest higher or nearest lower value, chosen in an implementation-defined manner.

6.2.1.4 Floating types

When a float is promoted to double or long double, or a double is promoted to
long double, its value is unchanged.

When a double is demoted to float or a long double to double or float, if the
value being converted is outside the range of values that can be represented, the behavior is
undefined. If the value being converted is in the range of values that can be represented but
cannot be represented exactly, the result is either the nearest higher or nearest lower value,
chosen in an implementation-defined manner.

6.2.1.5 Usual arithmetic conversions

Many binary operators that expect operands of arithmetic type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of
the result. This pattern is called the usual arithmetic conversions:

First, if either operand has type long double, the other operand is converted to long
double.

Otherwise, if either operand has type double, the other operand is converted to double.

Otherwise, if either operand has type float, the other operand is converted to float.

Otherwise, the integral promotions are performed on both operands. Then the following
rules are applied:

If either operand has type unsigned long int, the other operand is converted to
unsignedlongint.

Otherwise, if one operand has type long int and the other has type unsigned
int, if a long int can represent all values of an unsigned int, the operand of
type unsigned int is converted to long int; if a long int cannot represent
all the values of an unsigned int, both operands are converted to unsigned
longint.

Otherwise, if either operand has type long int, the other operand is converted to
longint.

Otherwise, if either operand has type unsigned int, the other operand is
converted to unsignedint.

Otherwise, both operands have type int.

in
The values of floating operands and of the results of floating expressions may be represented

greater precision and range than that required by the type; the types are not changed thereby.30

29 The remaindering operation performed when a value of integral type is converted to unsigned type need
not be performed when a value of floating type is converted to unsigned type. Thus, the range of
portable floating values is (- 1 ,Utype MAx+1).

30 The cast and assignment
and 6.2.1.4.

operators still must perform their specified conversions, as described in 6.2.1.3

Language 35

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/lEC 9899: 1990 (E)

6.2.2 Other operands
6.2.2.1 Lvalues and function designators

An Zvalue is an expression (with an object type or an incomplete type other than void) that
designates an object.” When an object is said to have a particular type, the type is specified by
the lvalue used to designate the object. A modifiable lvalue is an lvalue that does not have array
type, does not have an incomplete type, does not have a const-qualified type, and if it is a
structure or union, does not have any member (including, recursively, any member of all
contained structures or unions) with a const-qualified type.

Except when it is the operand of the sizeof operator, the unary & operator, the ++ operator,
the -- operator, or the left operand of the . operator or an assignment operator, an lvalue that
does not have array type is converted to the value stored in the designated object (and is no
longer an lvalue). If the lvalue has qualified type, the value has the unqualified version of the
type of the lvalue; otherwise, the value has the type of the lvalue. If the lvalue has an incomplete
type and does not have array type, the behavior is undefined.

Except when it is the operand of the sizeof operator or the unary & operator, or is a
character string literal used to initialize an array of character type, or is a wide string literal used
to initialize an array with element type compatible with wchar-t, an lvalue that has type “array
of type ” is converted to an expression that has type “pointer to type ” that points to the initial
element of the array object and is not an lvalue.

A function designator is an expression that has function type. Except when it is the operand
of the sizeof operato?* or the unary & operator, a function designator with type “function
returning type ” is converted to an expression that has type “pointer to function returning type.”

Forward references: address and indirection operators (6.3.3.2), assignment operators (6.3.16),
common definitions <stddef . h> (7.1.6), initialization (6.5.7), postfix increment and decrement
operators (6.3.2.4), prefix increment and decrement operators (6.3.3. l), the sizeof operator
(6.3.3.4), structure and union members (6.3.2.3).

6.2.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not be
used in any way, and implicit or explicit conversions (except to void) shall not be applied to
such an expression. If an expression of any other type occurs in a context where a void
expression is required, its value or designator is discarded. (A void expression is evaluated for
its side effects.)

6.2.2.3 Pointers

A pointer to void may be converted to or from a pointer to any incomplete or object type.
A pointer to any incomplete or object type may be converted to a pointer to void and back
again; the result shall compare equal to the original pointer.

For any qualifier 4, a pointer to a non-q-qualified type may be converted to a pointer to the
q-qualified version of the type; the values stored in the original and converted pointers shall
compare equal.

3 1 The name “ lvalue’ ’ comes originally from the assignment expression El = E2, in which the left
operand El must be a (modifiable) lvalue. It is perhaps better considered as representing an object
‘ ‘locator value. ’ ’ What is sometimes called ‘ ‘rvalue” is in this International Standard described as the
“value of an expression.”
An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary
expression that is a pointer to an object, *E is an lvalue that designates the object to which E points.

32 Because this conversion does not occur, the operand of the sizeof operator remains a function
designator and violates the constraint in 6.3.3.4.

36 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

An integral constant expression with the value 0, or such an expression cast to type void * ,
is called a null pointer constant.33 If a null pointer constant is assigned to or compared for
equality to a pointer, the constant is converted to a pointer of that type. Such a pointer, called a
null pointer, is guaranteed to compare unequal to a pointer to any object or function.

Two null pointers,
shall compare equal.

converted through possibly different sequences of casts to pointer types,

Forward references: cast operators (6.3.4), equality operators (6.3.9), simple assignment
(6.3.16.1).

33 The macro NULL is defined in <stddef . h> as a null pointer constant; see 7.1.6.

Language 37

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.3 Expressions
An expression is a sequence of operators and operands that specifies computation of a value,

or that designates an object or a function, or that generates side effects, or that performs a
combination thereof.

at
on

Between the previous and next sequence point
most once by the evaluation of an expression.
.ly to determine the value to be stored.34

an object shall have its stored value modified
Furthermore, the prior value shall be accessed

Except as indicated by the syntax35 or otherwise specified later (for the function-call operator
0, 66, I I, ?:, and comma operators), the order of evaluation of subexpressions and the order

in which side effects take place are both unspecified.

Some operators (the unary operator w, and the binary operators <<, >>, &, h, and 1,
collectively described as bitwise operators) shall have operands that have integral type. These
operators return values that depend on the internal representations of integers, and thus have
implementation-defined aspects for signed types.

If an exception occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

An object shall have its stored value accessed only by an lvalue that has one of the following
types:36

- the declared type of the object,

- a qualified version of the declared type of the object,

- a type that is the signed or unsigned type corresponding to the declared type of the object,

- a type that is the signed or unsigned type corresponding to a qualified version of the declared
type of the object,

- an aggregate or union type that includes one of the
(including, recursively, a member of a subaggregate

- a character type.

34 This paragraph renders undefined statement expressi ons such as

aforementioned type
or contained union),

s amon g its members
or

i = ++i + 1;
while allowing

i= i + 1;

35 The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as
the order of the major subclauses of this subclause, highest precedence first. Thus, for example, the
expressions allowed as the operands of the binary + operator (63.6) shall be those expressions defined in
6.3.1 through 6.3.6. The exceptions are cast expressions (6.3.4) as operands of unary operators (6.3.3)
and an operand contained between any of the following pairs of operators: grouping parentheses ()
(6.3.1), subscripting brackets [] (6.3.2. l), function-call parentheses () (6.X2.2), and the conditional
operator ? : (6.3.15).
Within each major subclau se, the operators have the same precedence. Left -
indicated in each subclause by the syntax for the expressions discussed therein.

or right-associativity is

36 The intent of this list is to specify those circumstances in which an object may or may not be aliased.

38 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.3.1 Primary expressions
Syntax

primary- expression:
identifier
constant
string-literal
(expression)

Semantics

(in
An identifier 1s a primary expression, provided it has been declared as designating
which case it is an lvalue) or a function (in which case it is a function designator).

object

A constant is a primary expression. Its type depends on its form and value, as detailed in
6.1.3.

A string literal is a primary expression. It is an lvalue with type as detailed in 6.1.4.

A parenthesized expression is a primary expression. Its type and value are identical to those
of the unparenthesized expression. It is an lvalue, a function designator, or a void expression if
the unparenthesized expression is, respectively, an lvalue, a function designator, or a void
expression.

Forward references: declarations (6.5).

6.3.2 Postfix operators
Syntax

postfix-expression:
primary-expression
postJix-expression [expression]
postfix-expression (argument-expression-list
postfix-expression . identifiel opt

)

postfix-expression -> identifiel
postfix-expression ++
postfix-expression - -

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

6.3.2.1 Array subscripting

Constraints

hav
One of the expressions shall have type “pointer to
e integral type, and the result has type “type .”

object type ,’ ’ the other expression shall

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted
designation of an element of an array object. The definition of the subscript operator [] is that
El [E2] is identical to (* (El+ (E2))) . Because of the conversion rules that apply to the
binary + operator, if El is an array object (equivalently, a pointer to the initial element of an
array object) and E2 is an integer, El [E2] designates the E2-th element of El (counting from
zero).

Successive subscript operators designate an element of a multidimensional array object. If E
is an n-dimensional array (n>2) with dimensions ixjx . . . xk, then E (used as other than an
lvalue) is converted to a pointer to an (n- I)-dimensional array with dimensions jx . . . xk. If the
unary * operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the

Language 39

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

result is the pointed-to (n- I)-dimensional array, which itself is converted into a pointer if used as
other than an lvalue. It follows from this that arrays are stored in row-major order (last subscript
varies fastest).

Example

Consider the array object defined by the declaration

int x[3][5];

Here x is a 3x5 array of ints; more precisely, x is an array of three element objects, each of
which is an array of five ints. In the expression x [i] , which is equivalent to (* (x+ (i))) ,
x is first converted to a pointer to the initial array of five ints. Then i is adjusted according to
the type of x, which conceptually entails multiplying i by the size of the object to which the
pointer points, namely an array of five int objects. The results are added and indirection is
applied to yield an array of five ints. When used in the expression x [i] [j] , that in turn is
converted to a pointer to the first of the ints, so x [i] [j] yields an int.

Forward references: additive operators (6.3.6), address and indirection operators (6.3.3.2), array
declarators (6.5.4.2).

6.3.2.2 Function calls

Constraints
^-

The expression that denotes the called functionje7 shall have type pointer to function returning ,
void or returning an object type other than an array type.

If the expression that denotes the called function has a type that includes a prototype, the
number of arguments shall agree with the number of parameters. Each argument shall have a
type such that its value may be assigned to an object with the unqualified version of the type of
its corresponding parameter.

Semantics

A postfix expression followed by parentheses
separated list of expressions is a function call.

() containing a possibly empty, comma-
The postfix expression denotes the called

function. The list of expressions specifies the arguments to the function.

If the expression that precedes the parenthesized argument list in a function call consists
solely of an identifier, and if no declaration is visible for this identifier, the identifier is implicitly
declared exactly as if, in the innermost block containing the function call, the declaration

extern int identiIer() ;

An argument may be an expression of any object type. In preparing for the call to a function,
the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.39 The value of the function call expression is specified in 6.6.6.4.

37 Most often, this is the result of converting an identifier that is a function designator.
38 That is, an identifier with block scope declared to have external linkage with type function without

parameter information and returning an int. If in fact it is not defined as having type “function
returning int , ' ' the behavior is undefined.

39 A function may change the values of its parameters, but these changes cannot affect the values of the
arguments. On the other hand, it is possible to pass a pointer to an object, and the function may change
the value of the object pointed to. A parameter declared to have array or function type is converted to a
parameter with a pointer type as described in 6.7.1.

40 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

If the expression that denotes the called function has a type that does not include a prototype,
the integral promotions are performed on each argument and arguments that have type float are
promoted to double. These are called the default argument promotions. If the number of
arguments does not agree with the number of parameters, the behavior is undefined. If the
function is defined with a type that does not include a prototype, and the types of the arguments
after promotion are not compatible with those of the parameters after promotion, the behavior is
undefined. If the function is defined with a type that includes a prototype, and the types of the
arguments after promotion are not compatible with the types of the parameters, or if the prototype
ends with an ellipsis (, . . .), the behavior is undefined.

If the expression that denotes the called function has a type that includes a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding
parameters. The ellipsis notation in a function prototype declarator causes argument type
conversion to stop after the last declared parameter. The default argument promotions are
performed on trailing arguments. If the function is defined with a type that is not compatible
with the type (of the expression) pointed to by the expression that denotes the called function, the
behavior is undefined.

No other conversions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that does not
include a function prototype declarator.

the
The order of evaluation of the function designator, the arguments, and subexpressions within
arguments is unspecified, but there is a sequence point before the actual call.

Recursive function calls shall be permitted, both directly and indirectly through any chain of
other functions.

Example

In the function call

(*pfwol) wo, f30 + f40)
the functions f 1, f 2, f 3, and f 4 may be called in any order. All side effects shall be
completed before the function pointed to by pf [f 1 ()] is entered.

Forward references: function declarators (including prototypes)
(6.7. l), the return statement (6.6.6.4), simple assignment (6.3.16.

6.3.2.3 Structure and union members

Constraints

The first operand of the . operator shall have a qualified
type, and the second operand shall name a member of that type.

(6.5.4.3), function definitions
1).

or unqualified structure or union

The first operand of the -> operator shall have type “pointer to qualified or unqualified
structure” or “pointer to qualified or unqualified union,” and the second operand shall name a
member of the type pointed to.

Semantics

A postfix expression followed by a dot . and an identifier designates a member of a structure
or union object. The value is that of the named member, and is an lvalue if the first expression
is an lvalue. If the first expression has qualified type, the result has the so-qualified version of
the type of the designated member.

Language 41

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

A postfix expression followed by an arrow -> and an identifier designates a member of a
structure or union object. The value is that of the named member of the object to which the first
expression points, and is an lvalue. 4o If the first expression is a pointer to a qualified type, the
result has the so-qualified version of the type of the designated member.

With one exception, if a member of a union object is accessed after a value has been stored in
a different member of the object, the behavior is implementation-defined.41 One special
guarantee is made in order to simplify the use of unions: If a union contains several structures
that share a common initial sequence (see below), and if the union object currently contains one
of these structures, it is permitted to inspect the common initial part of any of them. Two
structures share a common initial sequence if corresponding members have compatible types (and,
for bit-fields, the same widths) for a sequence of one or more initial members.

Examples

1. If f is a function
union, f () . x is a

returning a structure or un ion, and x is a member of that structure or
valid postfix expression but is not an lvalue.

2. The following is a valid fragment:

union {
struct (

int alltypes;
1 n;
struct (

int type;
int intnode;

} ni;
struct {

int type;
double doublenode;

1 nf;
) w
u.nf.type = 1;
u.nf.doublenode = 3.14;
/*...*/
if (u.n.alltypes == 1)

/*. . . */ sin(u.nf.doublenode) /*...*/

Forward references: address and indirection operators (6.3.3.2), structure and union specifiers
(6.5.2.1).

6.3.2.4 Postfix increment and decrement operators

Constraints

The operand of the postfix increment or decrement operator shall have qualified or unqualified
scalar type and shall be a modifiable lvalue.

40 If
its

&E is a valid
operand), the

pointer expression (where & is
expression (&E) ->MOS is the

the ‘
same

‘address-of”
as E.MOS.

operator, which generates a pointer to

41 The “byte orders” for scalar types are invisible to isolated programs that do not indulge in type punning
(for example, by assigning to one member of a union and inspecting the storage by accessing another
member that is an appropriately sized array of character type), but must be accounted for when
conforming to externally imposed storage layouts.

42 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Semantics

The result of the postfix ++ operator is the value of the operand. After the result is obtained,
the value of the operand is incremented. (That is, the value 1 of the appropriate type is added to
it.) See the discussions of additive operators and compound assignment for information on
constraints, types, and conversions and the effects of operations on pointers. The side effect of
updating the stored value of the operand shall occur between the previous and the next sequence
point.

The postfix -- operator is analogous to the postfix ++ operator, except that the value of the
operand is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.3.6), compound assignment (6.3.16.2).

6.3.3 Unary operators
Syntax

wary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

6.3.3.1 Prefix increment and decrement operators

unary-operator:
& *

one of
+ - ry

Constraints

The operand of the prefix increment or decrement operator shall have qualified or unqualified
scalar type and shall be a modifiable lvalue.

Semantics

The value of the operand of the prefix ++ operator is incremented. The result is the new
value of the operand after incrementation. The expression ++E is equivalent to (E+=l) . See
the discussions of additive operators and compound assignment for information on constraints,
types, side effects, and conversions and the effects of operations on pointers.

The prefix -- operator
operand is decremented.

is anal ogous to the prefix ++ operator, except that the value of the

Forward references: additive operators (6.3.6), compound assignment (6.3.16.2).

6.3.3.2 Address and indirection operators

Constraints

The operand of the unary & operator shall be either a function designator or an lvalue that
designates an object that is not a bit-field and is not declared with the register storage-class
specifier.

The operand of the unary * operator shall have pointer type.

Semantics

The result of the unary & (address-of) operator is a pointer to the object or function
designated by its operand. If the operand has type “type ,” the result has type “pointer to type .”

The unary * operator denotes
function designator; if it points to

indirection. If the operand points to a function, the result is a
an object, the result is an lvalue designating the object. If the

Language 43

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

operand ha .s type “ pointer
assigned to the poin ter, the

to type,” the result has type “type.” If an invalid value has been
behavior of the unary * operator is undefined.42

Forward references: storage-class specifiers (6.5. l), structure and union specifiers (6.X2.1).

6.3.3.3 Unary arithmetic operators

Constraints

The operand of
integral type; of the

Semantics

The result of the unary + operator is the value of its operand.
performed on the operand, and the result has the prom oted type.

the unary + or - operator shall have arithmetic type; of the w operator,
! operator, scalar type.

The result of the unary - operator is the negative of its operand.
performed on the operand, and the result has the promoted type.

The integral promotion is

The integral promotion is

The result of the a operator is the bitwise complement of its operand (that
result is set if and only if the corresponding bit in the converted operand is not
promotion is performed on the operand, and the result has the promoted type. ’
is equivalent to (ULONG MAX-E) if E is promoted to type unsi
(UINT MAX-E) if E is promoted to type unsigned int. (The constants

UINT k are defined in the header <limits. h>.)

is, each bit in the
set). The inte gral

The expression .-E
gned long, to
ULONG MAX and

The result of the logical negation operator ! is 0 if the value of its operand compares unequal
to 0, 1 if the value of its operand compares equal to 0. The result has type int. The expression
! E is equivalent to (O==E) .

Forward references: limits <float . h> and <limits . h> (7.1.6).

6.3.3.4 The si zeof operator

Constraints

The sizeof operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type, or to an lvalue that designates a bit-
field object.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an expression
or the parenthesized name of a type. The size is determined from the type of the operand, which
is not itself evaluated. The result is an integer constant.

When applied to an operand that has type char, unsigned char, or signed char, (or a
qualified version thereof) the result is 1. When applied to an operand that has array type, the
result is the total number of bytes in the array.43 When applied to an operand that has structure
or union type, the result is the total number of bytes in such an object, including internal and
trailing padding.

42 It is always true that if E is a function designator or an lvalue that is a valid operand of the unary &
operator, *k&E is a function designator or an lvalue equal to E. If *P is an lvalue and T is the name of
an object pointer type, * (T) P is an lvalue that has a type compatible with that to which T points.
Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an
address inappropriately aligned for the type of object pointed to, and the address of an automatic storage
duration object when execution of the block with which the object is associated has terminated.

43 When appl ied to a parameter declared to have array or function type, the sizeof operator yields the
size of the poi nter obtained by converting as in 6.2.2.1; see 6.7.1.

44 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

The value of the result is implementation-defined, and its type (an unsigned integral type) is
size t defined in the <stddef. h> header.

Examples

1. A principal use of the sizeof operator is in communication with routines such as storage
allocators and I/O systems. A storage-allocation function might accept a size (in bytes) of
an object to allocate and return a pointer to void. For example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The implementation of the allot function should ensure that its return value is aligned
suitably for conversion to a pointer to double.

2. Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[O]

Forward references: common definitions <stddef . h> (7.1.6), declarations (6.5), structure and
union specifiers (6.5.2. l), type names (6.5.5).

6.3.4 Cast operators
Syntax

cast-expression..
unary-expression
(type-name) cast-expression

Constraints

Unless the type name specifies void type, the type name shall specify qualified or unqualified
scalar type and the operand shall have scalar type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to
the named type. This construction is called a cast.44 A cast that specifies no conversion has no
effect on the type or value of an expression.

Conversions that involve pointers (other than as permitted by the constraints of 6.3.16.1) shall
be specified by means of an explicit cast; they have implementation-defined and undefined
aspects:

A pointer may be converted to an integral type. The size of integer required and the result
are implementation-defined. If the space provided is not long enough, the behavior is
undefined.

An arbitrary integer may be converted to a pointer. The result is implementation-
defined.45

A pointer to an object or incomplete type may be converted to a pointer to a different
object type or a different incomplete type. The resulting pointer might not be valid if it is
improperly aligned for the type pointed to. It is guaranteed, however, that a pointer to an
object of a given alignment may be converted to a pointer to an object of the same

44 A cast does not yield an lvalue. Thus, a cast to a qualified type has the same effect as a cast to the
unqualified version of the type.

45 The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be
consistent with the addressing structure of the execution environment.

Language 45

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

alignment or a less strict al gnment and back again; the result shall compare equal to the
original pointer. (An object that has character type has the least strict alignment .)

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function that has a type that is not compatible with the type of the
called function, the behavior is undefined.

Forward references: equality operators (6.3.9), function declarators (including prototypes)
(6.5.4.3), simple assignment (6.3.16. l), type names (6.5.5).

6.3.5 Multiplicative operators
Syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints

Each of the
integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

operands shall have arithmeti .c type. The operands of the % operator shall have

The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the
second; the result of the % operator is the remainder. In both operations, if the value of the
second operand is zero, the behavior is undefined.

When integers are divided and the division is inexact, if both operands are positive the result
of the / operator is the largest integer less than the algebraic quotient and the result of the %
operator is positive. If either operand is negative, whether the result of the / operator is the
largest integer less than or equal to the algebraic quotient or the smallest integer greater than or
equal to the algebraic quotient is implementation-defined, as is the sign of the result of the %
operator. If the quotient a/b is representable, the expression (a/b) *b + a%b shall equal a.

6.3.6 Additive operators

additive-expression.*
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be
pointer to an object type and the other shall have integral type. (Incrementing is equivalent
adding 1.)

For subtraction, one of the following shall hold:

both operands have arithmetic type;

a
to

- both operands are pointers to qualified or unqualified versions of compatible object types; or

46 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

- the left operand
(Decrementing is

is a pointer
equivalent to

to an object type and the right
subtracting 1.)

operand has integral type*

Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performed on
them.

The result of the binary + operator is the sum of the operands.

The result of the binary -
second operand from the first.

operator is the difference resulting from the subtraction of the

For the purposes of these operators, a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of the object as its element
type*

When an expression that has integral type is added to or subtracted from a pointer, the result
has the type of the pointer operand. If the pointer operand points to an element of an array
object, and the array is large enough, the result points to an element offset from the original
element such that the difference of the subscripts of the resulting and original array elements
equals the integral expression. In other words, if the expression P points to the i-th element of
an array object, the expressions (P) +N (equivalently, N+ (P)) and (P) -N (where N has the
value n) point to, respectively, the i+n -th and i-n-th elements of the array object, provided they
exist. Moreover, if the expression P points to the last element of an array object, the expression
(P) +l points one past the last element of the array object, and if the expression Q points one

past the last element of an array object, the expression (Q) -1 points to the last element of the
array object. If both the pointer operand and the result point to elements of the same array
object, or one past the last element of the array object, the evaluation shall not produce an
overflow; otherwise, the behavior is undefined. Unless both the pointer operand and the result
point to elements of the same array object, or the pointer operand points one past the last element
of an array object and the result points to an element of the same array object, the behavior is
undefined if the result is used as an operand of the unary * operator.

When two pointers to elements of the same array object are subtracted, the result is the
difference of the subscripts of the two array elements. The size of the result is implementation-
defined, and its type (a signed integral type) is ptrdif f t defined in the <stddef . h> header.
As with any other arithmetic overflow, if the result does not fit in the space provided, the
behavior is undefined. In other words, if the expressions P and Q point to, respectively, the i-th
and j-th elements of an array object, the expression (P) - (Q) has the value i-j provided the
value fits in an object of type ptrdiff-t. Moreover, if the expression P points either to an
element of an array object or one past the last element of an array object, and the expression Q
points to the last element of the same array object, the expression ((Q) +l) - (P) has the same
value as ((Q) - (P)) +l and as - ((P) - ((Q) +l)) , and has the value zero if the expression P
points one past the last element of the array object, even though the expression (Q) +l does not
point to an element of the array object. Unless both pointers point to elements of the same array
object, or one past the last element of the array object, the behavior is undefined.46

46 Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In
this scheme the integral expression added to or subtracted from the converted pointer is first multiplied
by the size of the object originally pointed to, and the resulting pointer is converted back to the original
type. For pointer subtraction, the result of the difference between the character pointers is similarly
divided by the size of the object originally pointed to.
When viewed in this way, an implementation need only provide one extra byte (which may overlap
another object in the program) just after the end of the object in order to satisfy the “one past the last
element” requirements.

Language 47

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Forward references: common definitions <stddef . h> (7.1.6).

6.3.7 Bitwise shift operators
Syntax

shift-expression.*
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Constraints

Each of the operands shall have integral type.

Semantics

The integral promotions are performed on each of the operands. The type of the result is that
of the promoted left operand. If the value of the right operand is negative or is greater than or
equal to the width in bits of the promoted left operand, the behavior is undefined.

The result of El << E2 is El left-shifted E2 bit positions; vacated bits are filled with zeros.
If El has an unsigned type, the value of the result is El multiplied by the quantity, 2 raised to
the power E2, reduced modulo ULONG MAX+1 if El has type unsignedlong,UINT MAX+1
otherwise. (The constants ULONGkAX and UINT MAX are defined in the- header
<limits.h>.)

The result of El >> E2 is El right-shifted E2 bit positions. If El has an unsigned type or if
El has a signed type and a nonnegative value, the value of the result is the integral part of the
quotient of El divided by the quantity, 2 raised to the power E2. If El has a signed type and a
negative value, the resulting value is implementation-defined.

6.3.8 Relational operators
Syntax

relational-expression.*
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints

One of the following shall hold:

- both operands have arithmetic type;

- both operands are pointers to qualified or unqualified versions of compatible object types; or

- both operands are pointers to qualified or unqualified versions of compatible incomplete types.

Semantics

If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of the object as its element
type*

When two pointers are compared, the result depends on the relative locations in the address
space of the objects pointed to. If the objects pointed to are members of the same aggregate
object, pointers to structure members declared later compare higher than pointers to members
declared earlier in the structure, and pointers to array elements with larger subscript values

48 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

compare higher than pointers to elements of -the same array with lower subscript values. All
pointers to members of the same union object compare equal. If the objects pointed to are not
members of the same aggregate or union object, the result is undefined, with the following
exception. If the expression P points to an element of an array object and the expression Q
points to the last element of the same array object, the pointer expression Q+l compares higher
than P, even though Q+l does not point to an element of the array object.

