INTERNATIONAL ISO/IEC
STANDARD 9899

First edition
1990-12-15

Programming languagesc—'C

Langages de programmation —C

ﬂ
U

|

“mlll ||l”||”
N2
””"’@" ”||H|
i ,...‘.....mmlm’

|

Reference number
1ISO/IEC 9899 : 1990 (E)

&
U

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Contents
1 Scope 1
2 Normative references 1
3 Definitions and conventions 2
4 Compliance 3
5 Environmest — 3
5.1 Cénceptual models . 5
5.1.1 Translation environment 5
5..2 Execution environments 6
5.2 Environmental considerations 10
5..1 Character sets . 10
5.2 Character display semantics 12
5..3 Signals and interrupts 12
5.2.4 Environmental limits 12
6 Language . 18
6.1 Lgxical elements . 18
6Jl.1 Keywords 19
6..2 Identifiers 19
6.J1.3 Constants 25
6l.4 String literals 30
6.[.5 Operators 31
6.[1.6 Punctuators 32
6.J1.7 Header names 32
6.[1.8 Preprocessing numbers 33
6.9 Comments 33
6.2 Cpnversions e 34
6.2.1 Arithmetic operands 34
6.2.2 Other operands 36
6.3 Expressions .. 38
6.3.1 Primary expressions 39
6.2 Postfix operators 39
6.3.3 Unary operators . 43
6.4 Cast operators . 45
6.8.5 Multiplicative-operators 46
6.8.6 Additive-operators 46
6.3.7 Bitwise;shift operators . 48
6.3.8 Relational operators 48
6.9 Equality operators 49
6.3.10\ Bitwise AND operator . 50
63.1) Bitwise exclusive OR operator 50
6.3.12 Bitwise inclusive OR operator 50
6.3.13 Logical AND operator . 51
6.3.14 Logical OR operator 51
6.3.15 Conditional operator 51

©

All rights reserved. No part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without permission

ISO/IEC 1990

in writing from the publisher.

ISO/IEC Copyright Office ® Case postale 56 @ CH-1211 Genéve 20 e Switzerland

Printed in Switzerland

ii

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.3.16 Assignment operators 53
6.3.17 Comma operator 54
6.4 Constant expressions 55
6.5 Declarations 57
6.5.1 Storage-class spec1ﬁers 58
6.5.2 Type specifiers 58
6.5.3 Type qualifiers 64
6.5.4 Declarators 65
6.5.5 Type names 69
6.5.6 Type definitions 70
6.5.7 Initialization . 71
6.6 Statements . . 75
6.6.1 Labeled stdtements . 75
6.6.2 Compound statement, or block 75
6.6.3 Expression and null statements 76
6.6.4 Selection statements 77
6.6.5 Iteration statements 78
6.6.6 Jump statements 79
6.7 External definitions 81
6.7.1 Function definitions 81
6.7.2 External object definitions 83
6.8 Preprocessing directives 85
6.8.1 Conditional inclusion 86
6.8.2 Source file inclusion 87
6.8.3 Macro replacement . 89
6.8.4 Line control . 93
6.8.5 Error directive 93
6.8.6 Pragma directive 93
6.8.7 Null directive . 94
6.8.8 Predefined macro names 94
6.9 Future language-diréctions . 95
6.9.1 External’names 95
6.9.2 Character escape sequences 95
6.9.3 (Storage-class specifiers 95
6.9.4 ,Function declarators 95
695 Function definitions 95
619.6 Array parameters 95
Library . . 96
7.1 Introduction . 96
7.1.1 Definitions of terms 96
7.1.2 Standard headers 96
7.1.3 Reserved identifiers 97
7.1.4 Errors <errno.h> . 97
Ft5—tmmits «::J.oat—hra'rrd-tl-:mrts > 98
7.1.6 Common definitions <stddef.h> 98
7.1.7 Use of library functions 99
7.2 Diagnostics <assert.h> 101
7.2.1 Program diagnostics 101
7.3 Character handling <ctype.h> . 102
7.3.1 Character testing functions 102
7.3.2 Character case mapping functions 104
74 Localization <locale.h> 106
7.4.1 Locale control e e 107
7.4.2 Numeric formatting convention inquiry 108