If two pointers to object or incomplete types both point to the same object, or both point one
past the last element of the same array object, they compare equal. If two pointers to object or
incomplete types compare equal, both point to the same object, or both point one past the last
element of the same array object.47

Each of the operators < (less than), > (greater than), <= (less than or equal to), and >=
(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it is false.48 The
result has type int.

6.3.9 Equality operators
Syntax

equality-expression.*
relational-expression
equality-expression == relational-expression
equality-expression ! = relational-expression

Constraints

One of the following shall hold:

- both operands have arithmetic type;

- both operands are pointers to qualified or unqualified versions of compatible types;

- one operand is a pointer to an object or
qua1 ified or unqual ified version of void; or

ncomplete type and the other is a pointer to a

- one operand is a pointer and the other is a null pointer constant.

Semantics

The == (equal to) and the ! = (not equal to) operators are analogous to the relational
operators except for their lower precedence.49 Where the operands have types and values suitable
for the relational operators, the semantics detailed in 6.3.8 apply.

If two pointers to object or incomplete types are both null pointers, they compare equal. If
two pointers to object or incomplete types compare equal, they both are null pointers, or both
point to the same object, or both point one past the last element of the same array object. If two
pointers to function types are both null pointers or both point to the same function, they compare
equal. If two pointers to function types compare equal, either both are null pointers, or both
point to the same function. If one of the operands is a pointer to an object or incomplete type
and the other has type pointer to a qualified or unqualified version of void, the pointer to an
object or incomplete type is converted to the type of the other operand.

47 If invalid prior pointer operations, such
the effect of subsequent comparisons is

48

as accesses outside
undefined.

The expression a<b<c is not interpreted as in ordinary
(a<b) <c; in other words, ‘ ‘if a is less than b compare

array bounds, produced undefined behavior,

mathematics. As
1 to c; otherwise,

the syntax indicates,
compare 0 to c.”

it means

49 Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

Language 49

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.3.10 Bitwise AND operator
Syntax

AND-expression:
equality-expression
AND-expression & equality-expression

Constraints

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the
result is set if and only if each of the corresponding bits in the converted operands is set).

6.3.11 Bitwise exclusive OR operator

exclusive-OR-expression:
AND-expression
exclusive-OR-expression h AND-expression

Constraints

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the A operator is the bitwise exclusive OR of the operands (that is, each bit in
the result is set if and only if exactly one of the corresponding bits in the converted operands is
set).

6.3.12 Bitwise inclusive OR operator

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression 1 exclusive-OR-expression

Constraints

Each of the operands shall have integral type*

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the 1 operator is the bitwise inclusive OR of the operands (that is, each bit in
the result is set if and only if at least one of the corresponding bits in the converted operands is
set).

50 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.3.13 Logical AND operator
Syntax

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression & & inclusive-OR-expression

Constraints

Each of the operands shall have scalar type.

Semantics

The && operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it
yields 0. The result has type int.

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; there
is a sequence point after the evaluation of the first operand. If the first operand compares equal
to 0, the second operand is not evaluated.

6.3.14 Logical OR operator
Syntax

logical-OR-expression:
logical-AND-expression
logical-OR-expression 1 1 logical-AND-expression

Constraints

Each of the operands shall have scalar type.

Semantics

The 1 1 operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it
yields 0. The result has type int.

Unlike the bitwise 1 operator, the 1 1 operator guarantees left-to-right evaluation; there is a
sequence point after the evaluation of the first operand. If the first operand compares unequal to
0, the second operand is not evaluated.

6.3.15 Conditional operator
Syntax

conditional-expression.*
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints

The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

- both operands have arithmetic type;

- both operands have compatible structure or union types;

- both operands have void type;

- both operands are pointers to qualified or unqualified versions of compatible types;

- one operand is a pointer and the other is a null pointer constant; or

- one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version of void.

Language 51

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Semantics

The first operand is evaluated; there is a sequence point after its evaluation. The second
operand is evaluated only if the first compares unequal to 0; the third operand is evaluated only if
the first compares equal to 0; the value of the second or third operand (whichever is evaluated) is
the result?’

If both the second and third operands have arithmetic type, the usual arithmetic conversions
are performed to bring them to a common type and the result has that type. If both the operands
have structure or union type, the result has that type. If both operands have void type, the result
has void type.

If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the
types pointed-to by both operands. Furthermore, if both operands are pointers to compatible
types or differently qualified versions of a compatible type, the result has the composite type; if
one operand is a null pointer constant, the result has the type of the other operand; otherwise, one
operand is a pointer to void or a qualified version of void, in which case the other operand is
converted to type pointer to void, and the result has that type.

The common type that results when the second and third operands are pointers is determined
in two independent stages. The appropriate qualifiers, for example, do not depend on whether the
two pointers have compatible types.

Given the declarations

const void *kc vp;
void *vp;
const int *c ip;
volatile int -*
int *ip;
const char *cc cp; -

the third column in the following table is the common type that is the result of a conditional
expression in which the first two columns are the second and third operands (in either order):

c-v CDiP const void *
v-ip 0 volatile int *
C_iP v ip const volatile int *
VP c:cP const void *
iP c-iP const int *
VP iP void *

50 A conditional expression does not yield an lvalue.

52 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Assignment operators
Syntax

assignment-expression.*
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *Ar= /= %= += -= <<= >>= &= *= I=

Constraints

An assignment operator shall have a modifiable lvalue as its left operand.

Semantics

An assignment operator stores a value in the object designated by the left operand. An
assignment expression has the value of the left operand after the assignment, but is not an lvalue.
The type of an assignment expression is the type of the left operand unless the left operand has
qualified type, in which case it is the unqualified version of the type of the left operand. The
side effect of updating the stored value of the left operand shall occur between the previous and
the next sequence point.

The order of evaluation of the operands is unspecified.

6.3.16.1 Simple assignment

Constraints

One of the following shall hold:51

- the left operand has qualified or unqualified arithmetic type and the right has arithmetic type;

- the left operand has a qualified or unqualified version of a structure or union type compatible
with the type of the right;

- both operands are pointers to qualified or unqualified versions of compatible types, and the
type pointed to by the left has all the qualifiers of the type pointed to by the right;

- one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version of void, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right; or

- the left operand is a pointer and the right is a null pointer constant.

Semantics

In simple assignment (=), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left operand.

If the value being stored in an object is accessed from another object that overlaps in any way
the storage of the first object, then the overlap shall be exact and the two objects shall have
qualified or unqualified versions of a compatible type; otherwise, the behavior is undefined.

51 The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion
(specified in 6.2.2.1) that changes lvalues to “the value of the expression” which removes any type
qualifiers from the type category of the expression.

Language 53

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Example

In the program fragment

int f(void);
char c;
/* . . . */
/*. . . */ ((c = f()) == -1) /*...*/

the int value returned by the function may be truncated when stored in the char, and then
converted back to int width prior to the comparison. In an implementation in which “plain”
char has the same range of values as unsigned char (and char is narrower than int), the
result of the conversion cannot be negative, so the operands of the comparison can never compare
equal. Therefore, for full portability, the variable c should be declared as int.

6.3.16.2 Compound assignment

Constraints

For the operators += and -= only, either the left operand shall be a pointer to an object type
and the right shall have integral type, or the left operand shall have qualified or unqualified
arithmetic type and the right shall have arithmetic type.

For the other operators, each operand shall have arithmetic type consistent with those allowed
the corresponding binary operator. bY

Semantics

A compound assignment of the form El op= E2 differs from the simple assignment
expression El = El op (E2) only in that the lvalue El is evaluated only once.

6.3.17 Comma operator
Syntax

expression:
assignment-expression
expression , assignment-expression

Semantics

poi
The left operand of a comma operator is eva luated as a void expression .; there i

nt after its evaluation. Then the right operand is evaluated; the result has its type
sa
and

sequence
value?*

As indicated by the syntax, in contexts where a comma is a punctuator (in lists of arguments
to functions and lists of initializers) the comma operator as described in this subclause cannot
appear. On the other hand, it can be used within a parenthesized expression or within the second .
expression of a conditional operator in such contexts. In the function call

f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.5.7).

52 A comma operator does not yield an lvalue.

54 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.4 Constant expressions
Syntax

constant-expression.*
conditional-expression

Description

A constant expression
accordingly may be used in

Constraints

can be
any place

evaluated during translation
that a constant may be.

rather than runtime, and

Constant expressions shall not contain assignment, increment, decrement, function-call, -^ or
comma operators, except when they are contained within the operand of a sizeof operator?

Each constant expression shall evaluate to a constant that is in the range of representable
values for its type.

Semantics

An expression that evaluates to a constant is required in several contexts.“4 If a floating
expression is evaluated in the translation environment, the arithmetic precision and range shall be
at least as great as if the expression were being evaluated in the execution environment.

An integral constant expression shall have integral type and shall only have operands that are
integer constants, enumeration constants, character constants, sizeof expressions, and floating
constants that are the immediate operands of casts. Cast operators in an integral constant
expression shall only convert arithmetic types to integral types, except as part of an operand to
the sizeof operator.

More latit ude is permitted for constant express
shall eval uate to one of the fo llow ing:

ions in initializers. Such a constant expression

- an arithmetic constant expression,

- a null pointer constant,

- an address constant, or

- an address constant for an object type plus or minus an integral constant expression.

An arithmetic constant expression shall have arithmetic type and shall only have operands
that are integer constants, floating constants, enumeration constants, character constants, and
sizeof expressions. Cast operators in an arithmetic constant expression shall only convert
arithmetic types to arithmetic types, except as part of an operand to the sizeof operator.

An address constant is a pointer to an lvalue designating an object of static storage duration,
or to a function designator; it shall be created explicitly, using the unary & operator, or implicitly,
by the use of an expression of array or function type. The array-subscript [] and member-access

and -> operators, the address & and indirection * unary operators, and pointer casts may be
used in the creation of an address constant, but the value of an object shall not be accessed by
use of these operators.

53 The operand of a sizeof operator is not evaluated (6.3.3.4), and thus any operator in 6.3 may be used.
54 An integral constant expression must be used to specify the size of a bit-field member of a structure, the

value of an enumeration constant, the size of an array, or the value of a case constant. Further
constraints that apply to the integral constant expressions used in conditional-inclusion preprocessing
directives are discussed in 6.8.1.

Language 55

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.55

Forward references: initialization (6.5.7).

55 Thus, in the following initialization,

static int i = 2 11 1 / 0;
the expression is a valid integral constant expression with value one.

56 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISOjIEC 9899: 1990 (E)

6.5 Declarations

declaration:
declaration-specifiers init-declarator-list opt ;

declaration-specifiers:
storage-class-specifier declaration-specifiers
type-specifier declaration-specifiersopt opt

type-qualifier declaration-specifiersopt

init-declarator-list:
init-declaratoj
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Constraints

A declaration shall declare at least a declarator, a tag, or the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier (in
a declarator or type specifier) with the same scope and in the same name space, except for tags as
specified in 6.5.2.3.

All declarations in the same scope that refer to the same object or function shall specify
compatible types.

Semantics

A declaration specifies the interpretation and attributes of a set of identifiers. A declaration
that also causes storage to be reserved for an object or function named by an identifier is a
definition .56

The declaration specifiers consist of a sequence of specifiers that indicate the linkage, storage
duration, and part of the type of the entities that the declarators denote. The init-declarator-list is
a comma-separated sequence of declarators, each of which may have additional type information,
or an initializer, or both. The declarators contain the identifiers (if any) being declared.

If an identifier for an object is declared with no linkage, the type for the object shall be
complete by the end of its declarator, or by the end of its init-declarator if it has an initializer.

Forward references: declarators (6.5.4), enumeration specifiers (6.5.2.2), initialization (6.5.7),
tags (6.5.2.3).

56 Function definitions have a different syntax, described in 6.7.1.

Language 57

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.5.1 Storage-class specifiers
Syntax

storage-class-specifier:
typedef
extern
static
auto
register

Constraints

At most,
declaration.57

one storage-class specifier may be given in the declaration specifiers in a

Semantics

The typedef specifier is called a “storage-class specifier” for syntactic convenience only; it
is discussed in 6.5.6. The meanings of the various linkages and storage durations were discussed
in 6.1.2.2 and 6.1.2.4.

A declaration of an identifier for an object with storage-class specifier register suggests
that access to the object be as fast as possible. The extent to which such suggestions are
effective is implementation-defined.58

function that has block scope shall have no explicit The declaration of an identifier for a
storage-class specifier other than extern.

Forward references: type definitions (6.5.6).

6.5.2 Type specifiers

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

57 See “future language directions” (6.9.3).
58 The implementation may treat any register declaration simply as an auto declaration. However,

whether or not addressable storage is actually used, the address of any part of an object declared with
storage-class specifier register may not be computed, either explicitly (by use of the unary &
operator as discussed in 6.3.3.2) or implicitly (by converting an array name to a pointer as discussed in
6.2.2.1). Thus the only operator that can be applied to an array declared with storage-class specifier
register is sizeof.

58 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Constraints

Each list of type specifiers shall be one of the following sets (delimited by commas, when
there is more than one set on a line); the type specifiers may occur in any order, possibly
intermixed with the other declaration specifiers.

- void

- char

- signedchar

- unsignedchar

- short,signedshort,short int, or signedshort int

- unsignedshort, or unsignedshort int

- int, signed, signed int, or no type specifiers

- unsigned, or unsignedint

- long,signedlong,longint, or signedlongint

- unsignedlong, or unsignedlongint

- float

- double

- longdouble

- struct-or-union specifier

- enum-specifier

- typedef-name

Semantics

Specifiers for structures, unions, and enumerations are discussed in 6.5.2.1 through 6.5.2.3.
Declarations of typedef names are discussed in 6.5.6. The characteristics of the other types are
discussed in 6.1.2.5.

Each of the above comma-separated sets designates the same
the type signedint (or signed) may differ from int (or no

type, except th .at for bit-fields,
type specifiers).

Forward references: enumeration specifiers (6.5.2.2), structure and union specifiers (6.5.2. l),
tags (6.5.2.3), type definitions (6.5.6).

6.5.2.1 Structure and union specifiers

Syntax

struct-or-union-speci>er:
struct-or-union identifier
struct-or-union identifier

opt { struct-declaration-list)

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

Language 59

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier specifier-qualifier-listOPt
type-qualifier specifier-qualifier-list~jPt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declarator

opt
: constant-expression

Constraints

A structure or union shall not contain a member with incomplete or funct
shall not contain an instance of itself (but may contain a pointer to an

.ion type. Hence it
of itself). instance

The expression that specifies the width of a bit-field shall be an integral constant expression
that has nonnegative value that shall not exceed the number of bits in an ordinary object of
compatible type. If the value is zero, the declaration shall have no declarator.

Semantics

As discussed in 6.1.2.5, a structure is a type consisting of a sequence of named members,
whose storage is allocated in an ordered sequence, and a union is a type consisting of a sequence
of named members, whose storage overlap.

Structure and union specifiers have the same form.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a translation unit. The struct-declaration-list is a sequence of declarations for the members
of the structure or union. If the struct-declaration-list contains no named members, the behavior
is undefined. The type is incomplete until after the } that terminates the list.

A member of a structure or union may have any object type. In addition, a member may be
declared to consist of a specified number of bits (including a sign bit, if any). Such a member is
called a bit-field ;59 its width is preceded by a colon.

A bit-field shall have a type that is a qualified or unqualified version of one of int,
unsignedint, or signedint. Whether the high-order bit position of a (possibly qualified)
“plain” int bit-field is treated as a sign bit is implementation-defined. A bit-field is interpreted
as an integral type consisting of the specified number of bits.

An implementation may allocate any addressable storage unit large enough to hold a bit-field.
If enough space remains, a bit-field that immediately follows another bit-field in a structure shall
be packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field
that does not fit is put into the next unit or overlaps adjacent units is implementation-defined.
The order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-
order) is implementation-defined. The alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field. 6o As a specia 1 case of this, a bit-field structure member with a width of 0 indicates that

59 The unary & (address-of) operator may not be applied to a bit-field object; thus, there are no pointers to
or arrays of bit-field objects.

60 An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

60 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

no further bit-field is to be packed into the unit in which the previous bit-field, if any, was
placed.

Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields reside
have addresses that increase in the order in which they are declared. A pointer to a structure
object, suitably converted, points to its initial member (or if that member is a bit-field, then to the
unit in which it resides), and vice versa. There may therefore be unnamed padding within a
structure object, but not at its beginning, as necessary to achieve the appropriate alignment.

The size of a union is sufficient to contain the largest of its members. The value of at most
one of the members can be stored in a union object at any time. A pointer to a union object,
suitably converted, points to each of its members (or if a member is a bit-field, then to the unit in
which it resides), and vice versa.

There may also be unnamed padding at the end of a structure or union, as necessary
achieve the appropriate alignment were the structure or union to be an element of an array.

Forward references: tags (6.5.2.3).

6.5.2.2 Enumeration specifiers

enum-specifier:
enum identifier

opt
{ enumerator-list)

enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator.*
enumeration-constant
enumeration-constant = constant-expression

Constraints

The expression that defines the value of an enumeration
expression that has a value representable as an int.

constant shall be an integral constant

Semantics

The identifiers in an enumerator list are declared as constants that have type int and may
appear wherever such are permitted? An enumerator with = defines its enumeration constant as
the value of the constant expression. If the first enumerator has no =, the value of its
enumeration constant is 0. Each subsequent enumerator with no = defines its enumeration
constant as the value of the constant expression obtained by adding 1 to the value of the previous
enumeration constant. (The use of enumerators with = may produce enumeration constants with
values that duplicate other values in the same enumeration.) The enumerators of an enumeration
are also known as its members.

Each enumerated type shall be compatible with an integer type; the choice of type is
implemen tation-defined.

61 Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from each
other and from other identifiers declared in ordinary declarators.

Language 61

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Example

enum hue { chartreuse, burgundy, claret=20, winedark };
/* . . . */
enum hue col, *cp;
/*...*/
co1 = claret;
cP = &col;
/* . . . */
/*. . . */ ("cp != burgundy) /*...*/

makes hue the tag of an enumeration, and then declares co1 as an object that has that type and
cp as a pointer to an object that has that type. The enumerated values are in the set { 0, 1, 20,
211 .

Forward references: tags (6.5.2.3).

6.5.2.3 Tags

Semantics

A type specifier of the form

struct-or-union identifier (struct-declaration-list)

enum identifier { enumerator-list }

declares the identifier to be the tag of the structure, union, or enumeration specified by the list.
The list defines the structure content, union content, or enumeration content. If this declaration
of the tag is visible, a subsequent declaration that uses the tag and that omits the bracketed list
specifies the declared structure, union, or enumerated type. Subsequent declarations in the same
scope shall omit the bracketed list.

If a type specifier of the form

struct-or-union identifiel

occurs prior to the declaration that defines the content, the structure or union is an incomplete
type?* It declares a tag that specifies a type that may be used only when the size of an object of
the specified type is not needed.63 If the type is to be completed, another declaration of the tag
in the same scope (but not in an enclosed block, which declares a new type known only within
that block) shall define the content. A declaration of the form

struct-or-union iden tijier ;

specifies a structure or union type and declares a tag, both visible only within the scope in which
the declaration occurs. It specifies a new type distinct from any type with the same tag in an
enclosing scope (if any).

A type of the form

62 A similar construction w ith enum does not exist and is not necessary as there
dependencies between the declaration of an enumerated type and any other type*

can be no mutual

63 It is not needed, for example, when a typedef name is declared to be a specifier for a structure or union,
or when a pointer to or a function returning a structure or union is being declared. (See incomplete
types in 6.1.2.5.) The specification shall be complete before such a function is called or defined.

62 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

struct-or-union (struct-declaration-list)

enum (enumerator-list)

specifies a new structure, union, or enumerated type, within the translation unit, that can only be
referred to by the declaration of which it is a part.64

Examples

1.

2.

This mechanism allows declaration of a self-referential structure.

struct tnode {
int count;
struct tnode *left, *right;

1 ;

specifies a structure that contains an integer and two pointers to objects of the same type.
Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object of the
given type. With these declarations, the expression sp->left refers to the left struct
tnode pointer of the object to which sp points; the expression s.right->count
designates the count member of the right struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

typedef struct tnode TNODE;
struct tnode {

int count;
TNODE *left, *right;

1 .
&ODE S, *SP;

To illustrate the use of prior declaration of a tag to specify a pair of mutually
structures, the declarations

referential

struct sl (struct s2 *s2p; /*...*/ }; /* Dl */
struct s2 (struct sl *sip; /*...*/ }; /* D2 */

specify a pair of structures that contain pointers to each other. Note, however, that if s2
were already declared as a tag in an enclosing scope, the declaration Dl would refer to it,
not to the tag s2 declared in D2. To eliminate this context sensitivity, the declaration

struct s2;

may be inserted ahead of Dl. This declares a new tag s2 in the inner scope; the
declaration D2 then completes the specification of the new type.

Forward references: type definitions (6.5.6).

64 Of course, when the declaration is of a typedef name, subsequent declarations can m
typedef name to declare objects having the specified strut ture, union, or enumerated type.

ake use of the

Language 63

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.53 Type qualifiers
Syntax

type-qualifier:
const.
volatile

Constraints

The same type qualifier shall not appear more
list, either directly or via one or more typedefs.

than once in the same specifier list or qualifier

Semantics

The properties associated with qualified types are meaningful only for expressions that are
lvalues l 5

If an attempt is made to modify an object defined with a const-qualified type through use of
an lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer
to an object defined with a volatile-qualified type through use of an lvalue with non-volatile-
qualified type, the behavior is undefined?

An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring to such
an object shall be evaluated strictly according to the rules of the abstract machine, as described in
5.1.2.3. Furthermore, at every sequence point the value last stored in the object shall agree with
that prescribed by the abstract machine, except as modified by the unknown factors mentioned
previously.67 What constitutes an access to an object that has volatile-qualified type is
implementation-defined.

If the specification of an array type includes any type qualifiers, the element type is so-
qualified, not the array type. If the specification of a function type includes any type qualifiers,
the behavior is undefined?

For two qualified types to be compatible, both shall have the identically qualified version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect
the specified type.

Examples

1. An object declared

extern const volatile int real time clock; - -
may be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

2. The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type:

65 The implementation may place a const object that is not volatile in a read-only region of storage.
Moreover, the implementation need not allocate storage for such an object if its address is never used.

66 This applies to those objects that behave as if they were defined with qualified types, even if they are
never actually defined as objects in the program (such as an object at a memory-mapped input/output
address).

67 A volatile declaration may be used to describe an object corresponding to a memory-mapped
input/output port or an object accessed by an asynchronously interrupting function. Actions on objects
so declared shall not be “optimized out” by an implementation or reordered except as permitted by the
rules for evaluating expressions.

68 Both of these can only occur through the use of typedefs.

64 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

const struct s { int mem;) cs = { 1 };
struct s ncs; /* the object ncs is modifiable */
typedef int A[2][3];
const A a = ((4, 5, 6), (7, 8, 9)); /*arrayofarrayofconst int */
int *pi;
const int *pci;

ncs = cs; /* valid */
cs = ncs; / * violates modtfiahle lvalue constraint for = */
Pi = &ncs.mem; /* valid */
Pi = &cs.mem; /* violates type constraints for = */
pci = &cs.mem; /* valid */
Pi = a[O]; /* invalid: a[O] has type “const int *" */

6.54 Declarators
Syntax

declarator:
pointer

opt
direct-declarator

direct-declarator:
identifier
(declarator)

direct-declarator [
direct-declarator (
direct-declarator (

constant-expression]
opt

parameter-type-list)
identifier-list)

opt
pointer:

* type-qualifier-listoPt
* type-qualifier-listoPt pointer

type-qualifier-list:
type-qualzfier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , . . .

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator

opt
identifier-list:

identifier
identifier-list , identifier

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as
the declarator appears in an expression, it designates a function or object with the scope, storage
duration, and type indicated by the declaration specifiers.

In the following subclauses, consider a declaration

T Dl

Language 65

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

where T contains the declaration specifiers that specify a type T (such as int) and Dl is a
declarator that contains an identifier ident. The type specified for the identifier ident in the
various forms of declarator is described inductively using this notation.

If, in the declaration “T Dl," Dl has the form

identifier

then the type specified for ident is T.

If, in the declaration "T Dl," Dl has the form

(D)
then ident has the type specified by the declaration “T D." Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complex declarators may be altered
by parentheses.

Implementation limits

The implementation shall allow the specification of types that have at least 12 pointer, array,
and function declarators (in any valid combinations) modifying an arithmetic, a structure, a union,
or an incomplete type, either directly or via one or more typedefs.

Forward references: type definitions (6.5.6).

6.5.4.1 Pointer declarators

Semantics

If, in the declaration ‘ ‘T Dl, " Dl has the form

* type-qualifier-listopt D

and the type specified for ident in the declaration “T D" is “derived-declarator-type-list T,’ ’
then the type specified for ident is “derived-declarator-type-list type-qualifier-list pointer to T.”
For each type qualifier in the list, ident is a so-qualified pointer.

For two pointer types to
pointers to compatible types.

Example

a
The following pair of declarations demonstrates the difference

constant value” and a “constant pointer to a variable value.”

be compatible, both shall be identically qualified and both shall be

between a “variable pointer to

const int *ptr to constant;
int *const co&a%gtr;

The contents of an object pointed to by pt r to constant shall not be modified through that
pointer, but ptr to constant itself maybechanged to point to another object. Similarly, -
the contents of the int pointed to by constant_ptr may be modified, but constantptr
itself shall always point to the same location.

The declaration of the constant pointer constant_ptr may be clarified by including a
definition for the type “pointer to int."

typedef int *intptr;
const int_ptr constantJtr;

declares constantgtr as an object that has type ‘ ‘const-qualified pointer to int . ' '

66 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.5.4.2 Array declarators

Constraints

The expression delimited by [and] (which specifies the size of an array) shall be an integral
constant expression that has a value greater than zero.

Semantics

If, in the declaration “T Dl,” Dl has the form

D [constant-expression
opt

]

and the type specified for ident in the declaration “T D" is ’ ‘derived-declarator-type-list T ,’ ’
then the type specified for ident is “derived-declarator-type-list array of T.“69 If the size is not
present, the array type is an incomplete type.

For two array types to be compatible, both shall have
size specifiers are present, they shall have the same value.

compatible element types, and if both

Examples

1. float fa[ll], *afp[l7];

declares an array of float numbers and an array of pointers to float numbers.

2. Note the distinction between the declarations

extern int *x;
extern int y[];

The first declares x to be a pointer to
unspecified size (an incomplete type),

int; the second declares y
the storage for which is defi ned elsewhere.

to be an array of int of

Forward references: function definitions (6.7. l), initialization (6.5.7).

6.5.4.3 Function declarators (including prototypes)

Constraints

A function declarator shall not specify a return type that is a function type or an array type.

The only storage-class specifier that shall occur in a parameter declaration is register.

An identifier list in a function declarator that is not part of a function definition shall be
empty.

Semantics

If, in the declaration "T Dl,” Dl has the form

D (parameter-type-list)
or

D (identifier-list
opt

)

and the type specified for ident in the declaration "T D” is “derived-declarator-type-list T,”
then the type specified for ident is ‘ ‘derived-declarator-type-list function returning T. ’ ’

A parameter type list specifies the types of, and may declare identifiers for, the parameters of
the function. If the list terminates with an ellipsis (, . . .), no information about the number or
types of the parameters after the comma is supplied.70 The special case of void as the only

69 When several “array of” specifications are adjacent, a multidimensional array is declared.
70 The macros defined in the <stdarg . h> header (7.8) may be used to access arguments that correspond

to the ellipsis.

Language 67

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

item in the list specifies that the function has no parameters.

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract
declarator that specifies a function with a single parameter, not as redundant parentheses around
the identifier for a declarator.

The storage-class specifier in the declaration specifiers for a parameter declaration, if present,
is ignored unless the declared parameter is one of the members of the parameter type list for a
function definition.

An identifier list declares only the identifiers of the parameters of the function. An empty list
in a function declarator that is part of a function definition specifies that the function has no
parameters. The empty list in a function declarator that is not part of a function definition
specifies that no information about the number or types of the parameters is supplied.71

For two function types to be compatible, both shall specify compatible return types.‘L
Moreover, the parameter type lists, if both are present, shall agree in the number of parameters
and in use of the ellipsis terminator; corresponding parameters shall have compatible types. If
one type has a parameter type list and the other type is specified by a function declarator that is
not part of a function definition and that contains an empty identifier list, the parameter list shall
not have an ellipsis terminator and the type of each parameter shall be compatible with the type
that results from the application of the default argument promotions. If one type has a parameter
type list and the other type is specified by a function definition that contains a (possibly empty)
identifier list, both shall agree in the number of parameters, and the type of each prototype
parameter shall be compatible with the type that results from the application of the default
argument promotions to the type of the corresponding identifier. (For each parameter declared
with function or array type, its type for these comparisons is the one that results from conversion
to a pointer type, as in 6.7.1. For each parameter declared with qualified type, its type for these
comparisons is the unqualified version of its declared type.)

Examples

1. The declaration

int f(void), *fip(), (*pfi) 0;

declares a function f with no parameters returning an int, a function f ip with no
parameter specification returning a pointer to an int, and a pointer pf i to a function with
no parameter specification returning an int. It is especially useful to compare the last
two. The binding of *f ip () is * (f ip ()) , so that the declaration suggests, and the
same construction in an expression requires, the calling of a function f ip, and then using
indirection through the pointer result to yield an int. In the declarator (*pf i) () , the
extra parentheses are necessary to indicate that indirection through a pointer to a function
yields a function designator, which is then used to call the function; it returns an int.

If the declaration occurs outside of any function, the identifiers have file scope and
external linkage. If the declaration occurs inside a function, the identifiers of the functions
f and fip have block scope and either internal or external linkage (depending on what file
scope declarations for these identifiers are visible), and the identifier of the pointer pf i has
block scope and no linkage.

2. The declaration

7 1 See “future language directions” (6.9.4).
72 If both function types are “old style,” parameter types are not compared.

68 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

int (*apfi[3])

declares an array apfi of
functions has two parameters
for descriptive purposes only

3. The declaration

int (*fpfi(int

(int fx, int *y);

three pointers to functions returning int. Each of these
that are pointers to int. The identifiers x and y are declared
and go out of scope at the end of the declaration of apf i.

(*)(long), int))(int, . ..).

declares a function fpf i that returns a pointer to a function returning an int. The
function fpfi has two parameters: a pointer to a function returning an int (with one
parameter of type long), and an int. The pointer returned by fpfi points to a function
that has one int parameter and accepts zero or more additional arguments of any type.

Forward references: function definitions (6.7. l), type names (6.5.5).

6.55 Type names
Syntax

type-name:
specifier-qualifier-list abstract-declarator

opt
abstract-declarator:

pointer
pointer direct-abstract-declarator

opt
direct-abstract-declarator:

(abstract-declarator)
direct-abstract-declarator
direct-abstract-declarator opt

[constant-expression]
(parameter-type-list opt

opt opt
)

Semantics

In several contexts, it is desired to specify a type. This is accomplished using a type name,
which is syntactically a declaration for a function or an object of that type that omits the
identifier.73

The constructions

(> a int
(b) int *
() C int *[3]
(4 int (*)[3]
(> e int *()
(0 int (*) (void)
(g) int (*const [])(unsigned int, . ..)

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to int, (d)
pointer to an array of three ints, (e) function with no parameter specification returning a pointer
to int, (f) pointer to function with no parameters returning an int, and (g) array of an
unspecified number of constant pointers to functions, each with one parameter that has type
unsigned int and an unspecified number of other parameters, returning an int.

73 As indicated by the syntax, empty parentheses in a type name are interpreted as “function
parameter specification,” rather than redundant parentheses around the omitted identifier.

with no

Language 69

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.5.6 Type definitions
Syntax

typedef-name:
identifiei

Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an
identifier to be a typedef name that specifies the type specified for the identifier in the way
described in 6.5.4. A typedef declaration does not introduce a new type, only a synonym for
the type so specified. That is, in the following declarations:

type ident is defined as a typedef name with the type specified by the declaration specifiers
in T (known as T), and the identifier in D has the type “derived-declarator-type-list T” where
the derived-declarator-type-list is specified by the declarators of D. A typedef name shares the
same name space as other identifiers declared in ordinary declarators. If the identifier is
redeclared in an inner scope or is declared as a member of a structure or union in the same or an
inner scope, the type specifiers shall not be omitted in the inner declaration.

Examples

1. After

typedef int MILES, KLICKSPO;
typedef struct (double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP *metricp;
complex x;
complex 2, *zp;

are all valid declarations. The type of distance is int, that of metricp is “pointer to
function with no parameter specification returning int," and that of x and z is the
specified structure; zp is a pointer to such a structure. The object distance has a type
compatible with any other int object.

2.

3.

After the declarations

typedef struct sl (int x; } tl, *tpl;
typedef struct s2 { int x; } t2, *tp2;

type tl and the type pointed to by tpl are compatible. Type tl is also compatible with
type struct sl, but not compatible with the types struct s2, t2, the type pointed to
by tp2, and int.

The following obscure constructions

declare a typedef name t with type signed int, a typedef name plain with type int,
and a s tructure w ith three bit-field members, one named t that contains val ues in the range

typedef signed int t;
typedef int plain;
struct tag {

unsigned t:4;
const t:5;
plain r:5;

1 ;

70 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

[0,15], an unnamed const-qualified bit-field which (if it could be accessed) would contain
values in at least the range [- 15,+15], and one named r that contains values in the range
[0,3 I] or values in at least the range [- 15,+15]. (The choice of range is implementation-
defined.) The first two bit-field declarations differ in that unsigned is a type specifier
(which forces t to be the name of a structure member), while const is a type qualifier
(which modifies t which is still visible as a typedef name). If these declarations are
followed in an inner scope by

t f(t (t));
long t;

then a function f is declared with type “function returning signed int with one
unnamed parameter with type pointer to function returning signed int with one
unnamed parameter with type signed int," and an identifier t with type long.

4. On the other hand, typedef names can be used to improve code readability. All three of the
following declarations of the signal function specify exactly the same type, the first
without making use of any typedef names.

typedef void fv(int), (*pfv) (int);

void (*signal(int, void (*) (int))) (int);
fv *signal(int, fv *);
pfv signal(int, pfv);

Forward references: the signal function (7.7.1.1).

6.5.7 Initialization
Syntax

initializer:
assignment-expression
{ initializer-list }
(initializer-list , }

initializer-list:
initialize]
initializer-list , initialize]

Constraints

There shall be no more initializers in an initializer list than there are objects to be initialized.

The type of the entity to be initialized shall be an object type or an array of unknown size.

All the expressions in an initializer for an object that has static storage duration or
union type shall be constant expressions. initializer list for an object that has aggregate or

If the declaration of an identifier has block
linkage, the declaration shall have no initializer

scope, and the i
for the identifier.

dentifier has external or internal

If an object that h as automati C storage
indeterminate.74 If an object that h as static

duration

Semantics

An initializer specifies the initial value stored in an object.

All unnamed structure or union members are ignored during initialization.

storage duration

in an

is not initialized explicitly, its value IS
is not initialized explicitly, it is

Language 71

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

if every member that has arithmetic type were assigned 0 and every
type were assigned a null pointer constant.

scalar shall be a single expression, optionally enclosed in braces. The

ISO/IEC 9899: 1990 (E)

initialized implicitly as
member that has pointer

The initializer for a

.

initial value of the object is that of the expression; the same type constraints and conversions as
for simple assignment apply, taking the type of the scalar to be the unqualified version of its
declared type.

A brace-enclosed initializer for a union object initializes the member that appears first in the
declaration list of the union type.

The initializer for a structure or union object that has automatic storage duration either shall
be an initializer list as described below, or shall be a single expression that has compatible
structure or union type. In the latter case, the initial value of the object is that of the expression.

The rest of this subclause deals with initializers for objects that have aggregate or union type.

An array of character type may be initialized by a character string literal, optionally enclosed
in braces. Successive characters of the character string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

An array with element type compatible with wchar t may be initialized by a wide string
literal, optionally enclosed in braces. Successive codes if the wide string literal (including the
terminating zero-valued code if there is room or if the array is of unknown size) initialize the
elements of the array.

Otherwise, the initializer for an object that has aggregate type shall be a brace-enclosed list of
initializers for the members of the aggregate, written in increasing subscript or member order; and
the initializer for an object that has union type shall be a brace-enclosed initializer for the first
member of the union.

If the aggregate contains members that are aggregates or unions, or if the first member of a
union is an aggregate or union, the rules apply recursively to the subaggregates or contained
unions. If the initializer of a subaggregate or contained union begins with a left brace, the
initializers enclosed by that brace and its matching right brace initialize the members of the
subaggregate or the first member of the contained union. Otherwise, only enough initializers
from the list are taken to account for the members of the subaggregate or the first member of the
contained union; any remaining initializers are left to initialize the next member of the aggregate
of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are members of an aggregate,
the remainder of the aggregate shall be initialized implicitly the same as objects that have static
storage duration.

If an array of unknown size is initialized, its size is determined by the number of initializers
provided for its elements. At the end of its initializer list, the array no longer has incomplete
type*

Examples

1. The declaration

int x[] = { 1, 3, 5 1;

defines and initializes x as a one-dimensional array object that has three elements, as no
size was specified and there are three initializers.

74 Unlike in the base document, any automatic duration object may be initialized.

72 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

2. The declaration

float y[4][3] = (
{ 1, 3, 5 1,
{ 2, 4, 6 1,
t 3, 5, 7 L

1 ;

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y
(the array object y[O]), namely y[O] [0], y[O] [l], and y[O] [2]. Likewise the next
two lines initialize y [1] and y [21. The initializer ends early, so y [31 is initialized with
zeros. Precisely the same effect could have been achieved by

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

1 ;

The i nitializer for y [0] does not begin with a left brace, so three items from the list are
used. Likewise the next three are taken s uccessively for Y Cl1 and y[2].

3. The declaration

float 2[4][3] = (
111, t 2 1, i 3)I t 4 1

1 ;

initializes the first column of z as specified and initializes the rest with zeros.

4. The declaration

struct { int a[3], b; } w[] = { { 1 1, 2 1;

is a definition with an inconsistently bracketed initialization. It defines an array with two
element structures: w [0] . a [0] is 1 and w [l] . a [0] is 2; all the other elements are zero.

5. The declaration

short q[4][3][2] = {
t 1 1,
{ 2, 3 1,
i 4, 5, 6 1

1 ;

contains an incompletely but consistently bracketed initialization. It defines a three-
dimensional array object: q[O] [0] [0] is 1, q[l] [0] [0] is 2, q[l] [0] [l] is 3, and
4, 5, and 6 initialize q[2] [0] [01, q[2] [0] [11, and q [2] [l] [01, respectively; all
the rest are zero. The initializer for q [0] [0] does not begin with a left brace, so up to
six items from the current list may be used. There is only one, so the values for the
remaining five elements are initialized with zero. Likewise, the initializers for q [l] [0]
and q [2] [0] do not begin with a left brace, so each uses up to six items, initializing their
respective two-dimensional subaggregates. If there had been more than six items in any of
the lists, a diagnostic message would have been issued. The same initialization result could
have been achieved by:

or by:

Language

short q[4][3][2] = (
1, 0, 0, 0, 0, 0,
2, 3, 0, 0, 0, 0,
4, 5, 6

1 ;

73

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

short q[4][3] [2] = {
i

i 1)I
1 I
{

{ 2, 3 1,
1 I
1

{ 4, 5 1,
t 6 1,

I
1 ;

in a fully bracketed form.

Note that the fully bracketed and minimally bracketed forms of initialization are, in
general, less likely to cause confusion.

6. One form of initialization that completes array types involves typedef names. Given the
declaration

typedef int A[];

the declaration

Aa= (1, 21, b = (3, 4, 5);

is identical to

int a[] = (1, 21, b[] = (3, 4, 5);

due to the rules for incomplete types.

7. The declaration

char s[] = "abc", t[3] = "abc";

defines ‘ ‘plain’ ’ char array objects s and t whose elements are initialized with character
string literals. This declaration is identical to

char s[] = { 'a', Ib', Ic', '\(I' },
t[] = { 'a', lb', 'c');

The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abc";

defines p with type “pointer to char" that is initialized to point to an object with type
“array of char" with length 4 whose elements are initialized with a character string
literal. If an attempt is made to use p to modify the contents of the array, the behavior is
undefined.

Forward references: common definitions <stddef . h> (7.1.5).

74 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.6 Statements
Syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

A statement specifies an action to be performed. Except as indicated, statements are executed
in sequence.

A full expression is an expression that is not part of another expression. Each of the
following is a full expression: an initializer; the expression in an expression statement; the
controlling expression of a selection statement (if or switch); the controlling expression of a
while or do statement; each of the three (optional) expressions of a for statement; the
(optional) expression in a return statement. The end of a full expression is a sequence point.

Forward references: expression and null statements (6.6.3), selection statements (6.6.4),
iteration statements (6.6.5), the return statement (6.6.6.4).

6.6.1 Labeled statements
Syntax

labeled-statement:
iden tifiel : statement
case constant-expression : statement
default : statement

Constraints

A case or
such labels are

Semantics

in

default label shall appear only in a
discussed under the switch statement.

switch statement. Further constraints on

Any statement may be preceded by a prefix that declares an identifier as a label name.
themselves do not alter the flow of control, which continues unimpeded across them.

Forward references: the goto statement (6.6.6.1), the switch statement (6.6.4.2).

6.6.2 Compound statement, or block
Syntax

compound-statement:
{ declaration-listopt statement-list }

opt
declaration-list:

declaration
declaration-list declaration

Labels

statement-list:
statement
statement-

Language

list statement

75

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Semantics

A compound statement (also called a block) allows a set of statements to be grouped into one
syntactic unit, which may have its own set of declarations and initializations (as discussed in
6.1.2.4). The initializers of objects that have automatic storage duration are evaluated and the
values are stored in the objects in the order their declarators appear in the translation unit.

6.6.3 Expression and null statements
Syntax

expression-statement:
expression opt ;

Semantics

The expression in an expression statement is evaluated as a void expression for its side
effects.75

A null statement (consisting of just a semicolon) performs no operations.

Examples

1. If a function call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression to a void
expression by means of a cast:

int p(int);
/*...*/
(void)p(O);

2. In the program fragment

char *s;
/* . . . */
while (*s++ != ‘\O’)

;

a null statement is used to supply an empty loop body to the iteration statement.

3. A null statement may also be used to carry a label just before the closing) of a compound
statement.

while (100~1) {
/* */
whi;; (100~2) {

/*...*/
if (want out)

goto end 100~1; -
/*...*/

I
/* . */

end-loop;; ;
1

Forward references: iteration statements (6.6.5).

75 Such as assignments , and function calls which have side effects.

76 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.6.4 Selection statements
Syntax

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

Semantics

A selection statement selects among a set of statements depending on the value of a
controlling expression.

6.6.4.1 The if statement

Constraints

The controlling expression of an if statement shall have scalar type.

Semantics

In both forms, the first substatement is executed if the expression compares unequal to 0. In
the else form, the second substatement is executed if the expression compares equal to 0. If
the first substatement is reached via a label, the second substatement is not executed.

An else is associated with the lexically immediately preceding else-less if that is in the
same block (but not in an enclosed block).

6.6.4.2 The switch statement

Constraints

The controlling expression of a switch statement shall have integral type. The expression
of each case label shall be an integral constant expression. No two of the case constant
expressions in the same switch statement shall have the same value after conversion. There
may be at most one default label in a switch statement. (Any enclosed switch statement
may have a default label or case constant expressions with values that duplicate case
constant expressions in the enclosing switch statement.)

Semantics

A switch statement causes control to jump to, into, or past the statement that is the switch
body, depending on the value of a controlling expression, and on the presence of a default
label and the values of any case labels on or in the switch body. A case or default label is
accessible only within the closest enclosing switch statement.

The integral promotions are performed on the controlling expression. The constant expression
in each case label is converted to the promoted type of the controlling expression. If a
converted value matches that of the promoted controlling expression, control jumps to the
statement following the matched case label. Otherwise, if there is a default label, control
jumps to the labeled statement. If no converted case constant expression matches and there is
no default label, no part of the switch body is executed.

Implementation limits

As discussed previously (5.2.4.1), the implementation may limit the number of case values
a switch statement. in

Example

In the artificial program fragment

Language 77

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

switch (expr)
{

int i = 4;
f(i) ;

case 0:
i = 17; /* falls through into default code */

default:
printf("%d\W, i);

1

the object whose identifier is i exists with automatic storage duration (within the block) but is
never initialized, and thus if the controlling expression has a nonzero value, the call to the
printf function will access an indeterminate value. Similarly, the call to the function f cannot
be reached.

6.6.5 Iteration statements
Syntax

iteration-statement.*
while (expression) statement
do statement while (expression) ;
for (expression opt ; expression opt ; expression

w) statement
Constraints

The controlling expression of an iteration statement shall have scalar type.

Semantics

An iteration statement causes a statement called the loop body to be executed repeatedly until
the controlling expression compares equal to 0.

. 6.6.5.1 The while statement

The evaluation of the controlling expression takes place before each execution of the loop
body.

6.6.5.2 The do statement

The evaluation of the controlling expression takes place after each execution of the loop body.

6.6.5.3 The for statement

Except for the behavior of a continue statement in the loop body, the statement

for (expression-l ; expression-2 ; expression-3)

and the sequence of statements

expression-l ;
while (expression-2) (

statement
expression-3 ;

1
are equivalent.76

statement

76 Thus, expression-l specifies initialization for the loop; expression-L?, the controlling expression, specifies
an evaluation made before each iteration, such that execution of the loop continues until the expression
compares equal to 0; expression-3 specifies an operation (such as incrementing) that is performed after
each iteration.

78 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Both expression-l and expression-3 may be omitted. Each is evaluated as a void expression.
An omitted expression-2 is replaced by a nonzero constant.

Forward references: the cant inue statement (6.6.6.2).

6.6.6 Jump statements
Syntax

jump-statement:
goto identifier ;
continue ;
break ;
return expression opt ;

Semantics

A jump statement causes an unconditional jump to another place.

6.6.6.1 The goto statement

Constraints

The identifier in a goto statement shall name a label located somewhere in the enclosing
function.

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named label
in the encl osing function.

m It is sometimes convenient to jump into the
following outline presents one possible approach to

1.

2.

3.

iddle of a
a problem

compli
based

cated set of statements. The
on these three assumptions:

The general initialization code accesses objects only visible to the current function.

The general initialization code is too large to warrant duplication.

The code to determine the next operation must be at the head of the loop. (To allow it to
be reached by continue statements, for example.)

/*. . .*/
got0 first time;
for (4 {-

/ * determine next operation */
/*...*/
if (need to reinitialize) {

/ * reinitialize-only code * /
/*

first timeI
*/

7" g eneral initialization code * /
/*...*/
continue;

1
/ * handle other operations */
/*...*/

Language 79

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.6.6.2 The continue statement

Constraints

A continue statement shall appear only in or as a loop body.

Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in each of the
statements

while (/*...*/) {
/*...*/
continue;
/*...*/

contin: ;
1

do i
/*...*/
continue;
/* . . . */

contin: ;
) while (/*...*/);

for (/*-em*/) (
/* . . . */
continue;
/* . . . */

contin: ;
1

unless the continue statement
interpreted within that statement),

shown is in an enclosed iteration statement (in which case it is
it is equivalent to got0

6.6.6.3 The break statement

Constraints

A break statement shall appear only in or as a switch body or loop body.

Semantics

A break statement terminates execution of the smallest enclosing switch or iteration
statement.

6.6.6.4 The return statement

Constraints

A return statement with an expression shall not appear in a function whose return type is
void.

Semantics

A return statement terminates execution of the current function an .d returns control to its
caller. A function may have any number of retu rn statements, with and without expressions.

If a return statement with an expression is executed, the value of the expression is returned
to the caller as the value of the function call expression. If the expression has a type different
from that of the function in which it appears, it is converted as if it were assigned to an object of
that type.

If a return statement without an expression is executed, and the value of the function call
is used by the caller, the behavior is undefined. Reaching the } that terminates a function is
equivalent to executing a return statement without an expression.

77 Following the contin : label is a null statement.

80 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.7 External definitions
Syntax

translation-unit:
externakdeclaration
translation-unit external-declaration

external-declaration :
function-dejkzition
declaration

Constraints

The storage-class specifiers auto and register shall not appear in the declaration
specifiers in an external declaration.

There shall be no more than one external definition for each identifier declared with internal
linkage in a translation unit. Moreover, if an identifier declared with internal linkage is used in
an expression (other than as a part of the operand of a sizeof operator), there shall be exactly
one external definition for the identifier in the translation unit.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit,
which consists of a sequence of external declarations. These are described as “external” because
they appear outside any function (and hence have file scope). As discussed in 6.5, a declaration
that also causes storage to be reserved for an object or a function named by the identifier is a
definition.

An external definition is an external declaration that is also a definition of a function or an
object. If an identifier declared with external linkage is used in an expression (other than as part
of the operand of a sizeof operator), somewhere in the entire program there
one external definition for the identifier; otherwise, there sh .a11 be no more than on

shall be exactly
.e 78 .

6.7.1 Function definitions
Syntax

function-definition.*
declaration-specifiersOpt declarator declaration-list

opt
compound-statement

Constraints

a
The identifier declared in a function defin

function type, as specified by the declarator
ition (w
portion

hich is
of the

the name of the function) shall have
function definition. ”

78 Thus, if an identifier
external definition for

declared
it.

with external linkage is not used in an expression, there need be no

79 The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); /* type F is ’ tfunction of no arguments seturning int" */
F f, g; / * f and g both have type compatible with F */
F f { /*...*/ } / * WRONG: syntaxlconstraint error * /
F go { /*..-*/ 1 / * WRONG: declares that g returns a function */
int f(void) { /*...*/ } /* RIGHT: f has type compatible with F */
int g() (/*...*/ } / * RIGHT: g has type compatible with F */
F *e(void) { /*...*/ } /* e returns a pointer to a function */
F *((e))(void) { /*... * /) / * same: parentheses irrelevant * /
int (*fp) (void); /* fp points to a function that has type F */
F *Fp; /* Fp points to a function that has type F */

Language 81

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

The return type of a function shall be void or an object type other than array.

The storage-class specifier, if any, in the declaration specifiers shall be either extern or
static.

If the declarator includes a parameter type list, the declaration of each parameter shall include
an identifier (except for the special case of a parameter list consisting of a single parameter of
type void, in which there shall not be an identifier). No declaration list shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall have at
least one declarator, and those declarators shall declare only identifiers from the identifier list.
An identifier declared as a typedef name shall not be redeclared as a parameter. The declarations
in the declaration list shall contain no storage-class specifier other than register and no
initializations.

Semantics

The declarator in a function definition specifies the name of the function being defined and
the identifiers of its parameters. If the declarator includes a parameter type list, the list also
specifies the types of all the parameters; such a declarator also serves as a function prototype for
later calls to the same function in the same translation unit. If the declarator includes an
identifier list,” the types of the parameters may be declared in a following declaration list. .Any
parameter that is not declared has type int.

If a function that accepts a variable number of arguments is defined without a parameter type
list that ends with the ellipsis notation, the behavior is undefined.

On entry to the function the value of each argument expression shall be converted to the type
of its corresponding parameter, as if by assignment to the parameter. Array expressions and
function designators as arguments are converted to pointers before the call. A declaration of a
parameter as “array of type” shall be adjusted to “pointer to type))’ and a declaration of a
parameter as “function returning type ” shall be adjusted to “pointer to function returning type,”
as in 6.2.2.1. The resulting parameter type shall be an object type.

Each parameter has automatic storage duration. Its identifier is an lvalue? The layout of the
storage for parameters is unspecified.

Examples

1. In the following:

extern int max(int a, int b)

return a > b ? a : b;

extern is the storage-class specifier and int is the type specifier (each of which may be
omitted as those are the defaults); max (int a, int b) is the function declarator; and

{ return a > b ? a : b;

is the function body. The following similar definition uses the identifier-list
parameter declarations:

form for the

80 See “future language directions” (6.9.5).
81 A parameter is in effect declared at the head of the compound statement that constitutes the function

body, and therefore may not be redeclared in the function body (except in an enclosed block).

82 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

2.

extern int max (a, b)
int a, b;
{

return a > b ? a
1

: b;

Here int a, b; is the declaration list for the parameters, which may be omitted because
those are the defaults. The difference between these two definitions is that the first form
acts as a prototype declaration that forces conversion of the arguments of subsequent calls
to the function, whereas the second form may not.

To pass one function to another, one might say

Note that
expression

int f(void);
/*...*/
g(f);

f must be declared explicitly in the calling function, as its appearance in the
g (f) was not followed by (. Then the definition of g might read

g(int (*funcp) (void))
{

/*. . . */ (*funcp) () /* or funcp() . . . */
1

or, equivalently,

g(int func(void))

/*. . . */ func() /* or (*fuhc)() . . . */
1

6.7.2 External object definitions
Semantics

If the declaration of an identifier for an object has file scope and an initializer, the declaration
is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and
without a storage-class specifier or with the storage-class specifier static, constitutes a
tentative definition. If a translation unit contains one or more tentative definitions for an
identifier, and the translation unit contains no external definition for that identifier, then the
behavior is exactly as if the translation unit contains a file scope declaration of that identifier,
with the composite type as of the end of the translation unit, with an initializer equal to 0.

If the declaration of an identifier for an object is a tentative definition and has internal
linkage, the declared type shall not be an incomplete type.