ii

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

v

7.5

7.6

7.7

7.8

7.9

7.10

7.13

Mathematics <math.h>

111

7.5.1 Treatment of error conditions 111
7.5.2 Trigonometric functions 111
7.5.3 Hyperbolic functions 113
7.5.4 Exponential and logarithmic funcnons 114
7.5.5 Power functions . . 115
7.5.6 Nearest integer, absolute value and remamder functlons 116
Nonlocal jumps <set jmp.h> 118
7.6.1 Save calling environment . 118
7.6.2 Restore calling environment 119
Signal handling <signal.h> 120
7.7l Specify signal handling 120
7.7 Send signal . 121
Varjable arguments <stdarg. h> 122
7.8l Variable argument list access macros 122
Inpfit/output <stdio.h> 124
7.9]1 Introduction 124
792 Streams 125
793 Files 126
794 Operations on ﬁles . 127
7.915 File access functions 128
7.946 Formatted input/output funcnons 131
7.9{7 Character input/output functions . 141
7.918 Direct input/output functions . 144
7.99 File positioning functions . 145
7.9{10 Error-handling functions 147
Gerferal utilities <stdlib.h> 149
.1 String conversion functions 149

2 Pseudo-random sequence generation functlons 153

3 Memory management functions 154

4 Communication with the environment 155

5 Searching and sorting utilities 157

6 Integer arithmetic functions 158
.10.7 Multibyte character functions 159
.10.8 Multibyte string functions 161
ing handling <string.h> 162

1 String function conventions 162

2 Copying functjons 162

3 Concatenationfunctions 163

4 Comparisonfunctions 164

5 Searchfunctions 165

.6 Misgellaneous functions 168
and time <time.h> . 170
L~Components of time 170
Time Tmaniputationr functions— 176

7.12.3 Time conversion functions 172
Future library directions 176
7.13.1 Errors <errno.h> . 176
7.13.2 Character handling <ctype.h> 176
7.13.3 Localization <locale.h> 176
7.13.4 Mathematics <math.h> 176
7.13.5 Signal handling <signal.h> 176
7.13.6 Input/output <stdio.h> 176
7.13.7 General utilities <stdlib.h> 176
7.13.8 String handling <string.h> 176

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

Annexes
A Bibliography

B Language syntax summary .
B.1 Lexical grammar .
B.2 Phrase structure grammar
B.3 Preprocessing directives

C Sequence points

ISO/IEC 9899:1990 (E)

177

178
178
182
187

189

D Library summary
D.1 Errors <errno.h> .
D.2 Common definitions <stddef h>
D.3 Diagnostics <assert .h>
D.4 Character handling <ctype .h>
D.5 Localization <locale.h>
D.6 Mathematics <math.h>
D.7 Nonlocal jumps <set jmp.h>
D.8 Signal handling <signal.h>
D.9 Variable arguments <stdarg.h>
D.10 Input/output <stdio.h>
D.11 General utilities <stdlib.h>
D.12 String handling <string.h>
D.13 Date and time <time.h> .

E Implementation limits
Common warnings

G Portability issues . .
G.1 Unspecified behav1or
G.2 Undefined behavior .
G.3 Implementation-defined behavmr .
G.4 Locale-specifi¢ behavior
G.5 Common extensions .

Index

190
190
190
190
190
190
191
191
191
192
192
194
195
195

196
198

199
199
200
204
207
208

210

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Forewor

ISO (the Interhational Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide standardiz-
ation. Nationall bodies that are members of ISO or IEC participate in the development
of International Standards through technical committees established by the respective
organization t deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations,
governmental aind non-governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of[information technology, ISO and IEC have established a joint technical
committee, I$O/IEC JTC 1. Draft International Standards adopted by the joint
technical comfmittee are circulated to national bodies for voting. Publication as an
International $tandard requires approval by at least 75 % of the national bodies casting
a vote.

International [Standard ISO/IEC 9899 was prepared by Joint Technical(€ommittee
ISO/IEC JT(1, Information technology.