Example

int il = 1; /* definition, external linkage */
static int i2 = 2; / * definition, internal linkage * /
extern int i3 = 3; / * dejinition, external linkage * /
int i4; /* tentative definition, external linkage */
static int i5; /* tentative de$nition, internal linkage */

Language 83

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

int il; / * valid tentative definition, refers to previous */
int i2; / * 6.1.2.2 renders undefined, linkage disagreement * /
int i3; /* valid tentative deBnition, refers to previous */
int i4; /* valid tentative definition, refers to previous */
int i5; /* 6.1.2.2 renders undefined, linkage disagreement */

extern int il; /* refers to previous, whose linkage is external */
extern int i2; /* refers to previous, whose linkage is internal */
extern int i3; /* refers to previous, whose linkage is external */
extern int i4; /* refers to previous, whose linkage is external */
extern int i5; /* refers to previous, whose linkage is internal */

84 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.8 Preprocessing directives
Syntax

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section.*
if-group elif-groups

opt
else-group

opt
endif-line

if-group:
if constant-expression new-line group
ifdef identifier new-line groupopt opt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line group

opt
else-group:

else new-line group
opt

endif-line:
endif new-line

control-line.*
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen iden ti>er-list
undef identifier new-line

opt) replacement-list new-line

line pp-tokens new-line
error pp-tokens new-line

opt # pragxna pp-tokensopt new-line
new-line

lparen :
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokens

opt
pp-tokens:

preprocessing-token
pp- tokens preprocessing- token

new-line:

Language

the new-line character

85

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Description

A preprocessing directive consists of a sequence of preprocessing tokens that begins with a #
preprocessing token that is either the first character in the source file (optionally after white space
containing no new-line characters) or that follows white space containing at least one new-line
character, and is ended by the next new-line character?*

Constraints

The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducing # preprocessing token through just before
the terminating new-line character) are space and horizontal-tab (including spaces that have
replaced comments or possibly other white-space characters in translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include other
source files, and replace macros. These capabilities are called preprocessing, because
conceptually they occur before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion
unless otherwise stated.

6.8.1 Conditional inclusion
Constraints

The expression that controls conditional inclusion shall be an integral constant expression
except that: it shall not contain a cast; identifiers (including those lexically identical to keywords)
are interpreted as described below;83 and it may contain unary operator expressions of the form

or
defined identifier

defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is
predefined or if it has been the subject of a #define preprocessing directive without an
intervening #undef directive with the same subject identifier), 0 if it is not.

the
Each preprocessing token
lexical form of a token.

that remains after all macro replacements have occurred shall be in

Semantics

Preprocessing directives of the forms

if constant-expression new-line group
opt # elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the
controlling constant expression are replaced (except for those macro names modified by the
defined unary operator), just as in normal text, If the token defined is generated as a result
of this replacement process or use of the defined unary operator does not match one of the two

86 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

specified forms prior to macro replacement, the behavior is undefined. After all replacements due
to macro expansion and the defined unary operator have been performed, all remaining
identifiers are replaced with the pp-number 0, and then each preprocessing token is converted
into a token. The resulting tokens comprise the controlling constant expression which is
evaluated according to the rules of 6.4 using arithmetic that has at least the ranges specified in
5.2.4.2, except that int and unsigned int act as if they have the same representation as,
respectively, long and unsigned long. This includes interpreting character constants, which
may involve converting escape sequences into execution character set members. Whether the
numeric value for these character constants matches the value obtained when an identical
character constant occurs in an expression (other than within a #if or #elif directive) is
implementation-defined.s4 Also, whether a single-character character constant may have a
negative value is implementation-defined.

Preprocessing directives of the forms

ifdef identifier new-line groupopt
ifndef ident@er new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are
equivalent to #if defined identifier and #if ! defined identifier respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it
controls is skipped: directives are processed only through the name that determines the directive
in order to keep track of the level of nested conditionals; the rest of the directives’ preprocessing
tokens are ignored, as are the other preprocessing tokens in the group. Only the first group
whose control condition evaluates to true (nonzero) is processed. If none of the conditions
evaluates to true, and there is a #else directive, the group controlled by the #else is
processed; lacking a #else directive, all the groups until the #endif are skipped?

Forward references: macro replacement (6.8.3), source file inclusion (6.8.2).

6.8.2 Source file inclusion
Constraints

A #include
implementation.

directive shall identify a header or source file that can be processed by the

Semantics

A preprocessing directive of the form

include <h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the
specified sequence between the < and > delimiters, and causes the replacement of that directive
by the entire contents of the header. How the places are specified or the header identified is
implementation-defined.

84 Thus, the constant expression in the following
evaluate to the same value in these two contexts.

#if '2' - Ia1 == 25
if ('2' - faf == 25)

#if directive and if statement is not guaranteed

85 As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive before
the terminating new-line character. However, comments may appear anywhere in a source file, including
within a preprocessing directive.

Language 87

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

A preprocessing directive of the form

include “q-char-sequence” new-line

causes the replacement of that directive by the entire contents of the source file identified by the
specified sequence between the ” delimiters. The named source file is searched for in an
implementation-defined manner. If this search is not supported, or if the search fails, the
directive is reprocessed as if it read

include <h-char-sequence> new-line

with the identical contained sequence (including > characters, if any) from the original directive.

A preprocessing directive of the for-r-n

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined
as a macro name is replaced by its replacement list of preprocessing tokens.) The directive
resulting after all replacements shall match one of the two previous forms.86 The method by
which a sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair
of ” characters is combined into a single header name preprocessing token is implementation-
defined.

There shall be an implementation-defined mapping between the delimited sequence and the
external source file name. The implementation shall provide unique mappings for sequences
consisting of one or more letters (as defined in 5.2.1) followed by a period (.) and a single
letter. The implementation may ignore the distinctions of alphabetical case and restrict the
mapping to six significant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because
of a #include directive in another file, up to an implementation-defined nesting limit (see
5.2.4.1).

Examples

1.

2.

The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "mypr0g.h"

This illustrates macro-replaced #include directives:

#if VERSION == 1
#define INCFILE "vers1.h"

#elif VERSION == 2
#define INCFILE "vers2.h" /* and so on */

#else
#define INCFILE WersN. h"

#endif
#include INCFILE

Forward references: macro replacement (6.8.3).

86 Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

88 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.8.3 Macro replacement
Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have the
same number, ordering, spelling, and white-space separation, where all white-space separations
are considered identical.

An identifier currently defined as a macro without use of lparen (an object-like macro) may be
redefined by another #define preprocessing directive provided that the second definition is an
object-like macro definition and the two replacement lists are identical.

An identifier currently defined as a macro using lparen (a function-like macro) may be
redefined by another #define preprocessing directive provided that the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two
replacement lists are identical.

The number of arguments in an invocation of a function-like macro shall agree with the
number of parameters in the macro definition, and there shall exist a) preprocessing token that
terminates the invocation.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

Semantics

The identifier immediately following the define is called the macro name. There is one
name space for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list for either
form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a
preprocessing directive could begin, the identifier is not subject to macro replacement.

A preprocessi ng directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name87 to be
replaced by the replacement list of preprocessing tokens that constitute the remainder of the
directive. The replacement list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

define ident@er lparen identifier-listopt) replacement-list new-line

defines a function-like macro with arguments, similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their
declaration in the identifier list until the new-line character that terminates the #define
preprocessing directive. Each subsequent instance of the function-like macro name followed by a
(as the next preprocessing token introduces the sequence of preprocessing tokens that is replaced

by the replacement list in the definition (an invocation of the macro). The replaced sequence of
preprocessing tokens is terminated by the matching) preprocessing token, skipping intervening
matched pairs of left and right parenthesis preprocessing tokens. Within the sequence of
preprocessing tokens making up an invocation of a function-like macro, new-line is considered a
normal white-space character.

87 Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not
sequences possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they are
never scanned for macro names or parameters.

Language 89

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within the list
are separated by comma preprocessing tokens, but comma preprocessing tokens between
matching inner parentheses do not separate arguments. If (before argument substitution) any
argument consists of no preprocessing tokens, the behavior is undefined. If there are sequences
of preprocessing tokens within the list of arguments that would otherwise act as preprocessing
directives, the behavior is undefined.

6.8.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded by a # or
preprocessing token or followed by a ## preprocessing token (see below), is replaced by the
corresponding argument after all macros contained therein have been expanded. Before being
substituted, each argument’s preprocessing tokens are completely macro replaced as if they
formed the rest of the translation unit; no other preprocessing tokens are available.

6.8.3.2 The # operator

Constraints

bY
Each # preprocessing token in the replacement list for a function-like macro
a parameter as the next preprocessing token in the replacement list.

shall be followed

Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing token,
both are replaced by a single character string literal preprocessing token that contains the spelling.
of the preprocessing token sequence for the corresponding argument. Each occurrence of white
space between the argument’s preprocessing tokens becomes a single space character in the
character string literal. White space before the first preprocessing token and after the last
preprocessing token comprising the argument is deleted. Otherwise, the original spelling of each
preprocessing token in the argument is retained in the character string literal, except for special
handling for producing the spelling of string literals and character constants: a \ character is
inserted before each I1 and \ character of a character constant or string literal (including the
delimiting ” characters). If the replacement that results is not a valid character string literal, the
behavior is undefined. The order of evaluation of # and ## operators is unspecified.

6.8.3.3 The ## operator

Constraints

for
A ## preprocessing token shall
either form of macro definition.

not occur at the beginning or at the end of a replacement list

Semantics

If, in the replacement list, a parameter is immediately preceded or followed by a ##
preprocessing token, the parameter is replaced by the corresponding argument’s preprocessing
token sequence.

For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instance of a ## preprocessing token in the
replacement list (not from an argument) is deleted and the preceding preprocessing token is
concatenated with the following preprocessing token. If the result is not a valid preprocessing
token, the behavior is undefined. The resulting token is available for further macro replacement.
The order of evaluation of ## operators is unspecified.

90 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.8.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted, the resulting preprocessing
token sequence is rescanned with all subsequent preprocessing tokens of the source file for more
macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source file’s preprocessing tokens), it is not replaced. Further, if any
nested replacements encounter the name of the macro being replaced, it is not replaced. These
nonreplaced macro name preprocessing tokens are no longer available for further replacement
even if they are later (re)examined in contexts in which that macro name preprocessing token
would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a
preprocessing directive even if it resembles one.

6.8.3.5 Scope of macro definitions

A macro definition lasts (independent of block structure) until a corresponding #undef
directive is encountered or (if none is encountered) until the end of the translation unit.

A preprocessing directive of the form

undef identifier new-line

causes the specified
specified identifier is

identifier no
not currently

longer to be defined as a macro name.
defined as a macro name.

It is ignored if the

Examples

1. The simplest use of this facility is to define a “manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

2. The following defines a function-like macro whose value is the maximum of its arguments.
It has the advantages of working for any compatible types of the arguments and of
generating in-line code without the overhead of function calling. It has the disadvantages
of evaluating one or the other of its arguments a second time (including side effects) and
generating more code than a function if invoked several times. It also cannot have its
address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

3 L . To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[ol
#define h g(-
#define m(a) a(w)
#define w 0,l
#define t(a) a

f(y+l) + f(fW) % t(t(g) (0) + t) (1);
g(x+(3,4)-w) 1 h 5) & m

(f) *m(m) ;

Language 91

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

results in

f(2 * (y+l)) + f(2 * (f(2 * (2 [O])))) % f(2 * (0)) + t (1) ;
f(2 * (2+(3,4)-0,l)) 1 f(2 * (- 5)) 6 f(2 * (O,l))"m(O,l);

4. To illustrate the rules for creating character string literals and concatenating tokens, the
sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s I'= %d, x" # t 'I= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n /* f mm p r-evious #include example */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW I', world"

debug(1, 2);
fputs(str(strncxnp(Qbc\Od", Vbc", '\4')

== 0) str(: @\n), s);
#include xstr(INCFILE(2)h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf (rrxll ~~1~~ 11, %d, x1’ ~12~~ If= %sf’, xl,

/* this goes away */

x2) ;
fputs('lstrncmp(\V'abc\\Od\ll, \Qbc\", '\\4') == 0" 'I: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
llhello";
"hello" I', world"

or, after concatenation of the character string literals,

printf("xl= %d, x2= %s", xl, x2);
fputs('lstrncmp(\Qbc\\Od\ll, \rrabc\VV, '\\4') == 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the # and ##

5. And finally, to demonstrate

#define OBJ LIKE
#define OBJ.LIKE

tokens in the macro definition is optional.

the redefinition rules, the following sequence is valid.

u-1)
/* white space */ (l-l) /* other */

#define FTN LIKE(a) (a 1
#define FTN-LIKE(a)(/* note the white space */ \ -

a /* other stuff on this line
*/ 1

But the following redefinitions are invalid:

92

#define OBJ LIKE (0)
#define OBJ.LIKE (1

* /* different token sequence */
- 1) / * different white space * /

#define FTN-LIKE(b) (a)
#define FTN-LIKE(b) (b)

/* diflerent parameter usage */
- /* different parameter- spelling */

Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.8.4 Line control
Constraints

The string literal of a #line directive, if present, shall be a character string literal.

Semantics

The line numhej- of the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 (5.1.1.2) while processing the source file to
the current token.

A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a
source line that has a line number as specified by the digit sequence (interpreted as a decimal
integer). The digit sequence shall not specify zero, nor a number greater than 32767.

A preprocessing directive of the form

line digit-sequence “S-char-sequen(.eoptll new-line

sets the
contents

line number similarly and changes the
of the character string literal.

presumed name of the source file to be the

A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
line on the directive are processed just as in normal text (each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens). The directive resulting
after all replacements shall match one of the two previous forms and is then processed as
appropriate.

6.8.5 Error directive
Semantics

A preprocessing directive of the form

error pp-tokens new-line
*Pt

causes the implementation to produce a diagnostic message that includes the specified sequence
of preprocessing tokens.

6.8.6 Pragma directive
Semantics

A preprocessing directive of the form

pragrna pp-tokens new-line
opt

causes the implementation to behave in an implementation-defined manner. Any pragma that is
not recognized by the implementation is ignored.

Language 93

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.8.7 Null directive
Semantics

A preprocessing directive of the form

new-line

has no effect.

6.8.8 Predefined macro names
The following macro names shall be defined by the implementation:

LINE The line number of the current source line (a decimal constant). -- --
FILE -- -- The presumed name of the source file (a character string literal).

DATE The date of translation of the source file (a character string literal of the form -- --
"Mmm dd yyyy", where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the
value is less than 10). If the date of translation is not available, an
implementation-defined valid date shall be supplied.

TIME The time of translation of the source file (a character string literal of the form -- --
"hh : mm: s&I as in the time generated by the asctime function). If the time of
translation is not available, an implementation-defined valid time shall be supplied.

STDC The decimal constant 1, intended to indicate a conforming implementation. -- --
The values of the predefined macros (except for LINE and FILE) remain -- -w -- --

constant throughout the translation unit.

None of these macro names, nor the identifier defined, shall be the subject of a #define
or a #undef preprocessing directive. All predefined macro names shall begin with a leading
underscore followed by an uppercase letter or a second underscore.

Forward references: the asctime function (7.12.3.1).

94 Language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

6.9 Future language directions
6.9.1 External names

Restriction of the significance
case is an obsolescent feature that

of
1s

an external name to fewer than 31 characters
a concession to existing implementations.

6.9.2 Character escape sequences
Lowercase letters

characters may be used
as
in

or to only one

escape sequences are reserved for future standardization. Other
extensions.

6.9.3 Storage-class specifiers
The placement of a storage-class specifier other than at the beginning of the declaration

specifiers in a declaration is an obsolescent feature.

6.9.4 Function declarators
The use of function declarators with empty parentheses (not prototype-format parameter type

declarators) is an obsolescent feature.

6.9.5 Function definitions
The use of function definitions with separate parameter identifier and declaration lists (not

prototype-format parameter type and identifier declarators) is an obsolescent feature.

6.9.6 Array parameters
The use of two parameters declared with

type) in separate lvalues to designate the same
an array
object is

type (prior to their adjustment to pointer
an obsolescent feature.

Language 95

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7 Library

7.1 Introduction
7.1.1 Definitions of terms

A stving is a contiguous sequence of characters terminated by and including the first null
character. A “pointer to” a string is a pointer to its initial (lowest addressed) character. The
“length” of a string is the number of characters preceding the null character and its “value” is
the sequence of the values of the contained characters, in order.

A letter is a printing character in the execution character set corresponding to any of the 52
required lowercase and uppercase letters in the source character set, listed in 5.2.1.

The decimal-point character- is the character used by functions that convert floating-point
numbers to or from character sequences to denote the beginning of the fractional part of such
character sequences? It is represented in the text and examples by a period, but may be changed
by the setlocale function.

Forward references: character handling (7.3), the set locale function (7.4.1.1).

7.1.2 Standard headers
Each library function is declared in a header-,“9 whose contents are made available by the

#include preprocessing directive. The header declares a set of related functions, plus any
necessary types and additional macros needed to facilitate their use.

The standard headers are

<assert.h> <locale-h>
<ctype.h> <math.h>
<errno.h> <setjmp.h>
<float.h> <signal.h>
<limits.h> <stdarg.h>

<stddef.h>
<stdio.h>
<stdlib.h>
<string.h>
<time.h>

If a file with the same name as one of the above < and > delimited sequences, not provided
as part of the implementation, is placed in any of the standard places for a source file to be
included, the behavior is undefined.

Headers may be included in any order; each may be included more than once in a given
scope, with no effect different from being included only once, except that the effect of including
<assert. h> depends on the definition of NDEBUG. If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However,
if the identifier is declared or defined in more than one header, the second and subsequent
associated headers may be included after the initial reference to the identifier. The program shall
not have any macros with names lexically identical to keywords currently defined prior to the
inclusion.

Forward references: diagnostics (7.2).

88 The functions that make use of the decimal-point character are localeconv, fprintf, f scanf,
printf,scanf,sprintf,sscanf,vfprintf,vprintf,vsprintf,atof, and strtod.

89 A header is not necessarily a source file, nor are the < and > delimited sequences in header names
necessarily valid source file names.

96 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.1.3 Reserved identifiers
Each header declares or defines all identifiers listed in its associated subclause, and optionally

declares or defines identifiers listed in its associated future library directions subclause and
identifiers which are always reserved either for any use or for use as file scope identifiers.

All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always reserved for any use.

All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary identifier and tag name spaces.

Each macro name listed in any of the following subclauses (including the future library
directions) is reserved for any use if any of its associated headers is included.

All identifiers with external linkage in any of the following subclauses (including the future
library directions) are always reserved for use as identifiers with external linkage.”

Each identifier with file scope listed in any of the following subclauses (including the future
library directions) is reserved for use as an identifier with file scope in the same name space if
any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier with the
same name as an identifier reserved in that context (other than as allowed by 7.1.7), the behavior
is undefined.”

7.1.4 Errors <errno. h>

The header <errno. h> defines several macros, all relating to the reporting of error
conditions.

The macros are

EDOM
EW'WGE

which expand to integral constant expressions with distinct nonzero values, suitable for use in
#if preprocessing directives; and

errno

which expands to a modifiable lvalue9* that has type int, the value of which is set to a positive
error number by several library functions. It is unspecified whether errno is a macro or an
identifier declared with external linkage. If a macro definition is suppressed in order to access an
actual object, or a program defines an identifier with the name errno, the behavior is undefined.

The value of errno is zero at program startup, but is never set to zero by any library
function.‘” The value of errno may be set to nonzero by a library function call whether or not
there is an error, provided the use of errno is not documented in the description of the function
in this International Standard.

90 The list of reserved identifiers with external linkage includes errno, set jmp, and va end. -
91 Since macro names are replaced whenever found, independent of scope and name space, macro names

matching any of the reserved identifier names must not be defined if an associated header, if any, is
included.

92 The mat ro errno need not be the identifier of an
resulting from a function call (for example, *errno ()

object. It might expand to a modifiable lvalue

93 Thus, a program that uses errno for error checking should set it to zero before a library function call,
then inspect it before a subsequent library function call. Of course, a library function can save the value
of errno on entry and then set it to zero, as long as the original value is restored if errno's value is
still zero just before the return.

Library 97

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Additional macro definitions, beginning with E and a digit or E and an uppercase letter,94 may
also be specified by the implementation.

7.1.5 Limits <float. h> and <limits.h>
The headers <float. h> and <limits . h> define several macros that expand to various

limits and parameters.

The macros, their meanings, and the constraints (or restrictions) on their values are listed in
5.2.4.2.

7.1.6 Common definitions <stddef . h>
The following types and macros are defined in the standard header <stddef . h>. Some are

also defined in other headers, as noted in their respective subclauses.

The types are

ptrdiff t -
which is the signed integral type of the result of subtracting two pointers;

size t

which is the unsigned integral type of the result of the sizeof operator; and

wchar t

which is an integral type whose range of values can represent distinct codes for all members of
the largest extended character set specified among the supported locales; the null character shall
have the code value zero and each member of the basic character set defined in 5.2.1 shall have a
code value equal to its value when used as the lone character in an integer character constant.

The macros are

NULL

which expands to an implementation-defined null pointer constant; and

offsetof (type, member-designator)

which expands to an integral constant expression that has type size t, the value of which is the
offset in bytes, to the structure member (designated by member-designator), from the beginning
of its structure (designated by type). The member-designator shall be such that given

static type t;

then the expression & (t . member-designator) evaluates to an address constant. (If the specified
member is a bit-field, the behavior is undefined.)

Forward references: localization (7.4).

94 See “future library directions” (7.13.1).

98 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.1.7 Use of library functions
Each of the following statements applies unless explicitly stated otherwise in the detailed

descriptions that follow. If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program, or a
null pointer), the behavior is undefined. If a function argument is described as being an array,
the pointer actually passed to the function shall have a value such that all address computations
and accesses to objects (that would be valid if the pointer did point to the first element of such an
array) are in fact valid. Any function declared in a header may be additionally implemented as a
macro defined in the header, so a library function should not be declared explicitly if its header is
included. Any macro definition of a function can be suppressed locally by enclosing the name of
the function in parentheses, because the name is then not followed by the left parenthesis that
indicates expansion of a macro function name. For the same syntactic reason, it is permitted to
take the address of a library function even if it is also defined as a macro.95 The use of #undef
to remove any macro definition will also ensure that an actual function is referred to. Any
invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary, so
it is generally safe to use arbitrary expressions as arguments. Likewise, those function-like
macros described in the following subclauses may be invoked in an expression anywhere a
function with a compatible return type could be called.96 All object-like macros listed as
expanding to integral constant expressions shall additionally be suitable for use in #if
preprocessing directives.

Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function, either explicitly or implicitly, and use it
without including its associated header. If a function that accepts a variable number of arguments
is not declared (explicitly or by including its associated header), the behavior is undefined.

Example

The function atoi may be used in any of several ways:

- by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char *str;
/* . . . */
i= atoi(str);

95 This means that an implemen tation must provide an actual
also provides a macro for that funct ion.

function for each library function, even if it

96 Because external identifiers and some macro names beginning with an underscore are reserved,
implementations may provide special semantics for such names. For example, the identifier

BUILTIN abs could be used to indicate generation of in-line code for the abs function. Thus, the
appropriate Eeader could specify

#define
for a compiler whose

abs (x) - BUILTIN abs -
code generator will accept i

(x)
t.

In this manner, a user
function may write

desiring to guarantee that a given library function such as abs will be a genuine

#undef abs
whether the implementation’s header provides a macro implementation of abs or a built-in
implementation. The prototype for the function, which precedes and is hidden by any macro definition,
is thereby revealed also.

Library 99

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

- by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi
const char *str;
/* */
i Atoi(str);

#include <stdlib.h>
const char *str;
/*...*/
i= (atoi) (str);

- by explicit declaration

extern int atoi(const char *);
const char *str;
/*. . .*/
i= atoi(str);

- by implicit declaration

const char *str;
/* . . . */
i= atoi(str);

100 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.2 Diagnostics <assert . h>
The header <assert. h> defines the assert macro and refers to another macro,

NDEBUG

which is not defined by <assert. h>. If NDEBUG is defined as a macro name at the point in
the source file where <assert. h> is included, the assert macro is defined simply as

#define assert(ignore) ((void)O)

7.2.1.1 The assert macro

Synopsis

#include <assert.h>
void assert(int expression);

Description

The assert macro puts diagnostics into programs. When it is executed, if expression is
false (that is, compares equal to 0), the assert macro writes information about the particular
call that failed (including the text of the argument, the name of the source file, and the source
line number - the latter are respectively the values of the preprocessing macros FILE and

LINE) on the standard error file in an implementation-defined format.97 Tt?hen c>c the
LGort f&Zion.

Returns

The assert macro returns no value.

Forward references: the abort function (7.10.4.1).

97 The message written might be of the form
Assertion failed: expression, file xyz, line nnn

Library 101

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.3 Character handling <ctype . h>
The header <ctype . h> declares several functions useful for testing and mapping

characters.98 In all cases the argument is an int, the value of which shall be representable as an
unsigned char or shall equal the value of the macro EOF. If the argument has any other
value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that have
implementation-defined aspects only when not in the ‘TV’ locale are noted below.

The term printing character refers to a member of an implementation-defined set of
characters, each of which occupies one printing position on a display device; the term control
character refers to a member of an implementation-defined set of characters that are not printing
characters.99

Forward references: EOF (‘7.9.1), localization (7.4).

7.3.1 Character testing functions
The functions in this subclause return nonzero (true) if and only if the value of the argument

c conforms to that in the description of the function.

7.3.1.1 The isalnum function

Synopsis

#include <ctype.h>
int isalnum(int c);

Description

The isalnum function tests for any character for which isalpha or isdigit is true.

7.3.1.2 The isalpha function

Synopsis

#include <ctype.h>
int isalpha(int c);

Description

The isalpha function tests for any character for which isupper or islower is true, or
any character that is one of an implementation-defined set of characters for which none of
iscntrl, isdigit, ispunct, or isspace is true. In the “C” locale, isalpha returns
true only for the characters for which isupper or islower is true.

7.3.1.3 The iscntrl function

Synopsis

#include <ctype.h>
int iscntrl(int c);

98 See “future library directions” (7.13.2).
99 In an implementation that uses the seven-bit ASCII character set, the printing characters are those whose

values lie from 0x20 (space) through Ox7E (tilde); the control characters are those whose values lie from
0 (NW) through Ox 1F (US), and the character Ox7F (DEL).

102 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Description

The iscntrl function tests for any control character.

7.3.1.4 The isdigit function

Synopsis

#include <ctype.h>
int isdigit(int c);

Description

The isdigit function tests for any decimal-digit character (as defined in 52.1).

7.3.1.5 The isgraph function

Synopsis

#include <ctype.h>
int isgraph(int c);

Description

The isgraph function tests for any printing character except space (’ I) .

7.3.1.6 The islower function

Synopsis

#include <ctype.h>
int islower(int c);

Description

The islower function tests for any character that is a lowercase letter or is one of an
implementation-defined set of characters for which none of iscntrl, isdigit, ispunct, or
isspace is true. In the TV’ locale, islower returns true only for the characters defined as
lowercase letters (as defined in 5.2.1).

7.3.1.7 The isprint function

Synopsis

#include <ctype.h>
int isprint(int c);

Description

The isprint function tests for any printing character including space (’

7.3.1.8 The ispunct function

#include <ctype.h>
int ispunct(int c);

Description

I
) .

The ispunct function tests for any printing character that is neither space (’ ’) nor a
character for which isalnum is true.

Library 103

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.3.1.9 The is space function

Synopsis

#include <ctype.h>
int isspace(int c);

Description

The isspace function tests for any character that is a standard white-space character or is
one of an implementation-defined set of characters for which isalnum is false. The standard
white-space characters are the following: space (’ I), form feed (’ \f'), new-line (’ \n’),
carriage return (’ \r'), horizontal tab (I \t I), and vertical tab (’ \v’). In the Tvv locale,
isspace returns true only for the standard white-space characters.