Annexes A, B, C, D, E, F and G are for information only.

vi

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

9899:1990 (E)

Introduction

With the introduction of new devices and extended character sets, new featires”m
this International Standard. Subclauses in the language and library clauses-warn im

hy be added to
blementors and

programmers of usages which, though valid in themselves, may conflict with future additions.

Certain features are obsolescent, which means that they may be considered for withg

rawal in future

revisions of this International Standard. They are retained because ,of/their widespread use, but their

use in new implementations (for implementation features) or_new” programs (for lan
library features [7.13]) is discouraged.

This International Standard is divided into four major subdivisions:
— the introduction and preliminary elements;
— the characteristics of environments that translate’and execute C programs;
— the language syntax, constraints, and semantics;
— the library facilities.

Examples are provided to illustrafe’ possible forms of the constructions described.
provided to emphasize consequences of the rules described in that subclause or el
International Standard. References are used to refer to other related subclauses. A
summarizes information contained in this International Standard. The introduction, the
footnotes, the references, and the annexes are not part of this International Standard.

The language clause<(clause 7) is derived from ‘‘The C Reference Manual’’ (see anng

The library clause (clause 8) is based on the 1984 /usr/group Standard (see annex A)

guage [6.9] or

Footnotes are
ewhere in this
set of annexes

examples, the

x A).

vii

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

This page intentionally left blank

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

INTERNATIONAL STANDARD

ISO/IEC 9899 : 1990 (E)

Programming languages — C

1 Scope
This International Standard specifies the form and establishes the jdtérpretatiofi of programs
written in the C programming language.' It specifies
— the representation of C programs;
— the syntax and constraints of the C language;
— the semantic rules for interpreting C programs;
— the representation of input data to be processed by\€ programs;
— the representation of output data produced by"C programs;
— the restrictions and limits imposed by a‘conforming implementation of C.
This International Standard does not specify
— the mechanism by which C programs are transformed for use by a data-processipg system;
— the mechanism by which C¢programs are invoked for use by a data-processing sl‘ystem;
— the mechanism by which input data are transformed for use by a C program;
— the mechanism by-which output data are transformed after being produced by a [C program;

the size or complexity of a program and its data that will exceed the capacity
data-processing system or the capacity of a particular processor;

all minmimal requirements of a data-processing system that is capable of
conforming implementation.

2. Normative references

The following standards contain provisions which, through reference in this f
provisions of this International Standard. At the time of publication, the editions
valid. All standards are subject to revision, and parties to agreements based on thi
Standard are encouraged to investigate the possibility of applying the most recent
standards indicated below. Members of IEC and ISO maintain registers of d
International Standards.

f any specific

supporting a

ext, constitute
ndicated were
5 International
pditions of the
urrently valid

ISO 646:1983, Information processing — ISO 7-bit coded character set for information

interchange.

ISO 4217:1987, Codes for the representation of currencies and funds.

1 This International Standard is designed to promote the portability of C programs among a variety of

data-processing systems. It is intended for use by implementors and programmers. It is

accompanied by

a Rationale document that explains many of the decisions of the Technical Committee that produced it.

General

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

3 Definitions and conventions

In this International Standard, ‘‘shall”’ is to be interpreted as a requirement on an
implementation or on a program; conversely, ‘‘shall not’” is to be interpreted as a prohibition.

For the purposes of this International Standard, the following definitions apply. Other terms
are defined at their first appearance, indicated by italic type. Terms explicitly defined in this
International Standard are not to be presumed to refer implicitly to similar terms defined
elsewhere. Terms not defined in this International Standard are to be interpreted according to
ISO 2382.

3.1 alignment: A requirement that objects of a particular type be located on storage boundaries
with addresses that are particular multiples of a byte address.

3.2 argumept: An expression in the comma-separated list bounded by the parentheses in a
function cal| expression, or a sequence of preprocessing tokens in the comma-separated list
bounded by| the parentheses in a function-like macro invocation. Also known as ‘‘actual
argument’’ of ‘‘actual parameter.”’

3.3 bit: The unit of data storage in the execution environment large enough to hold ar object
that may hdve one of two values. It need not be possible to express the address of each
individual bit of an object.

3.4 byte: The unit of data storage large enough to hold any member of the basic‘character set of
the executiof environment. It shall be possible to express the address of each ifidividual byte of
an object unjquely. A byte is composed of a contiguous sequence of bits, the number of which is
implementat{on-defined. The least significant bit is called the low-order.bit; the most significant
bit is called the high-order bit.

3.5 character: A bit representation that fits in a byte. The representation of each member of
the basic chgracter set in both the source and execution environments shall fit in a byte.

3.6 constrajnts: Syntactic and semantic restrictionsyby which the exposition of language
elements is {o be interpreted.

3.7 diagnogtic message: A message belonging ,to an implementation-defined subset of the
implementatjon’s message output.

3.8 forwarf references: References t¢ “ater subclauses of this International Standard that
contain additional information relevant o jthis subclause.

3.9 implementation: A particular’ set of software, running in a particular translation
environmen{ under particular «control options, that performs translation of programs for, and
supports exdcution of functiens in, a particular execution environment.

3.10 implementation-défined behavior: Behavior, for a correct program construct and correct
data, that ddpends on thé characteristics of the implementation and that each implementation shall
document.

3.11 impleméntation limits: Restrictions imposed upon programs by the implementation.

3.12 locale-specific behavior: Behavior that depends on local conventions of nationality,
culture, and language that each implementation shall document.

3.13 multibyte character: A sequence of one or more bytes representing a member of the
extended character set of either the source or the execution environment. The extended character
set is a superset of the basic character set.

3.14 object: A region of data storage in the execution environment, the contents of which can
represent values. Except for bit-fields, objects are composed of contiguous sequences of one or
more bytes, the number, order, and encoding of which are either explicitly specified or
implementation-defined. When referenced, an object may be interpreted as having a particular
type; see 6.2.2.1.

2 General

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

3.15 parameter: An object declared as part of a function declaration or definition that acquires
a value on entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition. Also
known as ‘‘formal argument’’ or ‘‘formal parameter.”

3.16 undefined behavior: Behavior, upon use of a nonportable or erroneous program construct,
of erroneous data, or of indeterminately valued objects, for which this International Standard
imposes no requirements. Permissible undefined behavior ranges from ignoring the situation
completely with unpredictable results, to behaving during translation or program execution in a

documented manner characteristic of the environment (with or without the

diagnostic message), to terminating a translation or execution (with the issuafce—¢

message).

If a “*shall’’ or ‘‘shall not”> requirement that appears outside of aCeonstraint i
behavior is undefined. Undefined behavior is otherwise indicated dntthis Internat
by the words ‘‘undefined behavior’” or by the omission of any~explicit definitio

There is no difference in emphasis among these three; théy, all describe ‘‘be

undefined.”’

3.17 unspecified behavior: Behavior, for a correct\program construct and co
which this International Standard explicitly imposes ne\requirements.

Examples

1. An example of unspecified behavior.is the order in which the arguments to

evaluated.

2. An example of undefined behayiér is the behavior on integer overflow.

3. An example of implementation-defined behavior is the propagation of the
when a signed integer is.sHifted right.

4. An example of loedle-specific behavior is whether the islower function 1

characters other'than the 26 lowercase English letters.

Forward refererices: bitwise shift operators (6.3.7), expressions (6.3), function
the islowexr function (7.3.1.6), localization (7.4).

4 Compliance

A strictly conforming program shall use only those features of the langua
specified in this International Standard. It shall not produce output dependent on a
tndefined, or implementation-defined behavior, and shall not exceed a
implementation limit.

The two forms of conforming implementation are hosted and freestanding.
hosted implementation shall accept any strictly conforming program. A conformi
implementation shall accept any strictly conforming program in which the use
specified in the library clause (clause 7) is confined to the contents of the std

<fIcat. h>, IIimits.h>, <StdE!§ h>amd <stddetf h> A CU"tU“”i"g T

may have extensions (including additional library functions), provided they do
behavior of any strictly conforming program.’

ssuance of a
f a diagnostic

5 violated, the
onal Standard
n of behavior.
havior that is

rect data, for

a function are

high-order bit

bturns true for

calls (6.3.2.2),

be and library
Iy unspecified,
ny minimum

A conforming
g freestanding
f the features
ndard headers
mplementation
not alter the

A conforming program is one that is acceptable to a conforming implementation.’