7.3.1.10 The isupper function

#include <ctype.h>
int isupper(int c);

Description

The isupper function tests for any character that is an uppercase letter or is one of an
implementation-defined set of characters for which none of iscntrl, isdigit, ispunct, or
isspace is true. In the rrCff locale, isupper returns true only for the characters defined as
uppercase letters (as defined in 5.2.1).

7.3.1.11 The isxdigit function

#include <ctype.h>
int isxdigit(int c);

Description

The isxdigit function tests for any hexadecimal-digit character (as defined in 6.1.3.2).

7.3.2 Character case mapping functions
7.3.2.1 The tolower function

#include <ctype.h>
int tolower(int c);

Description

The tolower function converts an uppercase letter to the corresponding lowercase letter.

Returns

If the argument is a character for which isupper is true and there is a corresponding
character for which islower is true, the tolower function returns the corresponding character;
otherwise, the argument is returned unchanged.

7.3.2.2 The toupper function

#include <ctype.h>
int toupper(int c);

104 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Description

The toupper function converts a lowercase letter to the corresponding uppercase letter.

Returns

If the argument is a character for which islower is true and there is a corresponding
character for which isupper is true, the toupper function returns the corresponding character;
otherwise, the argument is returned unchanged.

Library 105

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.4 Localization <locale. h>
The header <locale. h> declares two functions, one type, and defines several macros.

The type is

struct lconv

which contains members related to the formatting of numeric values. The structure shall contain
at least the following members, in any order. The semantics of the members and their normal
ranges is explained in 7.4.2.1. In the YY locale, the members shall have the values specified in
the comments.

char *decimal_point;
char *thousands-sep;
char *grouping;
char *int curr symbol;
char *cur~ency&nbol;
char *man decimalJoint;
char *monIthousands-sep;
char *man-grouping;
char *positive - sign;
char *negative-sign;
char int-frac-digits;
char frac-digits;
char p-csJrecedes;
char p-sep-by-space;
char n_csJrecedes;
char n-sepiby-space;
char p_signJosn;
char n-sign_posn;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

‘1 ‘1 */
‘,‘-I */

“‘I */
” ” */
‘I’ ” */
‘I” */
” ” */
” ” */
“‘I */
“‘I */
CHARMAX
CHACMAX
CHARkUC
CHAR-MAX
CHARXAX
WAR-MAX
CHARkX
CHAR-MAX -

*/
*/
*/
*/
*/
*/
*/
*/

The macros defined are NULL (described in 7.1.6); and

LC ALL
LC-COLLATE
LC-CTYPE
LC-MONETARY
LC-NUMERIC
LC-TIME

which expand to integral constant expressions with distinct values, suitable for use as the first
argument to the setlocale function. Additional macro definitions, beginning with the
characters LC, and an uppercase letter,1W may also be specified by the implementation.

100 See “future library directions” (7.13.3).

106 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.4.1 Locale control
7.4.1.1 The set locale function

Synopsis

#include <locale.h>
char *setlocale(int category, const char *locale);

Description

The setlocale function selects the appropriate portion of the program’s locale as specified
by the category and locale arguments. The setlocale function may be used to change
or query the program’s entire current locale or portions thereof. The value LC-ALL for
category names the program’s entire locale; the other values for category name only a
portion of the program’s locale. LC COLLATE affects the behavior of the strcoll and
strxf rm functions. LC CTYPE affects the behavior of the character handling functions”’ and
the multibyte functions. CC MONETARY affects the monetary formatting information returned by
the localeconv function.-LC NUMERIC affects the decimal-point character for the formatted
input/output functions and the string conversion functions, as well as the nonmonetary formatting
information returned by the localeconv function. LC TIME affects the behavior of the -
strftime function.

A value of 'V' for locale specifies the minimal environment for C translation; a value of
‘1 ‘1 for locale specifies the implementation-defined native environment.
implementation-defined strings may be passed as the second argument to setlocale.

At program startup, the equivalent of

ocal et LC ALL, - “C” 1 ;

Other

is executed.

The implementation shall behave as if no library function calls the setlocale function.

Returns

If a pointer to a string is given for locale and the selection can be honored, the
setlocale function returns a pointer to the string associated with the specified category for
the new locale.
pointer and the program’s locale is not changed.

If the selection cannot be honored, the setlocale function returns a null

A null pointer for locale causes the setlocale function to return a pointer to the string
associated with the category for the program’s current locale; the program’s locale is not
changed. lo2

The pointer to string returned by the setlocale function is such that a subsequent call with
that string value and its associated category will restore that part of the program’s locale. The
string pointed to shall not be modified by the program, but may be overwritten by a subsequent
call to the setlocale function.

Forward references: formatted input/output functions (7.9.6), the multibyte character functions
(7.10.7), the multibyte string functions (7.10.8), string conversion functions (7.10.1), the
strcoll function (7.11.4.3), the strftime function (7.12.3.5), the strxfrm function
(7.11.4.5).

101 The only functions in 7.3 whose behavior is not affected by the current locale are isdigit and
isxdigit.

102 The implementation must arrange to encode in a string the various categories due to a heterogeneous
locale when category has the value LC ALL. -

Library 107

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.4.2 Numeric formatting convention inquiry
7.4.2.1 The localeconv function

#include <locale.h>
struct lconv *localeconv(void);

Description

The localeconv function sets the components of an object with type struct lconv with
values appropriate for the formatting of numeric quantities (monetary and otherwise) according to
the rules of the current locale.

The members of the structure with type char * are pointers to strings, any of which (except
decimalJoint) can point to I1 I’, to indicate that the value is not available in the current
locale or is of zero length. The members with type char are nonnegative numbers, any of
which can be CHAR MAX to indicate that the value is not available in the current locale. The
members include thefollowing:

char *decimalJoint
The decimal-point character used to format nonmonetary quantities.

char *thousands-sep
The character used to separate groups of digits before the decimal-point character in
formatted nonmonetary quantities.

char *grouping
A string whose elements indicate the size of each group of digits in formatted
nonmonetary quantities.

char *int curr symbol
The intFmationa1 currency symbol applicable to the current locale. The first three
characters contain the alphabetic international currency symbol in accordance with
those specified in IS0 4217:1987. The fourth character (immediately preceding the
null character) is the character used to separate the international currency symbol
from the monetary quantity.

char *currency-symbol
The local currency symbol applicable to the current locale.

char *man decimal_point
The decimal-point used to format monetary quantities.

char *mon thousands-sep
?;he separator for groups of digits before the decimal-point in formatted monetary
quantities.

char *man-grouping
A string whose elements indicate the size of each group of digits in formatted
monetary quantities.

char *PO sitive s
The St&g

ign
used to indicate a nonnegative-valued formatted m .onetary quantity.

char *negative-sign
The string used to indicate a negative-valued formatted monetary quantity.

char int-frac-digits
The number of fractional digits (those after the decimal-point) to be displayed in a
internationally formatted monetary quantity.

108 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

char frac digits
?;he number of fractional digits (those after the decimal-point) to be displayed in a
formatted monetary quantity.

Set to 1 or 0 if the currency symbol respectively precedes or succeeds the
value for a nonnegative formatted monetary quantity.

char p-sep-by-space
Set to 1 or 0 if the currency - symbol respectively is or is not separated by a
space from the value for a nonnegative formatted monetary quantity.

char n csprecedes
Set to 1 or 0 if the currency symbol respectively precedes or succeeds the
value for a negative formatted monetary quantity.

char n-sep-by-space
Set to 1 or 0 if the currency symbol respectively is or is not separated by a
space from the value for a negative formatted monetary quantity.

char p_signJosn
Set to a value indicating the positioning of the positive - sign for a nonnegative
formatted monetary quantity.

char n-sign_posn
Set to a value indicating the positioning of the negativ sign for a negative
formatted monetary quantity.

The elements of grouping and mo rouping are interpreted according to the following:

CHAR MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other- The integer value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits before
the current group.

signJosn is interpreted according to the following:

0 Parentheses surround the quantity and current

1 The sign string precedes the quantity and current

2 The sign string succeeds the quantity and current

3 The sign string immediately precedes the current

4 The sign string immediately succeeds the current

The implementation shall behave as if no library function calls the localeconv function.

Returns

The localeconv function returns a pointer to the filled-in object. The structure pointed to
by the return value shall not be modified by the program, but may be overwritten by a subsequent
call to the localeconv function. In addition, calls to the setlocale function with
categories LC ALL, LC MONETARY, or LC NUMERIC may overwrite the contents of the - - -
structure.

The following table illustrates the rules which may well be used by four countries to format
monetary quantities.

Library 109

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Country Positive format Negative format International format

Italy L.1.234 -L.1.234 ITL.1.234
Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56
Norway kr1.234,56 kr1.234,56- NOK 1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the structure
returned by localeconv are:

int curr symbol
currency&nbol
mon decimalJoint -
mon_thousands-sep
man-grouping
positive sign
negative:sign
int frac digits

p sep by 0 -- space
n csprecedes
nIsep_by-space
p sign_posn
n:signJosn

Italy Netherlands Norway Switzerland

" ITL . "
"L " .
'1 '1
'1 'I .
'1 \3 ‘1
‘I I’
1’ _ ‘I
0
0
1
0
1
0
1
1

"NLG " "NOK " ” CHF ”
"F" "kr" "SFrs."
I' 1' '1 'I 'I '1 I I .
'I 'I 'I 'I 'I '1 . . I
'1 \3 ‘I 1' \3 ‘I '1 \3 I’
‘1 1’ ‘1 I’ ‘I ‘1
‘I _ ‘1
2
2
1
1
1
1
1
4

‘1 _ I’
2
2
1
0
1
0
1
2

“C”
2
2
1
0
1
0
1
2

110 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.5 Mathematics <math. h>
The header <math. h> declares several mathematical functions and defines one macro. The

functions take double arguments and return double values.‘03 Integer arithmetic functions
and conversion functions are discussed later.

The macro defined is

HUGE VAL

which expands to a positive double expression, not necessarily representable as a float .lo4

Forward references: integer arithmetic functions (7.10.6), the atof function (7.10.1 .I), the
strtod function (7.10.1.4).

7.51 Treatment of error conditions
The behavior of each of these functions is defined for all representable values of its input

arguments. Each function shall execute as if it were a single operation, without generating any
externally visible exceptions.

For all functions, a domain er-l-oi- occurs if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any required
domain errors; an implementation may define additional domain errors, provided that such errors
are consistent with the mathematical definition of the function.‘05 On a domain error, the
function returns an implementation-defined value; the value of the macro EDOM is stored in
errno.

Similarly, a range error occurs if the result of the function cannot be represented as a
double value. If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the value of the macro
HUGE VAL, with the same sign (except for the tan function) as the correct value of the
functi&; the value of the macro ERANGE is stored in errno. If the result underflows (the
magnitude of the result is so small that it cannot be represented in an object of the specified
type), the function returns zero; whether the integer expression errno acquires the value of the
macro ERANGE is implementation-defined.

7.5.2 Trigonometric functions
7.5.2.1 The aces function

#include <math.h>
double acos(double

Description

x) ;

The aces function computes the principal value of the arc cosine of x.
occurs for arguments not in the range [- 1, +l].

A domain error

103 See “future library directions” (7.13.4).
104 HUGE VAL can be positive infinity in an implementation that supports infinities. -
105 In an implementation that supports infinities, this allows infinity as an argument to be a domain error if

the mathematical domain of the function does not include infinity.

Library 111

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The aces function returns the arc cosine in the range [0, x] radians.

7.5.2.2 The asin function

Synopsis

#include 6nath.h>
double asin(double x);

Description

The asin function computes the principal value of the arc sine of x. A domain error occurs
for arguments not in the range [I- 1, + 1].

Returns

The asin function returns the arc sine in the range [--x/2, +7c/2] radians.

7.5.2.3 The atan function

Synopsis

#include <math.h>
double atan(double x) ;

Description

The atan function computes the principal value of the arc tangent of x.

Returns

The atan function returns the arc tangent in the range [-n/2, .+x/2] radians.

7.5.2.4 The atan function

Synopsis

#include 6nath.h>
double atanr!(double y, double x);

Description

The atan function computes the principal value of the arc tangent of y/x, using the signs
of both arguments to determine the quadrant of the return value. A domain error may occur if
both arguments are zero.

Returns

The atan function returns the arc tangent of y/x, in the range L---n, +E] radians.

7.5.2.5 The cos function

#include <math.h>
double cos(double x) ;

Description

The cos function computes the cosine of x (measured in radians).

Returns

The cos function returns the cosine value.

112 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.5.2.6 The sin function

Synopsis

#include <math.h>
double sin(double x);

Description

The sin function computes the sine of x (measured in radians).

Returns

The sin function returns the sine value.

7.5.2.7 The tan function

#include <math.h>
double tan(double x) ;

Description

The tan function returns the tangent of x (measured in radians).

Returns

The tan function returns the tangent value.

7.5.3 Hyperbolic functions
7.5.3.1 The cash function

Synopsis

#include <math.h>
double cosh(double x);

Description

The cash
magnitude of x

function computes the hyperbolic cosine of x.
is too large.

A range error occurs if the

Returns

The cash function returns the hyperbolic cosine value.

7.5.3.2 The sinh function

Synopsis

#include <math.h>
double sinh(double x);

Description

The sinh function computes the hyperbolic sine of x. A range error occurs if the magnitude
of x is too large.

Returns

The sinh function returns the hyperbolic sine value.

Library 113

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.5.3.3 The tanh function

Synopsis

#include <math.h>
double tanh(double x);

Description

The tanh function computes the hyperbolic tangent of x.

Returns

The tanh function returns the hyperbolic tangent value.

7.5.4 Exponential and logarithmic functions
7.5.4.1 The exp function

Synopsis

#include <math.h>
double exp(double x);

Description

The exp function computes the exponential function of x. A range error occurs if the
magnitude of x is too large.

Returns

The exp function returns the exponential value.

7.5.4.2 The f rexp function

Synopsis

#include <math.h>
double frexp(double value, int *exp);

Description

The frexp function breaks a floating-point number into a normalized fraction and an integral
power of 2. It stores the integer in the int object pointed to by exp.

Returns

The frexp function returns the value x, such that x is a double with magnitude in the
interval [l/2, 1) or zero, and value equals x times 2 raised to the power *exp. If value is
zero, both parts of the result are zero.

7.5.4.3 The ldexp function

Synopsis

#include <math.h>
double ldexp(double x, int exp);

Description

The ldexp function multiplies a floating-point number by an integral power of 2. A range
error may occur.

The ldexp function returns the value of x times 2 raised to the power exp.

114 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.5.4.4 The log function

#include <math.h>
double log(double x);

Description

The log function computes the natural logarithm of x.
argument is negative. A range error may occur if the argument is

The log function returns the natural logarithm.

7.5.4.5 The log10 function

A domain error occurs if the
zero.

#include <math.h>
double loglO(double x);

Description

The log10 function computes the base-ten logarithm of x. A domain error occurs if the
argument is negative. A range error may occur if the argument is zero.

Returns

The log10 function returns the base-ten logarithm.

7.5.4.6 The modf function

Synopsis

#include <math.h>
double modf(double value,

Description

The modf function breaks the argument
which has the same sign as the argument. It
pointed to by iptr.

Returns

double *iptr);

value into integral and fractional parts, each of
stores the integral part as a double in the object

The modf function returns the signed fractional part of value.

7.55 Power functions
7.5.5.1 The pow function

#include <math.h>
double pow(double xr double y);

Description

The pow function computes x raised to the power y. A domain error occurs if x is negative
and y is not an integral value. A domain error occurs if the result cannot be represented when x
is zero and y is less than or equal to zero. A range error may occur.

Returns

The pow function returns the value of x raised to the power y.

Library 115

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.5.5.2 The sqrt function

Synopsis

#incl ,ude <math.h>
doubl ,e sqrt(double x);

Description

The sqrt function computes the nonnegative square root of x. A domain error occurs if the
argument is negative.

Returns

The sqrt function returns the value of the square root.

7.5.6 Nearest integer, absolute value, and remainder functions
7.5.6.1 The ceil function

Synopsis

#include <math.h>
double ceil(double x);

Description

The ceil function computes the smallest integral value not less than x.

Returns

The ceil function returns the smallest integral value not less than x, expressed as a double.

7.5.6.2 The fabs function

#include 6nath.h>
double fabs(double x);

Description

The fabs function computes the absolute value of a floating-point number x.

Returns

The fabs function returns the absolute value of x .

7.5.6.3 The floor function

#include <math.h>
double floor(double x);

Description

The floor function computes the largest integral value not greater than x.

The floor function returns the largest integral value not greater than x, expressed as a
double.

116 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.5.6.4 The fmod function

Synopsis

#include 6nath.h>
double fmod(double x, double y);

Description

The fmod function computes the floating-point remainder of x/y.

Returns

The fmod function returns the value x - i * y, for some integer i such that, if y is nonzero,
the result has the same sign as x and magnitude less than the magnitude of y. If y is zero,
whether a domain error occurs or the fmod function returns zero is implementation-defined.

Library 117

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.6 Nonlocal jumps <set jmp. h>
The header <set jmp. h> defines the macro set jmp, and declares one function and one

type, for bypassing the normal function call and return discipline.1o6

The type declared is

jmp buf -
which is an array type suitable for holding the information needed to restore a calling
environment.

It is unspecified whether set jmp is a macro or an identifier declared with external linkage.
If a macro definition is suppressed in order to access an actual function, or a program defines an
external identifier with the name set jmp, the behavior is undefined.

7.6.1 Save calling environment
7.6.1.1 The set jmp macro

#include <setjmp.h>
int setjmp(jmp-buf env);

Description

The set jmp macro saves its calling environment in its jmp buf argument for later use by -
the long jmp function.

Returns

If the return is from a direct invocation, the set jmp macro returns
return is from a call to the long jmp function, the set jmp macro returns

the value
a nonzero

zero.
value.

If the

Environmental constraint

An invocation of the set jmp macro shall appear only in one of the following contexts:

- the entire controlling expression of a selection or iteration statement;

- one operand of a relational or equality operator with the other operand an integral constant
expression, with the resulting expression being the entire controlling expression of a selection
or iteration statement;

- the operand of
expressi .on of a

a unary
selection

! operator with the resul ting expression being the entire
or iteration statement; or

- the entire expression of an expression statement (possibly cast to void).

ling

106 These functions are useful for dealing with unusual conditions encountered in a low-level function of a
program.

118 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.6.2 Restore calling environment
7.6.2.1 The long jmp function

#include <setjmp.h>
void longjmp(jmp buf env, - int val);

Description

The long jmp function restores the environment saved by the most recent invocation of the
set jmp macro in the same invocation of the program, with the corresponding jmp-buf
argument. If there has been no such invocation, or if the function containing the invocation of
the set jmp macro has terminated execution’07 in the interim, the behavior is undefined.

All accessible objects have values as of the time longjmp was called, except that the values
of objects of automatic storage duration that are local to the function containing the invocation of
the corresponding set jmp macro that do not have volatile-qualified type and have been changed
between the set jmp invocation and long jmp call are indeterminate.

As it bypasses the usual function call and return mechanisms, the longjmp function shall
execute correctly in contexts of interrupts, signals and any of their associated functions.
However, if the long jmp function is invoked from a nested signal handler (that is, from a
function invoked as a result of a signal raised during the handling of another signal), the behavior
is undefined.

Returns

After long jmp is completed, program execution continues as if the corresponding invocation
of the set jmp macro had just returned the value specified by val. The long jmp function
cannot cause the set jmp macro to return the value 0; if val is 0, the set jmp macro returns
the value 1.

107 For example, by executing a return statement or because another long jmp call has caused a transfer
to a set jmp invocation in a function earlier in the set of nested calls.

Library 119

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.7 Signal handling <signal . h>
The header <signal. h> declares a type and two functions and defines several macros, for

handling various sign& (conditions that may be reported during program execution).

The type defined is

sig atomic t - -
which is the integral type of an object that can be accessed as an atomic entity, even in the
presence of asynchronous interrupts.

The macros defined are

SIG DFL
SIG-ERR
SIG-IGN -

which expand to constant expressions with distinct values that have type compatible with the
second argument to and the return value of the signal function, and whose value compares
unequal to the address of any declarable function; and the following, each of which expands to a
positive integral constant expression that is the signal number corresponding to the specified
condition:

SIGABRT

SIGFPE

abnormal termination, such as is initiated by the abort function

an erroneous arithmetic operation, such as zero divide or an operation resulting in
overflow

SIGILL detection of an invalid function image, such as an illegal instruction

SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit calls
to the raise function. Additional signals and pointers to undeclarable functions, with macro
definitions beginning, respectively, with the letters SIG and an uppercase letter or with SIG and -
an uppercase letter,“’ may also be specified by the implementation. The complete set of signals,
their semantics, and their default handling is implementation-defined; all signal numbers shall be
positive.

7.7.~ Specify signal handling
7.7.1.1 The signal function

Synopsis

#include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);

Description

The signal function chooses one of three ways in which receipt of the signal number sig
is to be subsequently handled. If the value of func is SIG DFL, default handling for that
signal will occur. If the value of func is SIG IGN, the signal will be ignored. Otherwise, -

108 See “future library directions” (7.13.5). The names of the signal numbers reflect the following terms
(respectively): abort, floating-point exception, illegal instruction, interrupt, segmentation violation, and
termination.

120 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

func shall point to a
signal handler-.

function to be called when that signal occurs. Such a function is called a

When a signal occurs, if func points to a function, first the equivalent of signal (sig,
SIG DFL); is executed or an implementation-defined blocking of the signal is performed. (If
the Glue of sig is SIGILL, whether the reset to SIG DFL occurs is implementation-defined.)
Next the equivalent of (*func) (sig) ; is executed.-The function func may terminate by
executing a return statement or by calling the abort, exit, or long jmp function. If func
executes a return statement and the value of sig was SIGFPE or any other implementation-
defined value corresponding to a computational exception, the behavior is undefined. Otherwise,
the program will resume execution at the point it was interrupted.

If the signal occurs other than as the result of calling the
behavior is undefined if the signal handler calls any function in t
signal function itself (with a first argument of the signal nur
that caused the invocation of the handler) or refers to any object
than by assigning a value to a static storage duration
sig atomic t. Furthermore, if such a call to the signal - -
return, the value of errno is indeteiminate.‘09

abort or raise function, the
.he standard library other than the
nber corresponding to the signal
with static storage duration other
variable of type volatile
function results in a SIG ERR -

At program startup, the equivalent of

signal(sig, SIG-IGN);

may be executed for some signals selected in an implementation-defined manner; the equivalent

signal(sig, SIG-DFL);

is executed for all other signals defined by the implementation.

The implementation shall behave as if no library function calls the signal function.

Returns

If the request can be honored, the signal function returns the value of func for the most
recent call to signal for the specified signal sig. Otherwise, a value of SIG ERR is returned -
and a positive value is stored in errno.

Forward references: the abort function (7.10.4. l), the exit function (7.10.4.3).

7.7.2 Send signal
7.7.2.1 The raise function

Synopsis

#include <signal.h>
int raise(int sig);

Description

The raise function sends the signal sig to the executing program.

Returns

The raise function returns zero if successful, nonzero if unsuccessful.

109 If any signal is generated by an asynchronous signal handler, the behavior is undefined.

Library 121

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.8 Variable arguments <stdarg . h>
The header <stdarg. h> declares a type and defines three macros, for advancing through a

list of arguments whose number and types are not known to the called function when it is
translated.

A function may be called with a variable number of arguments of varying types. As
described in 6.7.1, its parameter list contains one or more parameters. The rightmost parameter
plays a special role in the access mechanism, and will be designated parmN in this description.

The type declared is

va list

which is a type suitable for holding information needed by the macros va start, va arg, and
va end. - If access to the varying arguments is desired, the called fuf;ction shall declare an
object (referred to as ap in this subclause) having type va list. The object ap may be passed
as an argument to another function; if that function invokes the va arg macro with parameter
ap, the value of ap in the calling function is indeterminate and shall be passed to the va end -
macro prior to any further reference to ap.

7.8.1 Variable argument list access macros
The va start and va arg macros described in this subclause shall be implemented as -

macros, not as actual functions. It is unspecified whether va end is a macro or an identifier
declared with external linkage. If a macro definition is suppr&ed in order to access an actual
function, or a program defines an external identifier with the name va end, the behavior is -
undefined. The va-start and va-end macros shall be invoked in the function accepting a
varying number of arguments, if access to the varying arguments is desired.

7.8.1.1 The va start macro -
Synopsis

#include <stdarg.h>
void va_start(va-list ap, par-mN);

Description

The va st art macro shall be invoked before any access to the unnamed arguments.

The va start macro initializes ap for subsequent use by va arg and va end. -

The parameter parmN is the identifier of the rightmost parameter in the variable parameter list
in the function definition (the one just before the , . . . > . If the parameter parmN is declared
with the register storage class, with a function or array type, or with a type that is not
compatible with the type that results after application of the default argument promotions, the
behavior is undefined.

Returns

The va start macro returns no value.

7.8.1.2 The va arg macro -
Synopsis

#include <stdarg.h>
rg(va list ap, type);

Description

The va arg macro expands to an expression that has the type and value of the next
argument in-the call. The parameter ap shall be the same as the va list ap initialized by
va start. Each invocation of va - arg modifies ap so that the valuesof successive arguments -

122 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

are returned in turn. The parameter type is a type name specified such that the type of a pointer
to an object that has the specified type can be obtained simply by postfixing a * to type. If there
is no actual next argument, or if type is not compatible with the type of the actual next argument
(as promoted according to the default argument promotions), the behavior is undefined.

Returns

The first invocation of the va arg macro after that of the va start macro returns the
value of the argument after that specified by parmN.

i:’
Successive invocations return the values of

the remaining arguments in succession.

7.8.1.3 The va end macro -
Synopsis

#include <stdarg.h>
void va end(va list ap);

Description

The va end macro facilitates a normal return from the function whose variable argument list
was referred to by the expansion of va-start that initialized the va-list ap. The va-end
macro may modify ap so that it is no longer usable (without an intervening invocation of
va start). If there is no corresponding invocation of the va start macro, or if the
va-end macro is not invoked before the return, the behavior is undefined.

Returns

The va end - macro returns no value.

The function fl gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function f 2. The
number of pointers is specified by the first argument to f 1.

#include <stdarg.h>
#define MAXARGS 31

void fl(int n_ptrs, -.-)
1

va-list ap;
char *array[MAXARGS] ;
int ptr no = 0; -
if (n_ptrs > MAXARGS)

n_ptrs = MAX?iRGS;
va-start(ap, nJtrs);
while (ptr-no < nJtrs)

array[ptr no++] = va arg(ap, char *); - -
va end(ap);
f2&+rs, array);

Each call to f 1 shall have visible the definition of the function or a declaration such as

void fl(int, . ..).

Library 123

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.9 Input/output <stdio. h>
7.9.1 Introduction

The header <stdio. h> declares three types, several macros, and many functions for
performing input and output.