2 This implies that a conforming implementation reserves no identifiers other than those explicitly reserved

in this International Standard.

3 Strictly conforming programs are intended to be maximally portable among conforming i
Conforming programs may depend upon nonportable features of a conforming implement

General

mplementations.
ation.

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

An implementation shall be accompanied by a document that defines all implementation-
defined characteristics and all extensions.

Forward references: limits <float.h> and <limits.h> (7.1.5), variable arguments
<stdarg.h> (7.8), common definitions <stdde£f.h> (7.1.6).

4 General

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

5 Environment

An implementation translates C source files and executes C programs in two da

ta-processing-

system environments, which will be called the translation environment and the execution
environment in this International Standard. Their characteristics define and constrain the results
of executing conforming C programs constructed according to the syntactic and semantic rules for

conforming implementations.

Forward references: In the environment clause (clause 5), only a few of many possible forward

D HOTear

5.1 Conceptual models
5.1.1 Translation environment
5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the progi
units called source files in this International Standard. A sourcg file together with 3
and source files included via the preprocessing directive~#include, less any|
skipped by any of the conditional inclusion preprocessing-directives, is called a trq
Previously translated translation units may be preserved individually or in libraries.
translation units of a program communicate by (for ®xample) calls to functions wh

fam is kept in
11 the headers
source lines
nslation unit.
The separate
pse identifiers

have external linkage, manipulation of objeets whose identifiers have external linkage, or

manipulation of data files. Translation units fpay be separately translated and then
produce an executable program.

Forward references: conditional inclusion (6.8.1), linkages of identifiers (6.1.2.]
inclusion (6.8.2).

5.1.1.2 Translation phases
The precedence among, the'syntax rules of translation is specified by the followir

Physical source file characters are mapped to the source character set (intrody
characters forjend-of-line indicators) if necessary. Trigraph sequences arg
corresponding’/single-character internal representations.

Each_instance of a new-line character and an immediately preceding backslas
deleted, splicing physical source lines to form logical source lines. A source
empty shall end in a new-line character, which shall not be immediately
backslash character.

The source file is decomposed into preprocessing tokens® and sequences d
characters (including comments). A source file shall not end in a partial
token or comment. Each comment is replaced by one space character. New-
are retained. Whether each nonempty sequence of white-space characters of|
line is retained or replaced by one space character is implementation-defined.

Preprocessing directives are executed and macro invocations are expanded. |

ater linked to

), source file

g phases.*

cing new-line
replaced by

h character is
file that is not
receded by a

f white-space
preprocessing
ine characters
her than new-

A #include

preprocessing directive tausesthe Trarnmedreader or sourcefiteto—beprocessed from phase

1 through phase 4, recursively.

4 Implementations must behave as if these separate phases occur, even though many are typically folded

together in practice.

5 As described in 6.1, the process of dividing a source file’s characters into preprocessing tokens is
context-dependent. For example, see the handling of < within a #include preprocessing directive.

Environment

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Each source character set member and escape sequence in character constants and string

literals is converted to a member of the execution character set.

Adjacent character string literal tokens are concatenated and adjacent wide string literal

tokens are concatenated.

space characters separating tokens are no longer significant. Each preprocessing
is converted into a token. The resulting tokens are syntactically and semantically

analyzed and translated.

5.
6.
7. White-
token
8.
satisfy
All sy
neede
Forward ré
(5.2.1.1).

All external object and function references are resolved. Library components are linked to

external references to functions and objects not defined in the current translation.
ch translator output is collected into a program image which contains information
1 for execution in its execution environment.

ferences: lexical elements (6.1), preprocessing directives (6.8), trigraph sequences

5.1.1.3 Diagnostics

A confo

'ming implementation shall produce at least one diagnostic message (identified”in an

implementation-defined manner) for every translation unit that contains a violation of any syntax

rule or cons

raint. Diagnostic messages need not be produced in other circumstance$.®

5.1.2 Exé¢cution environments

Two exd
startup occy
in static std
manner and
control to th

Forward re
5.1.2.1 Fr

In a fre
benefit of aj
implementa
facilities av

cution environments are defined: freestanding and hosted. Inboth cases, program
rs when a designated C function is called by the execution“environment. All objects
rage shall be initialized (set to their initial values) .befére program startup. The
timing of such initialization are otherwise unspecified.™ Program termination returns
e execution environment.

ferences: initialization (6.5.7).
eestanding environment

pstanding environment (in which C (program execution may take place without any
N operating system), the name and‘type of the function called at program startup are
ion-defined. There are otherwise no reserved external identifiers. Any library
hilable to a freestanding program are implementation-defined.