The types declared are size t (described in 7.1.6);

FILE

which is an object type capable of recording all the information needed to control a stream,
including its file position indicator, a pointer to its associated buffer (if any), an err-oi- indicator
that records whether a read/write error has occurred, and an end-of-file indicator* that records
whether the end of the file has been reached; and

which is an object type capable of recording all the information needed to specify uniquely every
position within a file.

The macros are NULL (described in 7.1.6);

-1OFBF
IOLBF

-1ONBF

which expand to integral constant expressi
argument to the s etvbuf function

BUFSIZ

which expands to
setbuf function;

EOF

which expands to
indicate end-of-file

an integral constant expression, which is the size of the buffer used by the

a

.ons with distinct values, suitable for use as the third

negative i
that is, no

ntegral constant
more input from

ex
a

.pression
stream;

that is returned by several functions to

FOPEN MAX -
which expands to an integral constant expression that is the minimum number of files that the
implementation guarantees can be open simultaneously;

FILENAME MAX

which expands to an integral constant expression that is the size needed for an array of char
large enough to hold the longest file name string that the implementation guarantees can be
opened; ’ lo

LJmpnam

which expands to an integral constant expression that is the size needed for an array
large enough to hold a temporary file name string generated by the tmpnam function;

of char

110 If the implementation imposes no practical limit on the length of file name strings, the value of
FILENAME MAX should instead be the recommended size of an array intended to hold a file name
string. Of course, file name string contents are subject to other system-specific constraints; therefore all
possible strings of length FILENAME MAX cannot be expected to be opened successfully. -

124 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

SEEK CUR
SEEK-END
SEEK-SET

which expand to integral constant expressions with distinct values, suitable for use as the third
argument to the f seek function;

TMP MAX

which expands to an integral constant expression that is the minimum number of unique file
names that shall be generated by the tmpnam function;

stderr
stdin
stdout

which are expressions of type “pointer to FILE" that point to the FILE objects associated,
respectively, with the standard error, input, and output streams.

Forward references: files (7.9.3), the fseek function (7.9.9.2), streams (7.9.2), the tmpnam
function (7.9.4.4).

7.9.2 Streams
Input and output, whether to or from physical devices such as terminals and tape drives, or

whether to or from files supported on structured storage devices, are mapped into logical data
streams, whose properties are more uniform than their various inputs and outputs. Two forms of
mapping are supported, for text streams and for hinar-y streams. l1 ’

A text stream is an ordered sequence of characters composed into lines, each line consisting
of zero or more characters plus a terminating new-line character. Whether the last line requires a
terminating new-line character is implementation-defined. Characters may have to be added,
altered, or deleted on input and output to conform to differing conventions for representing text in
the host environment. Thus, there need not be a one-to-one correspondence between the
characters in a stream and those in the external representation. Data read in from a text stream
will necessarily compare equal to the data that were earlier written out to that stream only if: the
data consist only of printable characters and the control characters horizontal tab and new-line; no
new-line character is immediately preceded by space characters; and the last character is a new-
line character. Whether space characters that are written out immediately before a new-line
character appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record internal
data. Data read in from a binary stream shall compare equal to the data that were earlier written
out to that stream, under the same implementation. Such a stream may, however, have an
implementation-defined number of null characters appended to the end of the stream.

Environmental limits

An implementation shall support text files with lines containing at least 254 characters,
including the terminating new-line character. The value of the macro BUFSIZ shall be at least
256.

111 An implementation need not distinguish between text streams and binary streams. In such an
implementation, there need be no new-line characters in a text stream nor any limit to the length of a
line.

Library 125

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.9.3 Files
A stream is associated with an external file (which may be a physical device) by opening a

file, which may involve creating a new file. Creating an existing file causes its former contents
to be discarded, if necessary. If a file can support positioning requests (such as a disk file, as
opposed to a terminal), then a file position indicator’ ‘* associated with the stream is positioned at
the start (character number zero) of the file, unless the file is opened with append mode in which
case it is implementation-defined whether the file position indicator is initially positioned at the
beginning or the end of the file. The file position indicator is maintained by subsequent reads,
writes, and positioning requests, to facilitate an orderly progression through the file. All input
takes place as if characters were read by successive calls to the f getc function; all output takes
place as if characters were written by successive calls to the fputc function.

Binary files are not truncated, except as defined in 7.9.5.3. Whether a write on a
ses the associated file to be truncated beyond that point is implementation-defined.

text stream

When a stream is unhu.ered, characters are intended to appear from the source or at the
destination as soon as possible. Otherwise characters may be accumulated and transmitted to or
from the host environment as a block. When a stream is JYIly hufSered, characters are intended to
be transmitted to or from the host environment as a block when a buffer is filled. When a stream
is line bufSer-ed, characters are intended to be transmitted to or from the host environment as a
block when a new-line character is encountered. Furthermore, characters are intended to be
transmitted as a block to the host environment when a buffer is filled, when input is requested on
an unbuffered stream, or when input is requested on a line buffered stream that requires the
transmission of characters from the host environment. Support for these characteristics is
implementation-defined, and may be affected via the setbuf and setvbuf functions.

A file may be disassociated from a controlling stream by cEosing the file. Output streams are
flushed (any unwritten buffer contents are transmitted to the host environment) before the stream
is disassociated from the file. The value of a pointer to a FILE object is indeterminate after the
associated file is closed ‘(including the standard text streams). Whether a file of zero length (on
which no characters have been written by an output stream) actually exists is implementation-
defined.

The file may be subsequently reopened, by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at its start). If the main function
returns to its original caller, or if the exit function is called, all open files are closed (hence all
output streams are flushed) before program termination. Other paths to program termination,
such as calling the abort function, need not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a
FILE object may not necessarily serve in place of the original.

At program startup, three text streams are predefined and need not be opened explicitly -
standard input (for reading conventional input), standard output (for writing conventional
output), and standard error (for writing diagnostic output). When opened, the standard error
stream is not fully buffered; the standard input and standard output streams are fully buffered if
and only if the stream can be determined not to refer to an interactive device.

Functions that open additional (nontemporary) files require a fiZe name, which is a string.
The rules for composing valid file names are implementation-defined. Whether the same file can
be simultaneously open multiple times is also implementation-defined.

112 This is described in the Base Document as a file pointer-. That term is not used in this International
Standard to avoid confusion with a pointer to an object that has type FILE.

126 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Environmental limits

The value of FOPEN MAX shall be at least eight, including the three standard text streams.

Forward references: the exit function (7.10.4.3), the fgetc function (7.9.7.1), the fopen
function (7.9.5.3), the fputc function (7.9.7.3), the setbuf function (7.9.5.5), the setvbuf
function (7.9.5.6).

7.9.4 Operations on files
7.9.4.1 The remove function

Synopsis

#include <stdio.h>
int remove(const char *filename);

Description

The remove function causes the file whose name is the string pointed to by filename to
be no longer accessible by that name. A subsequent attempt to open that file using that name
will fail, unless it is created anew. If the file is open, the behavior of the remove function is
implementation-defined.

Returns

The remove function returns zero if the operation succeeds, nonzero if it fails.

7.9.4.2 The rename function

#include <stdio.h>
int rename(const char *old, const char *new);

Description

The rename function causes the file whose name is the string pointed to by old to be
henceforth known by the name given by the string pointed to by new. The file named old is no
longer accessible by that name. If a file named by the string pointed to by new exists prior to
the call to the rename function, the behavior is implementation-defined.

Returns
. .e

The rename function returns zero if the operation succeeds, nonzero if it fails,“” in which
case if the file existed previously it is still known by its original name.

7.9.4.3 The tmpf ile function

#include <stdio.h>
FILE *tmpfile(void);

Description

The tmpfile function creates a temporary binary file that will automatically be removed
when it is closed or at program termination. If the program terminates abnormally, whether an
open temporary file is removed is implementation-defined. The file is opened for update with
VVwb+V1 mode.

113 Among the reasons the implementation may cause the rename funct
or that it is necessary to copy its conten ts to effectu ate its renaming.

ion to fail are that the file is open

Library 127

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

The tmpfile function
cannot be created, the tmpf

returns a
'ile func

pointer to the
tion returns an

Forward references: the f open function (7.9.5.3).

7.9.4.4 The tmpnam function

stream of the file that it created.
ull pointer.

If the file

#include <stdio.h>
char *tmpnam(char *s);

Description

The tmpnam function generates a string that is a valid file name and that is not the same as
the name of an existing file.’ l4

The tmpnam function generates a different string each time it is called, up to TMP MAX
- times. If it is called more than TMP MAX times, the behavior is implementation-defined.

The implementation shall behave as if no library function calls the tmpnam function.

Returns

If the argument is a null pointer, the tmpnam function leaves its result in an internal static
object and returns a pointer to that object. Subsequent calls to the tmpnam function may modify
the same object. If the argument is not a null pointer, it is assumed to point to an array of at
least L tmpnam chars; the tmpnam function writes its result in that array and returns the
argument as its value.

Environmental limits

The value of the macro TMP MAX shall be at least 25. -
7.9.5 File access functions
7.9.5.1 The fclose function

#include <stdio.h>
int fclose (FILE *stream);

Description

The fclose function causes the stream pointed to by stream to be flushed and the
associated file to be closed. Any unwritten buffered data for the stream are delivered to the host
environment to be written to the file; any unread buffered data are discarded. The stream is
disassociated from the file. If the associated buffer was automatically allocated, it is deallocated.

I 14 Files created using strings generated by the tmpnam function are temporary only in the sense that their
names should not collide with those generated by conventional naming rules for the implementation. It
is still necessary to use the remove function to remove such files when their use is ended, and before
program termination.

128 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The fclose function returns zero if the stream was successfully closed, or EOF if any errors
were detected.

7.9.5.2 The f f lush function

Synopsis

#include <stdio.h>
int fflush(FILE *stream);

Description

If stream points to an output stream or an update stream in which the most recent operation
was not input, the fflush function causes any unwritten data for that stream to be delivered to
the host environment to be written to the file; otherwise, the behavior is undefined.

If stream is a null pointer, the fflush function performs this flushing action on all
streams for which the behavior is defined above.

Returns

The fflush function returns EOF if a write error occurs, otherwise zero.

Forward references: the fopen function (7.9.5.3), the ungetc function (7.9.7.11).

7.9.5.3 The fopen function

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Description

The fopen function opens the file whose name is the string pointed to by filename,
associates a stream with it.

The argument mode points to a string beginning with one of the following sequences:’ l5

r
W

a
rb
wb
ab
r+
w+
a+
r+b
w+b
a+b

open text file for reading
truncate to zero length or create text file for writing
append; open or create text file for writing at end-of-file
open binary file for reading
truncate to zero length or create binary file for writing
append; open or create binary file for writing at end-of-file
open text file for update (reading and writing)
truncate to zero length or create text file for update
append; open or create text file for update, writing at end-of-file

or rb+ open binary file for update (reading and writing)
or wb+ truncate to zero length or create binary file for update
or ab+ append; open or create binary file for update, writing at end-of-file

Opening a file with read
file does not exist or cannot

su
Opening a file

bsequent writes

mode (
be read.

' r' as the first character in the argument) fails if the

with append mode (’ a' as the first character in the mode argument) causes all
to the file to be forced to the then current end-of-file, regardless of intervening

115 Additional characters may follow these sequences.

Library 129

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

calls to the fseek function. In some implementations, opening a binary file with append mode
('b' as the second or third character in the above list of mode argument values) may initially
position the file position indicator for the stream beyond the last data written, because of null
character padding.

When a file is opened with update mode (’ +’ as the second or third character in the above
list of mode argument values), both input and output may be performed on the associated stream.
However, output may not be directly followed by input without an intervening call to the
f flush function or to a file positioning function (f seek, fsetpos, or rewind), and input
may not be directly followed by output without an intervening call to a file positioning function,
unless the input operation encounters end-of-file. Opening (or creating) a text file with update
mode may instead open (or create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not
interactive device. The error and end-of-file indicators for the stream are cleared.

Returns

The fopen function returns a
operation fails, fopen returns a null

pointer to the object controlling the stream.
pointer

to refer to an

If the open

Forward references: file positioning functions (7.9.9).

7.9.5.4 The f reopen function

Synopsis

#include <stdio.h>
FILE *freopen(const char *filename, const char *mode,

FILE *stream);

Description

The freopen function opens the file whose name is the string pointed to by filename and
associates the stream pointed to by stream with it. The mode argument is used just as in the
f open function.’ l6

The freopen function first attempts to close any file that is associated with the specified
stream. Failure to close the file successfully is ignored. The error and end-of-file indicators for
the stream are cleared.

Returns

The freopen function returns a null pointer if the open operation fails.
freopen returns the value of stream.

7.9.5.5 The setbuf function

Synopsis

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

Otherwise,

116 The primary use of the freopen function is to change the file associated with a standard text stream
(stderr, stdin, or stdout), as those identifiers need not be modifiable lvalues to which the value
returned by the fopen function may be assigned.

130 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Description

Except that it returns no value, the setbuf function is equivalent to the setvbuf function
invoked with the values -1OFBF for mode and BUFSIZ for size, or (if buf is a null pointer),
with the value IONBF for mode.

Returns

The setbuf function returns no value.

Forward references: the setvbuf function (7.9.5.6).

7.9.5.6 The setvbuf function

Synopsis

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode, size> size);

Description

The setvbuf function may be used only after the stream pointed to by stream has been
associated with an open file and before any other operation is performed on the stream. The
argument mode determines how stream will be buffered, as follows: IOFBF causes
input/output to be fully buffered;
causes input/output to be unbuffered,

IOLBF causes input/output to be line buffered; -1ONBF
If buf is not a null pointer, the array it points to may be

used instead of a buffer allocated by the setvbuf function.’ l7 The argument size specifies
the size of the array. The contents of the array at any time are indeterminate.

Returns

The setvbuf function returns zero on
mode or if the request cannot be honored.

success, or nonzero if an invalid value is given for

7.9.6 Formatted input/output functions
7.9.6.1 The f print f function

Synopsis r

#include <stdio.h>
int fprintf(FILE *stream, const char *format, . ..).

Description

The fprintf function writes output to the stream pointed to by stream, under control of
the string pointed to by format that specifies how subsequent arguments are converted for
output. If there are insufficient arguments for the format, the behavior is undefined. If the
format is exhausted while arguments remain, the excess arguments are evaluated (as always) but
are otherwise ignored. The fprintf function returns when the end of the format string is
encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial shift
state. The for-n-rat is composed of zero or more directives: ordinary multibyte characters (not %),
which are copied unchanged to the output stream; and conversion specifications, each of which
results in fetching zero or more subsequent arguments. Each conversion specification is
introduced by the character %. After the %, the following appear in sequence:

117 The buffer must have a lifetime at least as great a .s the open stream, so the stream should be closed
before a buffer that has automatic storage duration is deallocated upon block exit.

Library 131

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

- Zero or more flags (in any order) that modify the meaning of the conversion specification.

- An optional minimum field width. If the converted value has fewer characters than the field
width, it will be padded with spaces (by default) on the left (or right, if the left adjustment
flag, described later, has been given) to the field width. The field width takes the form of an
asterisk * (described later) or a decimal integer.’ ‘*

- An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversions, the number of digits to appear after the decimal-point character for e,
E, and f conversions, the maximum number of significant digits for the g and G conversions,
or the maximum number of characters to be written from a string in s conversion. The
precision takes the form of a period (.) followed either by an asterisk * (described later) or
by an optional decimal integer; if only the period is specified, the precision is taken as zero.
If a precision appears with any other conversion specifier, the behavior is undefined.

- An optional h specifying that a following d, i, o, u, x, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will have been promoted
according to the integral promotions, and its value shall be converted to short int or
unsigned short int before printing); an optional h specifying that a following n
conversion specifier applies to a pointer to a short int argument; an optional 1 (ell)
specifying that a following d, i, o, u, x, or X conversion specifier applies to a long int or
unsigned long int argument; an optional 1 specifying that a following n conversion
specifier applies to a pointer to a long int argument; or an optional L specifying that a
following e, E, f, g, or G conversion specifier applies to a long double argument. If an
h, 1, or L appears with any other conversion specifier, the behavior is undefined.

- A character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this
case, an int argument supplies the field width or precision. The arguments specifying field
width, or precision, or both, shall appear (in that order) before the argument (if any) to be
converted. A negative field width argument is taken as a - flag followed by a positive field
width. A negative precision argument is taken as if the precision were omitted.

The flag characters and their meanings are

The result of the conversion will be left-justified within the field. (It will be right-justified
if this flag is not specified.)

+ The result of a signed conversion will always begin with a plus or minus sign. (It
begin with a sign only when a negative value is converted if this flag is not specified.)

will

space If the first character of a signed conversion is not a sign, or if a signed conversion results
in no characters, a space will be prefixed to the result. If the space and + flags both
appear, the space flag will be ignored.

The result is to be converted to an “alternate form.” For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or X) conversion, a
nonzero result will have Ox (or OX) prefixed to it. For e, E, f, g, and G conversions, the
result will always contain a decimal-point character, even if no digits follow it.
(Normally, a decimal-point character appears in the result of these conversions only if a
digit follows it.) For g and G conversions, trailing zeros will not be removed from the
result. For other conversions, the behavior is undefined.

118 Note that 0 is taken as a flag, not as the beginning of a field width.

132 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and - flags both appear, the 0 flag will be ignored. For d, i, o, u,
x, and X conversions, if a precision is specified, the 0 flag will be ignored. For other
conversions, the behavior is undefined.

The conversion snecifiers and their meanings are

d,i

oru,xrx

f

e,E

C

S

The int argument is converted to signed decimal in the style [-]dddd. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with a precision of
zero is no characters.

The unsigned int argument is converted to unsigned octal (o), unsigned decimal
(u), or unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef
are used for x conversion and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting a zero value with a precision of zero is no
characters.

The double argument is converted to decimal notation in the style [--]ddd.ddd,
where the number of digits after the decimal-point character is equal to the precision
specification. If the precision is missing, it is taken as 6; if the precision is zero and
the # flag is not specified, no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it. The value is rounded to the
appropriate number of digits.

The double argument is converted in the style [--]d.ddde+dd, where there is one
digit before the decimal-point character (which is nonzero if the argument is nonzero)
and the number of digits after it is equal to the precision; if the precision is missing,
it is taken as 6; if the precision is zero and the # flag is not specified, no decimal-
point character appears. The value is rounded to the appropriate number of digits.
The E conversion specifier will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. If the value is zero, the
exponent is zero.

The double argument is converted in style f or e (or in style E in the case of a G
conversion specifier), with the precision specifying the number of significant digits.
If the precision is zero, it is taken as 1. The style used depends on the value
converted; style e (or E) will be used only if the exponent resulting from such a
conversion is less than -4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result; a decimal-point character appears
only if it is followed by a digit.

The int argument
is written.

is converted to an unsigned char, and the resulting character

The argument shall be a pointer to an array of character type.’ l9 Characters from the
array are written up to (but not including) a terminating null character; if the precision
is specified, no more than that many characters are written. If the precision is not
specified or is greater than the size of the array, the array shall contain a null
character.

119 No special provisions are made for multibyte characters.

Library 133

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

P The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in an implementation-defined manner.

n The argument shall be a pointer to an integer into which is wl-itten the number of
characters written to the output stream so far by this call to fprintf. No argument
is converted.

% A % is written. No argument is converted. The complete conversion specification
shall be %%.

If a conversion specification is invalid, the behavior is undefined.‘*O

If any argument is, or points to, a union or an aggregate
using %s conversion, or a pointer using %p conversion), the

(except for
behavior is

an array of character type
undefined.

In no case does a nonexistent
. conversion is wider than the field

Returns

or small field width cause truncation of a field; if the result of a
width, the field is expanded to contain the conversion result.

The fprintf function returns the number of characters
output error occurred.

transmitted, or a negative value if an

Environmental limit

The minimum value for the maximum number of characters produced by any single
conversion shall be 509.

To print a date and time in the form “Sunday, July 3, 10:02” followed by n: to five decimal
places:

#include Kmath.h>
#include <stdio.h>
/* . . . */
char *weekday, *month; / * pointers to strings * /
int day, hour, min;
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);
fprintf(stdout, "pi = %.5f\n", 4 * atan(l.O));

7.9.6.2 The fscanf function

#include <stdio.h>
int fscanf (FILE *stream, const char *format, . ..).

Description

The fscanf function reads input from the stream pointed to by stream, under control of
the string pointed to by format that specifies the admissible input sequences and how they are
to be converted for assignment, using subsequent arguments as pointers to the objects to receive
the converted input. If there are insufficient arguments for the format, the behavior is undefined.
If the format is exhausted while arguments remain, the excess arguments are evaluated (as
always) but are otherwise ignored.

I 20 See “future library directions” (7.13.6).

134 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

The format shall be a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: one or more white-space characters; an
ordinary multibyte character (neither % nor a white-space character); or a conversion specification.
Each conversion specification is introduced by the character %. After the %, the following appear
in sequence:

- An optional assignment-suppressing character *.

- An optional nonzero decimal integer that specifies the maximum field width.

- An optional h, 1 (ell) or L indicating the size of the receiving object. The conversion
specifiers d, i, and n shall be preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int, or by 1 if it is a pointer to long int. Similarly,
the conversion specifiers o, u, and x shall be preceded by h if the corresponding argument is
a pointer to unsigned short int rather than a pointer to unsigned int, or by 1 ifit is
a pointer to unsigned long int. Finally, the conversion specifiers e, f, and g shall be
preceded by 1 if the corresponding argument is a pointer to double rather than a pointer to
float, or by L if it is a pointer to long double. If an h, 1, or L appears with any other
conversion specifier, the behavior is undefined.

- A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

The fscanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the fscanf function returns. Failures are described as input failures (due to the
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first
non-white-space character (which remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next characters
of the stream. If one of the characters differs from one comprising the directive, the directive
fails, and the differing and subsequent characters remain unread.

A directive that
described below for

is a conversion specification defines a set of matching
each specifier. A conversion specification is executed in

input sequences, as
the following steps:

Input white-space characters (as specified by the isspace function) are skipped, unless the -
specification includes a [, c, or n specifier.‘*’

An input item is read from the stream, unless the specification includes an n specifier. An
input item is defined as the longest matching sequence of input characters, unless that exceeds a
specified field width, in which case it is the initial subsequence of that length in the sequence.
The first character, if any, after the input item remains unread. If the length of the input item is
zero, the execution of the directive fails: this condition is a matching failure, unless an error
prevented input from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count
of input characters) is converted to a type appropriate to the conversion specifier. If the input
item is not a matching sequence, the execution of the directive fails: this condition is a matching
failure. Unless assignment suppression was indicated by a *, the result of the conversion is
placed in the object pointed to by the first argument following the format argument that has not
already received a conversion result. If this object does not have an appropriate type, or if the
result of the conversion cannot be represented in the space provided, the behavior is undefined.

121 These white- space characters are not counted against a specified field width.

Library 135

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument.
The corresponding argument shall be a pointer to integer.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol function with the value 0 for the base argument. The
corresponding argument shall be a pointer to integer.

0 Matches an optionally signed octal integer, whose format is the same as expected for the
subject sequence of the strtoul function with the value 8 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

U Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

X Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the strtoul function with the value 16 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

e, f, g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod function. The corresponding argument
shall be a pointer to floating.

S Matches a sequence of non-white-space characters. ‘** The corresponding argument shall
be a pointer to the initial character of an array large enough to accept the sequence and a
terminating null character, which will be added automatically.

i Matches a nonempty sequence of characters’*’ from a set of expected characters (the
scanset). The corresponding argument shall be a pointer to the initial character of an
array large enough to accept the sequence and a terminating null character, which will be
added automatically. The conversion specifier includes all subsequent characters in the
f onnat string, up to and including the matching right bracket (I). The characters
between the brackets (the scanlist) comprise the scanset, unless the character after the
left bracket is a circumflex (“), in which case the scanset contains all characters that do
not appear in the scanlist between the circumflex and the right bracket. If the conversion
specifier begins with [] or [^] , the right bracket character is in the scanlist and the
next right bracket character is the matching right bracket that ends the specification;
otherwise the first right bracket character is the one that ends the specification. If a -
character is in the scanlist and is not the first, nor the second where the first character is
a A9 nor the last character, the behavior is implementation-defined.

C Matches a sequence of characters’** of the number specified by the field width (1 if no
field width is present in the directive). The corresponding argument shall be a pointer to
the initial character of an array large enough to accept the sequence. No null character
is added.

P Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the %p conversion of the fprintf function.
The corresponding argument shall be a pointer to a pointer to void. The interpretation
of the input item is implementation-defined. If the input item is a value converted
earlier during the same program execution, the pointer that results shall compare equal to
that value; otherwise the behavior of the %p conversion is undefined.

122 No special prov isions are made for multibyte characters.

136 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISOJIEC 9899: 1990 (E)

n No input is consumed. The corresponding argument shall be a pointer to integer into
which is to be written the number of characters read from the input stream so far by this
call to the fscanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the f scanf function.

% Matches a single %; no conversion or assignment occurs. The complete conversion
specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.123

The conversion specifiers E, G, and X are also valid and behave the same as, respectively, e,
g, and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading white
space, where permitted), execution of the current directive terminates with an input failure;
otherwise, unless execution of the current directive is terminated with a matching failure,
execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left
unread in the input stream. Trailing white space (including new-line characters) is left unread
unless matched by a directive. The success of literal matches and suppressed assignments is not
directly determinable other than via the %n directive.

The fscanf function returns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise, the fscanf function returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early matching failure.

Examples

1. The call:

#include <stdio.h>
/* . . . */
int n, i; float x; char name[50];
n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:

25 54.323-l thompson

will assign to n the value 3, to i the value 25, to x the value 5 .432, and name will
contain thompson\O.

2. The call:

#include <stdio.h>
/* . . . */
int i; float x; char name[50];
fscanf(stdin, "%2d%f%*d %[01234567891vv, &i, bx, name);

with input:

56789 0123 56a72

will assign to i the value 56 and to x the value 789.0, will skip 0123, and name will
contain 56\0. The next character read from the input stream will be a.

123 See “future library directions” (7.13.6).

Library 137

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

3. To accept repeatedly from stdin a quantity, a unit of measure and an item name:

#include <stdio.h>
/*...*/
int count; float quant; char units[21], item[21];
while (!feof(stdin) && !ferror(stdin)) {

count = fscanf(stdin, "%f%20s of %2Os",
bquant, units, item);

fscanf(stdin,"%*[A\n]'l);
1

If the stdin stream contains the following lines:

2 quarts of oil
-12.8degrees Celsius
lots of luck
lO.OLBS of
dirt
lOOergs of energy

the execution of the above example will be analogous to the following assignments:

quant
count
quant
count
count
quant
count
count
count

= 2; strcpy(units, "quarts"); strcpy(item, "oil");
= 3;
= -12.8; strcpy(units, "degrees");
= 2; /* "C I1 fails to match ” o ” * /
= 0; /* "1" fads to match "%f" */
= 10.0; strcpy(units, "LBS") ; strcpy(item, "dirt");
= 3;
= 0; /* 'llOOell fails to match "%f" */
= EOF;

Forward references: the strtod function (7.10.1.4), the strtol function (7.10.1.5), the
strtoul function (7.10.1.6).