The effect of program terminatiéniin a freestanding environment is implementation-defined.
5.1.2.2 Hgsted environment

A hosteI environment/need not be provided, but shall conform to the following specifications
if present.
5.1.2.2.1 Programsstartup

The function\ called at program startup is named main. The implementation declares no

r this function. It can be defined with no parameters:

prototype fd

int main(void) { /*..

or with two

*/)

parameters (referred to here as arge and argv, though any names may be used, as

they are local to the function in which they are declared):

6 The inten
violation.
program i

t is that an implementation should identify the nature of, and where possible localize, each
Of course, an implementation is free to produce any number of diagnostics as long as a valid
s still correctly translated. It may also successfully translate an invalid program.

Environment

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

-*/)

int main(int argc, char *argv([]) { /*..

If they are defined, the parameters to the main function shall obey the following constraints:

The value of argc shall be nonnegative.
argv[argc] shall be a null pointer.

If the value of argec is greater than zero, the array members argv

[0] through

argv[argc-1] inclusive shall contain pointers to strings, which are given implementation-

Theintent i

defined values by the host environment nriorto prngrom chrtnp
7 L

the program information determined prior to program startup from elsewhére
environment. If the host environment is not capable of supplying strings_with

to supply to
in the hosted
etters in both

uppercase and lowercase, the implementation shall ensure that the strings afe received in

lowercase.

If the value of arge is greater than zero, the string pointed to-by argv[0]
program name; argv[0] [0] shall be the null character if the jprogram name i

represents the
not available

from the host environment. If the value of argc is greatér'than one, the striggs pointed to

by argv[1] through argv[argc-1] represent the program parameters.

The parameters argc and argv and the strings pointed to by the argv 3
modifiable by the program, and retain their lasttstored values between progra
program termination.

5.1.2.2.2 Program execution

In a hosted environment, a program ‘may use all the functions, macros, type d
objects described in the library clause-(clause 7).

5.1.2.2.3 Program termination

rray shall be
n startup and

efinitions, and

A return from the initial call to the main function is equivalent to calling the
with the value returned by(the main function as its argument.
return that specifies no. value, the termination status returned to the host e
undefined.

Forward references: definition of terms (7.1.1), the exit function (7.10.4.3).
5.1.2.3 Pregram execution

The ‘semantic descriptions in this International Standard describe the behavior
maehine in which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling
does any of those operations are all side effects, which are changes in the state of
environment. Evaluation of an expression may produce side effects. At certain s
in the execution sequence called sequence points, all side effects of previous evalug
complete and no side effects of subsequent evaluations shall have taken place.

In the abstract machine, all expressions are evaluated as specified by the semanti

X
If the main funct}n executes a

it function

vironment is

bf an abstract

function that
the execution
ecified points
tions shall be

s. An actual

implementattonneed-notevattate part-of-amrexpressiomifitcamrdeduce—thatits—vat
and that no needed side effects are produced (including any caused by calling
accessing a volatile object).

e is not used
a function or

When the processing of the abstract machine is interrupted by receipt of a signal, only the

values of objects as of the previous sequence point may be relied on. Objects

that may be

modified between the previous sequence point and the next sequence point need not have

received their correct values yet.

An instance of each object with automatic storage duration is associated with each entry into
its block. Such an object exists and retains its last-stored value during the execution of the block

and while the block is suspended (by a call of a function or receipt of a signal).

Environment

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous evaluations are
complete and subsequent evaluations have not yet occurred.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.9.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as

possible, fo ensure that prompting messages actually appear prior to a program waiting for
input.

What con[titutes an interactive device is implementation-defined.

More stripgent correspondences between abstract and actual semantics may be defined by
each implemgntation.