7.9.6.3 The printf function

Synopsis

#include <stdio.h>
int printf(const char *format, . ..).

Description

The printf function is equivalent to fprintf with the argument stdout interposed
before the arguments to print f.

Returns

The printf function returns the number of characters transmitted, or a negative value if an
output error occurred.

7.9.6.4 The scanf function

Synopsis

#include <stdio.h>
int scanf(const char *format, . ..).

Description

The scanf function is equivalent to fscanf with the argument stdin interposed before
the arguments to scanf.

138 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The scanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the scanf function returns the number of input items assigned, which
can be fewer than provided for, or even zero, in the event of an early matching failure.

7.9.6.5 The sprint f function

Synopsis

#include <stdio.h>
int sprintf(char *s, const char *format, . ..).

Description

The sprintf function is equivalent to fprintf, except that the argument s specifies an
array into which the generated output is to be written, rather than to a stream. A null character is
written at the end of the characters written; it is not counted as part of the returned sum. If
copying takes place between objects that overlap, the behavior is undefined.

Returns

The sprint f function
terminating null character.

returns the number of characters written in the array, not counting the

7.9.6.6 The sscanf function

Synopsis

#include <stdio.h>
int sscanf (const char *s, const char *format, . ..).

Description

The sscanf function is equivalent to fscanf, except that the argument s specifies a string
from which the input is to be obtained, rather than from a stream. Reaching the end of the string
is equivalent to encountering end-of-file for the fscanf function. If copying takes place
between objects that overlap, the behavior is undefined.

Returns

The sscanf function returns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise, the sscanf function returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early matching failure.

7.9.6.7 The vfprint f function

#include <stdarg.h>
#include <stdio.h>
int vfprintf (FILE *stream, const char *format, va list arg); -

Description

The vfprintf function is equivalent to fprintf, with the variable argument list replaced
by arg, which shall have been initialized by the va start macro (and possibly subsequent -
va arg calls). The vfprintf function does not invoke the va end macro.124 -

124 As the functions vfprintf, vsprintf, and vprintf invoke the va-arg macro, the value of arg
after the return is indeterminate.

Library 139

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The vfprint f function
output error occurred.

returns the number of characters transmitted, or a negati ve value if

The following shows the use of the vfprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

void error(char *function-name, char *format, . ..)
1

va-list args;

va-start(args, format);
/* print out name of function causing err-or */
fprintf(stderr, "ERROR in %s: I', function name);
/* print out remainder of message * /
vfprintf(stderr, format, args);
va end(args);

7.9.6.8 The vprintf function

#include <stdarg.h>
#include <stdio.h>
int vprintf(const char *format, va-list arg);

Description

The vprintf function is equivalent to printf, with the variable argument list replaced by
arg, which shall have been initialized by the va start macro (and possibly subsequent
va arg calls). The vprintf function does not invoke the va end macro.124

Returns

The vprintf function returns the number of characters transmitted, or a negative value if an
output error occurred.

7.9.6.9 The vsprint f function

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *s, const char *format, va-list arg);

Description

The vsprintf function is equivalent to sprintf, with the variable argument list replaced
by arg, which shall have been initialized by the va start macro (and possibly subsequent
va arg calls). The vsprintf function does not invoke the va end macro.124 If copying

- takE place between objects that overlap, the behavior is undefined.

Returns

The vsprintf function returns the number of characters written in the array, not counting
the terminating null character.

140 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.9.7 Character input/output functions
7.9.7.1 The f getc function

Synopsis

#include <stdio.h>
int fgetc (FILE *stream);

Description

The fgetc function obtains the next character (if present) as an unsigned char converted
to an int, from the input stream pointed to by stream, and advances the associated file
position indicator for the stream (if defined).

Returns

The f getc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and f getc returns
EOF. If a read error occurs, the error indicator for the stream is set and fgetc returns EOF.125

7.9.7.2 The f gets function

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Description

The fgets function reads at most one less than the number of characters specified by n from
the stream pointed to by stream into the array pointed to by s. No additional characters are
read after a new-line character (which is retained) or after end-of-file. A null character is written
immediately after the last character read into the array.

Returns

The fgets function returns s if successful. If end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and a null pointer is
returned. If a read error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

7.9.7.3 The fputc function

#include <stdio.h>
int fputc(int c, FILE *stream);

Description

The fputc function writes the character specified by c (converted to an unsigned char)
to the output stream pointed to by stream, at the position indicated by the associated file
position indicator for the stream (if defined), and advances the indicator appropriately. If the file
cannot support positioning requests, or if the stream was opened with append mode, the character
is appended to the output stream.

125 An end-of-file and a read error can be distinguished by use of the feof and ferror functions.

Library 141

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The fputc function returns the character written. If a write error occurs, the error indicator
for the stream is set and fputc returns EOF.

7.9.7.4 The fputs function

Synopsis

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Description

The fputs function writes the string pointed to by s to the stream
The terminating null character is not written.

pointed to by stream.

Returns

The fputs function returns EOF if a write error occurs; otherwise it returns a nonnegative
value.

7.9.7.5 The getc function

Synopsis

#include <stdio.h>
int getc(FILE *stream);

Description
.

The getc function is equivalent to f getc, except that if it is implemented as a macro, it
may evaluate stream more than once, so the argument should never be an expression with side
effects.

Returns

The getc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns
EOF. If a read error occurs, the error indicator for the stream is set and getc returns EOF.

7.9.7.6 The get char function

#include <stdio.h>
int getchar(void);

Description

The getchar function is equivalent to getc with the argument stdin.

Returns

The getchar function returns the next character from the input stream pointed to by
stdin. If the stream is at end-of-file, the end-of-file indicator for the stream is set and
getchar returns EOF. If a read error occurs, the error indicator for the stream is set and
getchar returns EOF.

7.9.7.7 The gets function

Synopsis

#include <stdio.h>
char *gets(char *s);

142 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Description

The gets function reads characters from the input stream pointed to by stdin, into the
array pointed to by s, until end-of-file is encountered or a new-line character is read. Any new-
line character is discarded, and a null character is written immediately after the last character read
into the array.

Returns

The gets function returns s if successful. If end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and a null pointer is
returned. If a read error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

7.9.7.8 The putt function

Synopsis

#include <stdio.h>
int putc(int c, FILE *stream);

Description

The putt function is equivalent to fputc, except that if it is implemented as a macro, it
may evaluate stream more than once, so the argument should never be an expression with side
effects.

Returns

The putt function returns the character written. If a write error occurs, the error indicator
for the stream is set and putt returns EOF.

7.9.7.9 The put char function

Synopsis

#include <stdio.h>
int putchar(int c);

Description

The put char function is equivalent to putt with the second argument stdout.

Returns

The putchar function returns the character written. If a write error occurs, the error
indicator for the stream is set and putchar returns EOF.

7.9.7.10 The puts function

#include <stdio.h>
int puts(const char *s);

Description

The puts function writes the string pointed to by s to the stream pointed to by stdout,
and appends a new-line character to the output. The terminating null character is not written.

The puts
value.

function returns EOF if a write error occurs; otherwise it returns a nonnegative

Library 143

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990(E)

7.9.7.11 The unget c function

Synopsis

#include <stdio.h>
int ungetc(int c, FILE *stream);

Description

The ungetc function pushes the character specified by c (converted to an unsigned
char) back onto the input stream pointed to by stream. The pushed-back characters will be
returned by subsequent reads on that stream in the reverse order of their pushing. A successful
intervening call (with the stream pointed to by stream) to a file positioning function (fseek,
fsetpos, or rewind) discards any pushed-back characters for the stream. The external storage
corresponding to the stream is unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many times
on the same stream without an intervening read or file positioning operation on that stream, the
operation may fail.

If the value of c equals that of the macro EOF, the operation fails and the input iS

unchanged.

A successful call to the ungetc function clears the end-of-file indicator for the stream. The
value of the file position indicator for the stream after reading or discarding all pushed-back
characters shall be the same as it was before the characters were pushed back. For a text stream,
the value of its file position indicator after a successful call to the ungetc function is
unspecified until all pushed-back characters are read or discarded. For a binary stream, its file
position indicator is decremented by each successful call to the ungetc function; if its value
was zero before a call, it is indeterminate after the call.

Returns

The ungetc function returns the character pushed back after conversion, or EOF if the
operation fails.

Forward references: file positioning functions (7.9.9).

7.9.8 Direct input/output functions
7.9.8.1 The f read function

#include <stdio.h>
size-t fread(void *ptr, size-t size, size> mnernb,

FILE *stream);

Description

The f read function reads, into the array pointed to by ptr, up to nmemb elements whose
size is specified by size, from the stream pointed to by stream. The file position indicator for
the stream (if defined) is advanced by the number of characters successfully read. If an error
occurs, the resulting value of the file position indicator for the stream is indeterminate. If a
partial element is read, its value is indeterminate.

Returns

The fread function returns the number of elements successfully read, which may be less
than nxnemb if a read error or end-of-file is encountered. If size or nmemb is zero, fread
returns zero and the contents of the array and the state of the stream remain unchanged.

144 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.9.8.2 The fwrite function

Synopsis

#include <stdio.h>
size-t fwrite(const void *ptr, size t size, size t nmemb, -

FILE *stream);

Description

The fwrite function writes, from the array pointed to by ptr, up to nmemb elements
whose size is specified by size, to the stream pointed to by stream The file position
indicator for the stream (if defined) is advanced by the number of characters successfully written.
If an error occurs, the resulting value of the file position indicator for the stream is indeterminate.

Returns

The fwrite function returns the number of elements successfully written, which will be less
than nmemb only if a write error is encountered.

7.9.9 File positioning functions
7.9.9.1 The f getpos function

#include <stdio.h>
int fgetpos (FILE *stream, fpos

Description

The fgetpos function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains unspecified
information usable by the fsetpos function for repositioning the stream to its position at the
time of the call to the fgetpos function.

Returns

If succes
nonzero and

‘sful, the fgetpos
stores an implemen

function returns zero; on failure, the fgetpos function returns
tation-defined positive value in errno.

Forward references: the f setpos function (7.9.9.3).

7.9.9.2 The f seek function

#include <stdio.h>
int fseek (FILE *stream, long int offset, int whence);

Description

The f seek function sets the file position indicator for the stream pointed to by stream.

For a binary stream, the new position, measured in characters from the beginning of the file,
is obtained by adding offset to the position specified by whence. The specified position is
the beginning of the file if whence is SEEK SET, the current value of the file position indicator
if SEEK CUR, or end-of-file if SEEK ENf A binary stream need not meaningfully support
fseek calls with a whence value of SkEK END. -

For a text stream, either offset shall be zero, or offset shall be a value returned by an
earlier call to the ftell function on the same stream and whence shall be SEEK SET. -

A successful call to the fseek function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fseek call, the next
operation on an update stream may be either input or output.

Library 145

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The fseek function returns nonzero only for a request that cannot be satisfied.

Forward references: the ftell function (7.9.9.4).

7.9.9.3 The f setpos function

Synopsis

#include <stdio.h>
int fsetpos(FILE *stream, const fpost *pas);

Description

The f setpos function sets the file position indicator for the stream pointed to by stream
according to the value of the object pointed to by pos, which shall be a value obtained from an
earlier call to the fgetpos function on the same stream.

A successful call to the f setpos function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fsetpos call, the
next operation on an update stream may be either input or output.

Returns

If successful, the fsetpos function returns zero; on failure, the fsetpos function returns
.zero and stores an implementation-defined positive value in errno.

7.9.9.4 The ftell function

Synopsis

#include <stdio.h>
long int ftell(FILE *stream);

Description

The ftell function obtains the current value of the file position indicator for the stream
pointed to by stream. For a binary stream, the value is the number of characters from the
beginning of the file. For a text stream, its file position indicator contains unspecified
information, usable by the fseek function for returning the file position indicator for the stream
to its position at the time of the ftell call; the difference between two such return values is not
necessarily a meaningful measure of the number of characters written or read.

Returns

If successful, the ftell function returns the current value of the file position indicator for
the stream. On failure, the ftell function returns - IL and stores an implementation-defined
positive value in errno.

7.9.9.5 The rewind function

Synopsis

#include <stdio.h>
void rewind(FILE *stream);

Description

The rewind function
the beginning of the file.

sets the file position
It is equ ivalent to

indicator for the stream pointed to by stream

(void)fseek(stream, OL, SEEK SET)

except that the error indicator for the stream is also cleared.

146 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The rewind function returns no value.

7.9.10 Error-handling functions
7.9.10.1 The clearerr function

#include <stdio.h>
void clearerr(FILE *stream);

Description

The clearerr function clears the end-of-file and error indicators for the stream pointed to
by stream

Returns

The clearerr function returns no value.

7.9.10.2 The feof function

Synopsis

#include <stdio.h>
int feof(FILE *stream);

Description

The feof function tests the end-of-file indicator for the stream pointed to by stream.

Returns

The feof function returns nonzero if and only if the end-of-file indicator is set for stream.

7.9.10.3 The f error function

Synopsis

#include <stdio.h>
int ferror(FILE *stream);

Description

The ferror function tests the error indicator for the stream pointed to by stream.

Returns

The ferror function returns nonzero if and only if the error indicator is set for stream.

7.9.10.4 The perror function

Synopsis

#include <stdio.h>
void perror(const char *s);

Description

The perror function maps the error number in the integer expression errno to an error
message. It writes a sequence of characters to the standard error stream thus: first (if s is not a
null pointer and the character pointed to by s is not the null character), the string pointed to by s
followed by a colon (:) and a space; then an appropriate error message string followed by a
new-line character. The contents of the error message strings are the same as those returned by
the st rerror function with argument errno, which are implementation-defined.

Library 147

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The perror function returns no value.

Forward references: the strerror function (7.11.6.2).

148 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.10 General utilities <stdlib. h>
The header <stdlib.

defines several macros. 126
h> declares four types and several functions of general utility, and

The types declared are siz

div t

and wchar t (both described in 7.1.6),

which is a structure type that is the type of the value returned by the div function, and

ldiv t

which is a structure type that is the type of the value returned by the ldiv function.

The macros defined are NULL (described in 7.1.6);

EXIT FAILURE -
and

EXIT SUCCESS

which expand to integral expressions that may be used as the argument to the exit function to
return unsuccessful or successful termination status, respectively, to the host environment;

RANDMAX

which expands to an integral constant expression, the value of which is the maximum value
returned by the rand function; and

MB CUR MAX

which expands to a positive integer expression whose value is the maximum number of bytes in a
multibyte character for the extended character set specified by the current locale (category
LC-CTYPE), and whose value is never greater than MB-LEN MAX.

7.10.1 String conversion functions
The functions atof, atoi, and atol need not affect the value of the integer expression

errno on an error. If the value of the result cannot be represented, the behavior is undefined.

7.10.1.1 The atof function

Svnopsis c

#include <stdlib.h>
double atof(const char *nptr);

Description

The atof function converts the initial portion of the string pointed to by nptr to double
representation. Except for the behavior on error, it is equivalent to

strtod(nptr, (char **)NULL)

Returns

The atof function returns the converted value.

Forward references: the strtod function (7.10.1.4).

I26 See “future library directions” (7.13.7).

Library 149

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.10.1.2 The atoi function

#include <stdlib.h>
int atoi(const char *nptr);

Description

The atoi function converts the initial portion of the string
representation. Except for the behavior on error, it is equivalent to

(int)strtol(nptr, (char **)NULL, 10)

Returns

The atoi function returns the converted value.

Forward references: the strtol function (7.10.1 S).

7.10.1.3 The atol function

Synopsis

#include <stdlib.h>
long int atol(const char *nptr);

Description

The atol function converts the initial portion of the string
int representation. Except for the behavior on error, it is equival

pointed to by nptr to int

pointed to by nptr to long
ent to

strtol(nptr, (char **)NULL, 10)

Returns

The atol function returns the converted value.

Forward references: the strtol function (7.10.1 S).

7.10.1.4 The strtod function

Synopsis

#include <stdlib.h>
double strtod(const char *nptr, char **endptr);

Description

The strtod function converts the initial portion of the string pointed to by nptr to
double representation. First, it decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by the isspace function), a subject
sequence resembling a floating-point constant; and a final string of one or more unrecognized
characters, including the terminating null character of the input string. Then, it attempts to
convert the subject sequence to a floating-point number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then a nonempty
sequence of digits optionally containing a decimal-point character, then an optional exponent part
as defined in 6.1.3.1, but no floating suffix. The subject sequence is defined as the longest initial
subsequence of the input string, starting with the first non-white-space character, that is of the
expected form. The subject sequence contains no characters if the input string is empty or
consists entirely of white space, or if the first non-white-space character is other than a sign, a
digit, or a decimal-point character.

If the subject sequence has the expected form, the sequence of characters starting with the
first digit or the decimal-point character (whichever occurs first) is interpreted as a floating
constant according to the rules of 6.1.3.1, except that the decimal-point character is used in place

150 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

of a period, and that if neither an exponent part nor a decimal-point character appears, a decimal
point is assumed to follow the last digit in the string. If the subject sequence begins with a
minus sign, the value resulting from the conversion is negated. A pointer to the final string is
stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the TV’ locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns

The strtod function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of representable values, plus
or minus HUGE VAL is returned (according to the sign of the value), and the value of the macro -
ERANGE is stored in errno. If the correct value would cause underflow, zero is returned and
the value of the macro ERANGE is stored in errno.

7.10.1.5 The strtol function

Synopsis

#include <stdlib.h>
long int strtol(const char *nptr, char **endptr, int base);

Description

The strtol function converts the initial portion of the string pointed to by nptr to long
int representation. First, it decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by the isspace function), a subject
sequence resembling an integer represented in some radix determined by the value of base, and
a final string of one or more unrecognized characters, including the terminating null character of
the input string. Then, it attempts to convert the subject sequence to an integer, and returns the
result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in 6.1.3.2, optionally preceded by a plus or minus sign, but not including an
integer suffix. If the value of base is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer suffix. The
letters from a (or A) through z (or Z) are ascribed the values 10 to 35; only letters whose
ascribed values are less than that of base are permitted. If the value of base is 16, the
characters Ox or OX may optionally precede the sequence of letters and digits, following the sign
if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is empty or consists entirely of white space, or if the
first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to the rules of
6.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and
36, it is used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is negated. A
pointer to the final string is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

Library 151

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

In other than the “C” locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns

The strtol function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of representable values,
LONG MAX or LONG MIN is returned (according to the sign of the value), and the value of the
macro>RANGE is storkd in errno.

7.10.1.6 The strtoul function

Synopsis

#include <stdlib.h>
unsigned long int strtoul(const char *nptr, char **endptr,

int base);

Description

The strtoul function converts the initial portion of the string pointed to by nptr to
unsigned long int representation. First, it decomposes the input string into three parts: an
initial, possibly empty, sequence of white-space characters (as specified by the isspace
function), a subject sequence resembling an unsigned integer represented in some radix
determined by the value of base, and a final string of one or more unrecognized characters,
including the terminating null character of the input string. Then, it attempts to convert the
subject sequence to an unsigned integer, and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in 6.1.3.2, optionally preceded by a plus or minus sign, but not including an
integer suffix. If the value of base is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer suffix. The
letters from a (or A) through z (or Z) are ascribed the values 10 to 35; only letters whose
ascribed values are less than that of base are permitted. If the value of base is 16, the
characters Ox or OX may optionally precede the sequence of letters and digits, following the sign
if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is empty or consists entirely of white space, or if the
first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to the rules of
6.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and
36, it is used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is negated. A
pointer to the final string is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

be
In other

accepted.
than the rrC11 locale, additional implementation-defined subject sequence forms may

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

152 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISOJIEC 9899: 1990 (E)

Returns

The strtoul function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of representable values,
ULONG MAX is returned, and the value of the macro ERANGE is stored in errno.

7.10.2.Pseudo-random sequence generation functions
7.10.2.1 The rand function

#include <stdlib.h>
int rand(void);

Description

The rand function computes a sequence of pseudo-random integers in the range 0 to
RAND MAX.

The implementation shall behave as if no library function calls the rand function.

Returns

The rand function returns a pseudo-random integer.

Environmental limit

The value of the RAND MAX macro shall be at least 32767.

7.10.2.2 The srand function

Synopsis

#include <stdlib.h>
void srand(unsigned int seed);

Description

The srand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand. If srand is then called with the same
seed value, the sequence of pseudo-random numbers shall be repeated. If rand is called before
any calls to srand have been made, the same sequence shall be generated as when srand is
first called with a seed value of 1.

The implementation shall behave as if no library function calls the srand function.

Returns

The srand function returns no value.

Example

The following functions define a portable implementation of rand and srand.

Library 153

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

static unsigned long int next = 1;

int rand(void) /* RAND MAX assumed to be 32767 */
{

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

1

void srand(unsigned int seed)
{

next = seed;
1

7.10.3 Memory management functions
The order and contiguity of storage allocated by successive calls to the calloc, malloc,

and reallot functions is unspecified. The pointer returned if the allocation succeeds is suitably
aligned so that it may be assigned to a pointer to any type of object and then used to access such
an object or an array of such objects in the space allocated (until the space is explicitly freed or
reallocated). Each such allocation shall yield a pointer to an object disjoint from any other
object. The pointer returned points to the start (lowest byte address) of the allocated space. If
the space cannot be allocated, a null pointer is returned. If the size of the space requested is
zero, the behavior is implementation-defined; the value returned shall be either a null pointer or a
unique pointer. The value of a pointer that refers to freed space is indeterminate.

7.10.3.1 The calloc function

Synopsis

#include <stdlib.h>
void *calloc(size t nmemb, size> size); -

Description

The
size.

calloc function allocates space for
The space is initialized to all bits zero.

an array of
127

objects, each of whose size is

Returns

The calloc function returns either a null pointer or a pointer to the allocated space.

7.10.3.2 The free function

Synopsis

#include <stdlib.h>
void free(void *ptr);

Description

The free function causes the space pointed to by ptr to be deallocated, that is, made
available for further allocation. If ptr is a null pointer, no action occurs. Otherwise, if the
argument does not match a pointer earlier returned by the calloc, malloc, or reallot
function, or if the space has been deallocated by a call to free or reallot, the behavior is
undefined.

127 Note that
constant.

this need not be the same as the representation of floating-point zero or a null pointer

154 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The free function returns no value.

7.10.3.3 The malloc function

#include <stdlib.h>
void *malloc(size_t size);

Description

The ma1
whose value

lot function allocates space for an object whose size is specified by size and
is indeterminate.

Returns

The malloc function returns either a null pointer or a pointer to the allocated space.

7.10.3.4 The reallot function

Synopsis

#include <stdlib.h>
void *realloc(void *ptr, size-t size);

Description

The reallot function changes the size of the object pointed to by ptr to the size specified
by size. The contents of the object shall be unchanged up to the lesser of the new and old
sizes. If the new size is larger, the value of the newly allocated portion of the object is
indeterminate. If ptr is a null pointer, the reallot function behaves like the malloc
function for the specified size. Otherwise, if ptr does not match a pointer earlier returned by
the calloc, malloc, or reallot function, or if the space has been deallocated by a call to
the free or reallot function, the behavior is undefined. If the space cannot be allocated, the
object pointed to by ptr is unchanged. If size is zero and ptr is not a null pointer, the object
it points to is freed.

Returns

The reallot function returns either a null pointer or a pointer to the possibly moved
allocated space.

7.10.4 Communication with the environment
7.10.4.1 The abort function

#include <stdlib.h>
void abort(void);

Description

The abort function causes abnormal program termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return. Whether open output streams
are flushed or open streams closed or temporary files removed is implementation-defined. An
implementation-defined form of the status unsuccessful termination is returned to the host
environment by means of the function call raise (SIGABRT) .

Returns

The abort function cannot return to its caller.

Library 155

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.10.4.2 The atexit function

Synopsis

#include <stdlib.h>
int atexit(void (*func) (void));

Description

The atexit function registers the function pointed to by func, to be called without
arguments at normal program termination.

Implementation limits

The implementation shall support the registration of at least 32 functions.

Returns

The atexit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the exit function (7.10.4.3).

7.10.4.3 The exit function

Synopsis

#include <stdlib.h>
void exit(int status);

Description

The exit function causes normal program termination to occur. If more than one call to the
exit function is executed by a program, the behavior is undefined.

First, all functions registered by the atexit function are called, in the reverse order of their
registration. ’ 28

Next, all open streams with unwritten buffered data are flushed, all open streams are closed,
and all files created by the tmpfile function are removed.

Finally, control is
EXIT SUCCESS, an
retumz. If the value
status unsuccessful ter
defined.

returned to the host environment
implementa

of status
-mination is

.t ion-defined form of
is EXIT FAILURE,
returned.- Otherwise

Returns

The exit function cannot return to its caller.

7.10.4.4 The getenv function

. If the value of status is zero
the status succes?ful termination

an implementation-defined form of
the status returned is implementati

or
1s

the
on-

#include <stdlib.h>
char *getenv(const char *name);

Description

The getenv function searches an environment list, provided by the host environment, for a
string that matches the string pointed to by name. The set of environment names and the
method for altering the environment list are implementation-defined.

128 Each function is called as many times as it was registered.

156 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

The implementation shall behave as if no library function calls the getenv function.

Returns

The getenv function returns a pointer to a string associated with the matched list member.
The string pointed to shall not be modified by the program, but may be overwritten by a
subsequent call to the getenv function. If the specified name cannot be found, a null pointer is
returned.

7.10.4.5 The system function

#include <stdlib.h>
int system(const char *string);

Description

The system function passes the string pointed to by string to the host environment to be
executed by a command pr-ocessol- in an implementation-defined manner. A null pointer may be
used for string to inquire whether a command processor exists.

If the argument is a null pointer, the system function returns nonzero only if a command
processor is available. If the argument is not a null pointer, the system function returns an
implementation-defined value.

7.10.5 Searching and sorting utilities
7.10.5.1 The bsearch function

Synopsis

#include <stdlib.h>
void *bsearch(const void *key, const void *base,

size t nmemb, size t size,
int (compar) (cons: void *, const void *)); -*

Description

The bsearch function searches an array of nmemb objects, the initial element of which is
pointed to by base, for an element that matches the object pointed to by key. The size of each
element of the array is specified by size.

The comparison function pointed to by compar is called with two arguments that point to
the key object and to an array element, in that order. The function shall return an integer less
than, equal to, or greater than zero if the key object is considered, respectively, to be less than,
to match, or to be greater than the array element. The array shall consist of: all the elements that
compare less than, all the elements that compare equal to, and all the elements that compare
greater than the key object, in that order. 129

Returns

The bsearch function returns a pointer to a matching element of the array, or a null pointer
if no match is found. If two elements compare as equal, which element is matched is
unspecified.

129 In practice, the entire array is sorted according to the comparison function.

Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.10.5.2 The qsort function

Synopsis

#include <stdlib.h>
void qsort(void *base, size> nmemb, size-t size,

int (*compar)(const void *, const void *));

Description

The qsort function sorts an array of nmemb objects, the initial element of which is pointed
to by base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function
pointed to by compar, which is called with two arguments that point to the objects being
compared. The function shall return an integer less than, equal to, or greater than zero if the first
argument is considered to be respectively less than, equal to, or greater than the second.