Examples

1. An implementation might define a one-to-one correspondence between abstract and(agtual
semantics: at every sequence point, the values of the actual objects would agree with those
specifigd by the abstract semantics. The keyword volatile would then be redundant.

Alt¢rnatively, an implementation might perform various optimizatiots within each
translatjon unit, such that the actual semantics would agree with the abstract semantics only
when making function calls across translation unit boundaries. In such an implementation,
at the fime of each function entry and function return where the“calling function and the
called function are in different translation units, the values of al’externally linked objects
and of [all objects accessible via pointers therein would agree-with the abstract semantics.
Furthermore, at the time of each such function entry thes,values of the parameters of the
called function and of all objects accessible via pointers therein would agree with the
abstrac} semantics. In this type of implementation; Objects referred to by interrupt service
routinef activated by the signal function™would require explicit specification of
volat]ile storage, as well as other implementation-defined restrictions.

2. In exeduting the fragment

char cl, c2;
/*...%/
cl = cl + c2;

the “‘iftegral promotions’>~require that the abstract machine promote the value of each
variablp to int size.and then add the two ints and truncate the sum. Provided the
additioh of two chaxs can be done without creating an overflow exception, the actual
execution need ofily'produce the same result, possibly omitting the promotions.

3. Similafly, in‘the fragment

float f1, £2;

double d;
/*...%/
fl = £2 * 4;

the multiplication may be executed using single-precision arithmetic if the implementation
can ascertain that the result would be the same as if it were executed using double-
precision arithmetic (for example, if d were replaced by the constant 2.0, which has type
double). Alternatively, an operation involving only ints or floats may be executed
using double-precision operations if neither range nor precision is lost thereby.

4. To illustrate the grouping behavior of expressions, in the following fragment

8 Environment

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

int a, b;
/*...%/
a=a + 32760 + b + 5;

the expression statement behaves exactly the same as
a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of
+ 32760) ’ is next added to b, and that result is then added to 5 which

the sum ‘‘ (a
results in the

Forward references: compound statement, or block (6.6.2), expressions (6.3),
sequence points (6.3, 6.6), the signal function (7.7), type qualifiers (6.5.3).

value assigned to a. On a machine in which overflows produce an exceptior;l'and in which

the range of values representable by an int is [-32768,+32767], the\i
cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, —32754 and’%15, the sum
produce an exception while the original expression would\nét; nor can the
rewritten either as

((a + 32765) + b);

a
or
(a + (b + 32765));

a

since the values for a and b might have been, respectively, 4 and —8 or
However on a machine in which overflows do not produce an exception and
results of overflows are reversible, the*above expression statement can be rey
implementation in any of the aboye ways because the same result will occur.

The grouping of an expression does not completely determine its evalug
following fragment

#include <stdio.h>

int sum;
char. *p;
[*C. %/

sum = sum * 10 - ‘0’ + (*p++ = getchar());
the expression statement is grouped as if it were written as
sum = (((sum * 10) - '0’) + ((*(p++)) = (getchar

but the actual increment of p can occur at any time between the previous sq

plementation

a + b would
expression be

—17 and 12.
in which the
vritten by the

tion. In the

0))):

quence point

and the next sequence point (the ;), and the call to getchar can occur at any point prior

to the need of its returned value.

files (7.9.3),

Environment

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

5.2 Environmental considerations
5.2.1 Character sets

Two sets
which source

of the memb

members bey

of characters and their associated collating sequences shall be defined: the set in
files are written, and the set interpreted in the execution environment. The values
ers of the execution character set are implementation-defined; any additional
ond those required by this subclause are locale-specific.

In a character constant or string literal, members of the execution character set shall be
represented llyy corresponding members of the source character set or by escape sequences

consisting of
called the nu

the backslash \ followed by one or more characters. A byte with all bits set to 0,
I character, shall exist in the basic execution character set; it is used to terminate a

character stripg literal.