If two elements compare as equal, their order in the sorted array is unspecified.

Returns

The qsort function returns no value.

7.10.6 Integer arithmetic functions
7.10.6.1 The abs function

Synopsis

#include <stdlib.h>
int abs(int j);

Description

The abs function computes the absolute value of an integer If the result cannot be
represented, the behavior is undefined. 13’

Returns

The abs function returns the absolute value.

7.10.6.2 The div function

Synopsis

#include <stdlib.h>
div t div(int numer, int denom); -

Description

The div function computes the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the resulting quotient is the
integer of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behavior is undefined; otherwise, quot * denom + rem shall equal numer.

The div function returns a structure of type div t, comprising both the quotient and the -
remainder. The structure shall contain the following members, in either order:

130 The absolute value of the most negative number cannot be represented in two’s complement.

158 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

int quot; /* quotient */
int rem; /* remainder */

7.10.6.3 The labs function

Synopsis

#include <stdlib.h>
long int labs(long int j);

Description

The labs function is similar to the abs function, except that the argument and the returned
value each have type long int.

7.10.6.4 The ldiv function

Synopsis

#include <stdlib
ldiv t - ldiv(long

h>
int numer, long int denom);

Description

The ldiv function is similar to the div function, except that the arguments and the
members of the returned structure (which has type ldiv t) all have type long int. -
7.10.7 Multibyte character functions

The behavior of the multibyte character functions is affected by the LC CTYPE category of
the current locale. For a state-dependent encoding, each function is placed izo its initial state by
a call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as
other than a null pointer cause the internal state of the function to be altered as necessary. A call
with s as a null pointer causes these functions to return a nonzero value if encodings have state
dependency, and zero otherwise.‘“’ Changing the LC CTYPE category causes the shift state of -
these functions to be indeterminate.

7.10.7.1 The mblen function

Synopsis

#include <stdlib.h>
int mblen(const char *s, size t n); -

Description

If s is not a null pointer, the mblen function determines the number of bytes contained in
the multibyte character pointed to by s. Except that the shift state of the mbtowc function is not
affected, it is equivalent to

mbtowc((wchar t *)O, s, n); -
The implementation shall behave as if no library function calls the mblen function.

Returns

If s is a null pointer, the mblen function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the mblen function either returns 0 (if s points to the null character), or returns the

131 If the implementation employs spec ial bytes to change the shift state, these bytes do not
separate wide character codes, but are grouped with an adjacent multibyte character.

produce

Library 159

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

number of bytes that are contained in the multibyte character (if the next n or fewer bytes
valid multibyte character), or returns - 1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (7.10.7.2).

7.10.7.2 The mbtowc function

form a

#include <stdlib.h>
int mbtowc(wchar t *pwc, const char *s, size-t n); -

Description

If s is not a null pointer, the mbtowc function determines the number of bytes that are
contained in the multibyte character pointed to by s. It then determines the code for the value of
type wchar t that corresponds to that multibyte character. (The value of the code
correspondingto the null character is zero.) If the multibyte character is valid and pwc is not a
null pointer, the mbtowc function stores the code in the object pointed to by pwc. At most n
bytes of the array pointed to by s will be examined.

The implementation shall behave as if no library function calls the mbtowc function.

Returns

If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the mbtowc function either returns 0 (if s points to the null character), or returns the
number of bytes that are contained in the converted multibyte character (if the next n or fewer
bytes form a valid multibyte character), or returns - 1 (if they do not form a valid multibyte
character).

In no case will the value returned be greater than n or the value of the MB CUR MAX macro. - -
7.10.7.3 The wctomb function

Synopsis

#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Description

The wctomb function determines the number of bytes needed to represent the multibyte
character corresponding to the code whose value is wchar (including any change in shift state).
It stores the multibyte character representation in the array object pointed to by s (if s is not a
null pointer). At most MB CUR MAX characters are stored. If the value of wchar is zero, the - -
wctomb function is left in the initial shift state.

The implementation shall behave as if no library function calls the wctoxnb function.

Returns

If s is a null pointer, the wctomb function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the wctomb function returns - 1 if the value of wchar does not correspond to a valid
multibyte character, or returns the number of bytes that are contained in the multibyte character
corresponding to the value of wchar.

In no case will the value returned be greater than the value of the MB CUR MAX macro. - -

160 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.10.8 Multibyte string functions
The behavior of the multibyte string functions is affected by the LC CTYPE category of the

current locale.

7.10.8.1 The mbstowcs function

Synopsis

#include <stdlib.h>
size t mbstowcs(wchar t *pwcs, const char *s, size-t n); - -

Description

The mbstowcs function converts a sequence of multibyte characters that begins in the initial
shift state from the array pointed to by s into a sequence of corresponding codes and stores not
more than n codes into the array pointed to by pwcs. No multibyte characters that follow a null
character (which is converted into a code with value zero) will be examined or converted. Each
multibyte character is converted as if by a call to the mbtowc function, except that the shift state
of the mbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwcs. If copying takes
place between objects that overlap, the behavior is undefined.

Returns

If an invalid multibyte character is encountered, the mbstowcs function returns
(size t) -1. Otherwise, the mbstowcs function returns the number of array elements

modified, not including a terminating zero code, if any.13’

7.10.8.2 The wcstombs function

Synopsis

#include <stdlib.h>
size t wcstombs(char *s, const wchar_t *pwcs, size-t n); -

Description

The wcstombs function converts a sequence of codes that correspond to multibyte characters
from the array pointed to by pwcs into a sequence of multibyte characters that begins in the
initial shift state and stores these multibyte characters into the array pointed to by s, stopping if a
multibyte character would exceed the limit of n total bytes or if a null character is stored. Each
code is converted as if by a call to the wctomb function, except that the shift state of the
wctomb function is not affected.

No more than n
between objects that

bytes will be modified in the array pointed to by s.
overlap, the behavior is undefined.

If copying takes place

Returns

If a code is encountered that does not correspond to a valid multibyte character, the
wcstombs function returns (size-t)-1. Otherwise, the wcstombs function returns the
number of bytes modified, not including a terminating null character, if any.13*

132 The array will not be null- or zero-terminated if the value returned is n.

Library 161

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.11 String handling <string. h>
7.11.1 String function conventions

The header <string. h> declares one type and several functions, and defines one macro
useful for manipulating arrays of character type and other objects treated as arrays of character
type. ‘j3 The type is size t and the macro is NULL (both described in 7.1.6). Various methods
are used for determining the lengths of the arrays, but in all cases a char * or void *
argument points to the initial (lowest addressed) character of the array. If an array is accessed
beyond the end of an object, the behavior is undefined.

7.11.2 Copying functions
7.11.2.1 The memcpy function

Synopsis

#include <string.h>
void *memcpy(void *sl,

Description

The rnemcpy function copies n characters from the object pointed to by s2 into the object
pointed to by sl. If copying takes place between objects that overlap, the behavior is undefined.

const void *s2, size t - n) ;

Returns

The memcpy function returns the value of sl.

7.11.2.2 The memmove function

Synopsis

#include <string.h>
void *memmove(void *sl, const void *s2, size-t n);

Description

The rnemmove function copies n characters from the object pointed to by s2 into the object
pointed to by sl. Copying takes place as if the n characters from the object pointed to by s2
are first copied into a temporary array of n characters that does not overlap the objects pointed to
by sl and s2, and then the n characters from the temporary array are copied into the object
pointed to by sl.

The memmove function returns the value of sl.

7.11.2.3 The strcpy function

#include <string.h>
char *strcpy(char *sl, const char *s2);

Description

The strcpy function copies the string pointed to by s2 (including the terminating null
character) into the array pointed to by sl. If copying takes place between objects that overlap,
the behavior is undefined.

133 See “future library directions” (7.13.8).

162 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The strcpy function returns the value of sl.

7.11.2.4 The strncpy function

Synopsis

#include <string.h>
char *strncpy(char *sl, const char *s2, size t n); -

Description

The strncpy function copies not more than n characters (characters that follow a null
character are not copied) from the array pointed to by s2 to the array pointed to by sl. 134 If
copying takes place between objects that overlap, the behavior is undefined.

If the array pointed to by s2 is a string that is shorter than n characters, null characters are
appended to the copy in the array pointed to by sl, until n characters in all have been written.

Returns

The strncpy function returns the value of sl.

7.11.3 Concatenation functions
7.11.3.1 The strcat function

#include <string.h>
char *strcat(char *sl, const char *s2);

Description

The strcat function appends a copy of the string pointed to by s2 (including the
terminating null character) to the end of the string pointed to by sl. The initial character of s2
overwrites the null character at the end of sl. If copying takes place between objects that
overlap, the behavior is undefined.

Returns

The strcat function returns the value of sl.

7.11.3.2 The st rncat function

Synopsis

#include <string.h>
char *strncat(char *sl, const char *s2, size t n); -

Description

The strncat function appends not more than n characters (a null character and characters
that follow it are not appended) from the array pointed to by s2 to the end of the string pointed
to by sl. The initial character of s2 overwrites the null character at the end of sl. A
terminating null character is always appended to the result.*35 If copying takes place between
objects that overlap, the behavior is undefined.

134 Thus, if there is no null character in the first n characters of the array pointed to by s2, the result will
not be null-terminated.

135 Thus, the maximum number of characters that can end up in the array pointed to by sl is
strlen(sl)+n+l.

Library 163

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The strncat function returns the value of sl.

Forward references: the strlen function (7.11.6.3).

7.11.4 Comparison functions
The sign of a nonzero value returned by the comparison functions memcmp, strcmp, and

strncmp is determined by the sign of the difference between the values of the first pair of
characters (both interpreted as unsigned char) that differ in the objects being compared.

7.11.4.1 The memcmp function

Synopsis

#include <string.h>
int memcmp(const void *sl, const void fs2, size-t n);

Description

The memcmp function compares the
first n characters of the object pointed to

first n characters of the object pointed to by sl to the
by ~2.l~~

Returns

The memcmp function returns an integer greater than, equal to, or less than zero, accordingly
as the object pointed to by sl is greater than, equal to, or less than the object pointed to by s2.

7.11.4.2 The strcmp function

Synopsis

#include <string.h>
int strcmp(const char *sl, const char *s2);

Description

The strcmp function compares the string pointed to by sl to the string pointed to by s2.

Returns

The strcmp function returns an integer greater than, equal to, or less than zero, accordingly
as the string pointed to by sl is greater than, equal to, or less than the string pointed to by s2.

7.11.4.3 The strcoll function

Synopsis

#include <string.h>
int strcoll(const char *sl, const char *s2);

Description

The strcoll function compares the string pointed to by sl to the string pointed to by s2,
both interpreted as appropriate to the LC COLLATE category of the current locale. -

136 The contents of “holes” used as padding for purposes of alignment within structure objects are
indeterminate. Strings shorter than their allocated space and unions may also cause problems in
comparison.

164 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

The strcoll function returns an integer greater than, equal to, or less than zero, accordingly
as the string pointed to by sl is greater than, equal to, or less than the string pointed to by s2
when both are interpreted as appropriate to the current locale.

7.11.4.4 The st rncmp function

#include <string.h>
int strncmp(const char *sl, const char *s2, size t n); -

Description

The st rncmp function compare
character are not compared) from the

s not
array

more than n characters (characters that follow a null
pointed to bY sl to the array pointed to by s2.

Returns

The strncmp function returns an integer greater than, equal to, or less than zero, accordingly
as the possibly null-terminated array pointed to by sl is greater than, equal to, or less than the
possibly null-terminated array pointed to by s2.

7.11.4.5 The strxf rm function

#include <string-h>
size t strxfrm(char *sl, const char *s2, size-t n);

Description

The strxf rm function transforms the string pointed to by s2 and places the resulting string
into the array pointed to by sl. The transformation is such that if the strcmp function is
applied to two transformed strings, it returns a value greater than, equal to, or less than zero,
corresponding to the result of the strcoll function applied to the same two original strings.
No more than n characters are placed into the resulting array pointed to by sl, including the
terminating null character. If n is zero, sl is permitted to be a null pointer. If copying takes
place between objects that overlap, the behavior is undefined.

Returns

The strxfrm function returns the length of the transformed string (not including the
terminating null character). If the value returned is n or more, the contents of the array pointed
to by sl are indeterminate.

Example

The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by s.

1 + strxfrm(NULL, s, 0)

7.11.5 Search functions
7.11.5.1 The memchr function

Synopsis

#include <string.h>
void *memchr(const void *s, int c, size-t n);

Library 165

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990(E)

Description

The memchr function locates the first occurrence of c (converted to an unsigned char) in
the initial n characters (each interpreted as unsigned char) of the object pointed to by s.

Returns

The memchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the object.

7.11.5.2 The strchr function

Synopsis

#include <string.h>
char *strchr(const char *s, int c);

Description

The strchr function locates the first occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

Returns

The strchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the string.

7.11.5.3 The strcspn function

#include <string.h>
size t strcspn(const char *sl, const char *s2);

Description

The strcspn function computes the length of the maximum initial segment of the string
pointed to by sl which consists entirely of characters not from the string pointed to by s2.

Returns

The strcspn function returns the length of the segment.

7.11.5.4 The strpbrk function

Synopsis

#include <string.h>
char *strpbrk(const char *Sl, const char *s2);

Description

The strpbrk function locates the first occurrence in the string pointed to by sl of any
character from the string pointed to by s2.

Returns

The strpbrk function returns a pointer to the character, or a null pointer if no character
from s2 occurs in sl.

7.11.5.5 The strrchr function

Synopsis

#include <string.h>
char *strrchr(const char *s, int c);

166 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Description

The strrchr function locates the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

Returns

The strrchr function returns a pointer to the character, or a null pointer if c does not occur
in the string.

7.11.5.6 The strspn function

Synopsis

#include <string.h>
size t strspn(const char *sl, const char *s2); -

Description

The strspn function computes the length of the maximum initial segment of the string
pointed to by sl which consists entirely of characters from the strin .g pointed to by s2.

Returns

The strspn function returns the length of the segment.

7.11.5.7 The strstr function

Synopsis

#include <string.h>
char *strstr(const char *sl, const char *s2);

Description

The strstr function locates the first occurrence in the
sequence of characters (excluding the terminating null character)

string pointed to by sl
in the string pointed to by

not

of the

The strstr function returns a pointer to the located string, or a null pointer if the string is
found. If s2 points to a string with zero length, the function returns sl.

7.11.5.8 The strtok function

Synopsis

#include <string.h>
char *strtok(char *sl, const char *s2);

Description

A sequence of calls to the strtok function breaks the string pointed to by sl into a
sequence of tokens, each of which is delimited by a character from the string pointed to by s2.
The first call in the sequence has sl as its first argument, and is followed by calls with a null
pointer as their first argument. The separator string pointed to by s2 may be different from call
to call.

The first call in the sequence searches the string pointed to by sl for the first character that is
not contained in the current separator string pointed to by s2. If no such character is found, then
there are no tokens in the string pointed to by sl and the strtok function returns a null
pointer. If such a character is found, it is the start of the first token.

The strtok function then searches from there for a character that is contained in the current
separator string. If no such character is found, the current token extends to the end of the string
pointed to by sl, and subsequent searches for a token will return a null pointer. If such a
character is found, it is overwritten by a null character, which terminates the current token. The

Library 167

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

strtok function
token will start.

Each subsequent call, with a null
from the saved pointer and behaves as

saves a pointer to the following character, from which the next search for a

pointer as the value of the first argument, starts searching
described

The implementation shall behave as if no library function calls the strtok function.

Returns

The strtok
there is no token.

function returns a pointer to the first character of a or a null

Example

#include <string.h>
static char str[] = Ya???b,,,#~~;
char *t;

t = strtok(str, "?"); /* t points to the token "a" */
t = strtok(NULL, ,,,,,); / * t points to the token ” ??b" */
t = strtok(NULL, ‘I#, “) ; /* t points to the token “c” */
t = strtok(NULL, ,,?,,); /* t is a null pointer */

7.11.6 Miscellaneous functions
7.11.6.1 The memset function

#include <string.h>
void *memset(void *s, int c, size-t n);

Description

The memset function copies the value of c
the first n characters of the object pointed to by

(converted to an unsigned char) into each of

The memset function returns the value of s.

7.11.6.2 The strerror function

pointer if

#include <string.h>
char *strerror(int errnum);

Description

The strerror function maps the error number in errnum to an error message string.

The implementation shall behave as if no library function calls the strerror function.

Returns

The strerror function returns a pointer to the string, the contents of which are
implementation-defined. The array pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to the strerror function.

168 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.11.6.3 The strlen function

Synopsis

#include <string.h>
size t strlen(const char *s);

Description

The strlen function computes the length of the string pointed to by s.

Returns

The strlen
character.

function returns the number of characters that precede the terminating null

Library 169

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.12 Date and time <time. h>
7.12.1 Components of time

The header <time. h> defines two macros, and declares four types and several functions for
manipulating
(according to

time. Many functions deal
the Gregorian calendar) and

with a
time.

calendar time
Some functions

that represents the current date
deal with local time, which is

the calendar time expressed for some specific time zone, and with Daylight Saving Time, which
is a temporary change in the algorithm for determining local time. The local time zone and
Daylight Saving Time are implementation-defined.

The macros defined are NULL (described in 7.1.6); and

CLOCKS PER SEC D -

which is the number per second of the value returned by the clock function.

The types declared are size t (described in 7.1.6);

clock t -
and

time t

which are arithmetic types capable of representing times; and

struct tm

which holds the components of a calendar time, called the br-ok-en-down time. The structure shall
contain
normal

t the followin
are expressed

g

int tm set; /* -
int tm min; /* -
int tm hour; /*
int tm:mday; /*
int tm mon; /* -
int tm_year; /*
int tm-wday; /*
int tmgday; /*
int tm isdst; /*

members, in an
the comments.’

Y
37

order. The semantics of the members and their

seconds after the minute - [0, 611 */
minutes after the how - [0, 591 */
hours since midnight - [O, 231 */
day of the month - [l, 311 */
months since January - [O, I I] */
years since 1900 */
days since Sunday - [0, 61 */
days since January I - [0, 3651 */
Daylight Saving Time flag * /

The value of tm isdst is positive if Daylight Saving Time is in effect, zero if Daylight Saving
Time is not in effect, and negative if the information is not available.

7.12.2 Time manipulation functions
7.12.2.1 The clock function

Synopsis

#include <time-h>
clock t clock(void);

Description

The clock function determines the processor time used.

137 The range 10, 611 for tm-set allows for as many as two leap seconds.

170 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

Returns

(clock t)-l.'"* -
7.12.2.2 The dif ftime function

Synopsis

#include <time.h>
double difftime(time t timel, time t time0); - -

Description

The difftime function computes the difference between two calendar times: time1 -
time0.

Returns

The dif ftime function returns the difference expressed in seconds as a double.

7.12.2.3 The mkt ime function

Synopsis

#include <time.h>
times mktime(struct tm *timeptr);

Description

The mktime function converts the broken-down time, expressed as local time, in the
structure pointed to by timeptr into a calendar time value with the same encoding as that of
the values returned by the time function. The original values of the tm wday and tm_yday -
components of the structure are ignored, and the original values of the other components are not
restricted to the ranges indicated above.‘“’ On successful completion, the values of the
tm wday and tm yday components of the structure are set appropriately, and the other
components are set?0 represent the specified calendar time, but with their values forced to the
ranges indicated above; the final value of t ay is not set until tm man and tm_year are -
determined.

Returns

The mktime function returns the specified calendar time encoded as a value of type
time t. If the calendar time cannot be represented, the function returns the value -
(time t)-1. -

Example

What day of the week is July 4, 2001?

138 In order to measure the time spent in a program , the clock function should be called at the start of the
program and its return value subtracted from the value returned by subsequent calls.

139 Thus, a positive or zero value for tm isdst causes the mktime function to presume initially that
Daylight Saving Time, respectively, is E is not in effect for the specified time. A negative value causes
it to attempt to determine whether Daylight Saving Time is in effect for the specified time.

Library 171

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

#include <stdio.h>
#include <time.h>
static const char *const wday[] = (

'Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

1 ;
struct tm time str;
/* . . . */

time str.tmJear = 2001 - 1900;
time-str.tm mon =7-l;
timeIstr.tmImday = 4;
time str.tm hour = 0; - -
time str.tm min = 0; -
time str.tm set = 1;
time-str.tm-isdst = -1;
if (&time(6time-str) ==

time-str.tm_wday =
printf("%s\n", wday[time

7.12.2.4 The time function

#include <time.h>
time t

Description

The time
unspecified.

time(t ime t

function determines the current calendar time.

-1)
7;
str.

*timer);

tm wday]); -

The encoding of the value is

The time function returns
time. The val ue (time t)-1
a null pointer, the returnvalue i

the implementation’s best approximation to the
is returned if the calendar time is not available.

s also assigned to the object it points to.

current ca .lendar
If timer is not

7.12.3 Time conversion functions
Except for the strftime function, these functions return values in one of two static objects:

a broken-down time structure and an array of char. Execution of any of the functions may
overwrite the information returned in either of these objects by any of the other functions. The
implementation shall behave as if no other library functions call these functions.

7.12.3.1 The asct ime function

Synopsis

#include <time.h>
char *asctime(const struct tm *timeptr);

Description

The asctime function converts the broken-down time in the structure pointed to by
timeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\O

using the equivalent of the following algorithm.

172 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

char *asctime(const struct tm *timeptr)
1

static const char wday name[7][3] = {
" Sun" , "Man" , " T'T;e " , "Wed" , IIThulI, IIFrifl, IISatlI

1
.

static const char mon name [12][3] = (
"Jan" , "Feb" , "kar" , "Apr" , "May" , '1 Jun" ,
"Jul" , "Aug" , "Sep" , "Ott" , "Nov" , "Dee"

1 .
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\W,
wday name [timeptr->tm wday], -
man-name[timeptr->tm-Zen],
timeptr->tm-mday, timeptr->tm_hour,
timeptr->tm min, timeptr->tm set,
1900 + timeptr->tm_year); -

return result;

Returns

The asctime function returns a pointer to the string.

7.12.3.2 The ctime function

Synopsis

#include <time.h>
char *ctime(const time t *timer); -

Description

The ctime function converts the calendar time pointed to by timer to local time in the
form of a string. It is equivalent to

asctime(localtime(timer))

Returns

The ctime function returns the pointer returned by the asctime function with that broken-
down time as argument.

Forward references: the localt ime function (7.12.3.4).

7.12.3.3 The gmtime function

Synopsis

#include <time.h>
struct tm *gmtime(const time t *timer); -

Description

The gmtime function converts the calendar time pointed to by timer into a broken-down
time, expressed as Coordinated Universal Time (UTC).

Returns

The gmtime function returns a pointer to that object, or a null pointer if UTC is not
available.

Library 173

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.12.3.4 The localt ime function

Svnopsis Y

#include <time.h>
struct tm *localtime(const time t *timer); -

Description

The localtime
down time, expressed

function converts the calendar time pointed to by timer into a broken-
as local time.

Returns

The localtime function returns a pointer to that object.

7.12.3.5 The st rf t ime function

Synopsis

#include <time.h>
size t strftime(char *s, size-t maxsize,

const char *format, const struct tm *timeptr);

Description

The strftime function places characters into the array pointed to by s as controlled by the
string pointed to by format. The fomjat shall be a multibyte character sequence, beginning and
ending in its initial shift state. The format string consists of zero or more conversion specifiers
and ordinary multibyte characters. A conversion specifier consists of a % character followed by a
character that determines the behavior of the conversion specifier. All ordinary multibyte
characters (including the terminating null character) are copied unchanged into the array. If
copying takes place between objects that overlap, the behavior is undefined. No more than
maxsize characters are placed into the array. Each conversion specifier is replaced by
appropriate characters as described in the following list. The appropriate characters are
determined by the LC TIME category of the current locale and by the values contained in the
structure pointed to bykmept r.

%a is replaced by the locale’s abbreviated weekday name.
%A is replaced by the locale’s full weekday name.
%b is replaced by the locale’s abbreviated month name.
%B is replaced by the locale’s full month name.
%c is replaced by the locale’s appropriate date and time representation.
%d is replaced by the day of the month as a decimal number (01-31).
%H is replaced by the hour (24-hour clock) as a decimal number (00-23).
%I is replaced by the hour (12-hour clock) as a decimal number (01-12).
% j is replaced by the day of the year as a decimal number (00 l-3 66).
%m is replaced by the month as a decimal number (01-12).
%M is replaced by the minute as a decimal number (00-59).
%P is replaced by the locale’s equivalent of the AM/PM designations associated with a 12-

hour clock.
%S is replaced by the second as a decimal number (00-61).
%U is replaced by the week number of the year (the first Sunday

as a decimal number (00-53).
%w is replaced by the weekday as a decimal number (O-6), where
%W is replaced by the week number of the year (the first Monday

as a decimal number (00-53).
%x is replaced by the locale’s appropriate date representation.
%X is replaced by the locale’s appropriate time representation.
%Y
%Y

as the first day of week 1)

Sunday is 0.
as the first day of week 1)

is replaced by the year without century as a decimal number (00-99).
is replaced by the year with century as a decimal number.

174 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

%Z is replaced by the time zone name or abbreviation, or by no characters if no time zone is
determinable.

%% is replaced by %.

If a conversion specifier is not one of the above, the behavior is undefined.

Returns

If the total number of resulting characters including the terminating null character is not more
than maxsize, the strftime function returns the number of characters placed into the array
pointed to by s not including the terminating null character. Otherwise, zero is returned and the
contents of the array are indeterminate.

Library 175

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899: 1990 (E)

7.13 Future library directions
The following names are grouped under individual headers for convenience.

names described below are reserved no what headers are included by the program.
All external

7.13.1 Errors <errno. h>
Macros that begin with E and a digit or E and an uppercase letter (followed by any

combination of digits, letters, and underscore) may be added to the declarations in the
<errno. h> header.

7.13.2 Character handling <ctype . h>
Function names that begin with either is or to, and a lowercase letter (followed by any

combination of digits, letters, and underscore) may be added to the declarations in the
<ctype . h> header.

7.13.3 Localization <locale. h>
Macros that begin with LC and an

underscore) may be>dded to
uppercase letter (followed by

letters, and the definitions in the <local
any combination
,e . h> header.

of digits,

7.13.4 Mathematics <math. h>
The names of all existing functions declared in the <math. h> header, suffixed with f or 1,

are reserved respectively for corresponding functions with float and long double arguments
and return values.

7.13.5 Signal handling <signal. h>
Macros that begin with either SIG and an uppercase letter or SIG and an uppercase letter

(followed by any combination of digits, letters, and underscore) may be added to the definitions
in the <signal. h> header.

7.13.6 Input/output <stdio. h>
Lowercase letters may be added to the

Other characters may be used in extensions.
conversion specifiers in fprintf and f scanf.

7.13.7 General utilities <stdlib. h>
Function names that begin with str and a lowercase letter (followed by any combination of

digits, letters, and underscore) may be added to the declarations in the <stdlib. h> header.

7.13.8 String handling <string. h>
Function names that begin with str, mem, or WCS and a lowercase letter (followed by any

combination of digits, letters, and underscore) may be added to the declarations in the
<string. h> header.

176 Library

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 98
99

:19
90

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