Both the |basic source and basic execution character sets shall have at least the following
members: the 26 uppercase letters of the English alphabet
A B C D EF G H I J KULM
N o P Q R S T UV W X Y 2
the 26 lowergase letters of the English alphabet
a b c d e £ g h i jJ k 1 m
n o p g r s t u v w x y z
the 10 decimpl digits
0o 1 2 3 4 5 6 7 8 9
the following 29 graphic characters
I O T
;K= > 2 [N1 {t I}y ~

the space chd
In both the
above list of]
there shall b
treats such 4
character set
new line. If
a string liter,
token), the b

Forward re

racter, and control characters representing-horizontal tab, vertical tab, and form feed.
ource and execution basic character sets, the value of each character after O in the
decimal digits shall be one greater than the value of the previous. In source files,
e some way of indicating the.enid of each line of text; this International Standard
n end-of-line indicator as if(it)were a single new-line character. In the execution
there shall be control characters representing alert, backspace, carriage return, and
any other characters aré_encountered in a source file (except in a character constant,
hl, a header name, a“Comment, or a preprocessing token that is never converted to a
ehavior is undefined:

ferences: character constants (6.1.3.4), preprocessing directives (6.8), string literals

(6.1.4), cominents (6.19).

5.2.1.1 Tr

All occu
sequences7)

graph-sequences

rénices in a source file of the following sequences of three characters (called trigraph

are replaced with the corresponding single character.

7 The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as
described in ISO 646:1983, which is a subset of the seven-bit ASCII code set.

10

Environment

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

?27=
?22([
2?2/ \
??)]
29/ A
?272< {
221 |
27>}

rard

No other trigraph sequences exist. Each ? that does not begin one of the trigraph
is not changed.

Example
The following source line
printf ("Eh???/n");
becomes (after replacement of the trigraph sequence ??/)
printf ("Eh?\n");
5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent m
extended character set. The execution character set may also contain multibyte chg
need not have the same encoding as for the source character set. For both char
following shall hold:

— The single-byte characters defined in 5.2.1 shall be present.
— The presence, meaning, and representation of any additional members is locale-§

— A multibyte charagter” may have a state-dependent encoding, wherein each

s listed above

embers of the
racters, which
acter sets, the

pecific.

sequence of

multibyte charactérs’ begins in an initial shift state and enters other implementation-defined

shift states when ‘specific multibyte characters are encountered in the sequence.
initial shifg state, all single-byte characters retain their usual interpretation and d
shift statey* The interpretation for subsequent bytes in the sequence is a function|
shiftstate.

— A _byte with all bits zero shall be interpreted as a null character independent of 3

—"A byte with all bits zero shall not occur in the second or subsequent bytes
character.

For the source character set, the following shall hold:

— A comment, string literal, character constant, or header name shall begin and en|
shift state.

While in the
0 not alter the
of the current

hift state.

f a multibyte

d in the initial

— A _comment etring literal character constant or header name shall consist of

sequence of

valid multibyte characters.

Environment

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

5.2.2 Character display semantics

The active

position is that location on a display device where the next character output by the

fputc function would appear. The intent of writing a printable character (as defined by the

isprint fu
the active po

nction) to a display device is to display a graphic representation of that character at
sition and then advance the active position to the next position on the current line.

The direction of writing is locale-specific. If the active position is at the final position of a line
(if there is one), the behavior is unspecified.

Alphabetig-e

are intended
\a (alert) P

\b (backspa

active po|

(form fed

\f
page.

\n
\r
\t

(new ling
(carriage

(horizont,

tions on display devices as follows:

o produce ac
toduces an audible or visible alert. The active position shall not be changed.

e) Moves the active position to the previous position on the current line. If the
sition is at the initial position of a line, the behavior is unspecified.

d) Moves the active position to the initial position at the start of the next logical

) Moves the active position to the initial position of the next line.
return) Moves the active position to the initial position of the current line.

hl tab) Moves the active position to the next horizontal tabulation\position on the

current line. If the active position is at or past the last defined horizontal fabulation position,

the behay

\v (vertical
position.

behavior

Each of t
can be stored
identical to tH

Forward ref

ior is unspecified.

tab) Moves the active position to the initial position of the ‘next vertical tabulation
If the active position is at or past the last defined veftical tabulation position, the
is unspecified.

hese escape sequences shall produce a unique -iniplementation-defined value which
in a single char object. The external representations in a text file need not be
e internal representations, and are outsidethe scope of this International Standard.

brences: the fputc function (7.9.73),'the isprint function (7.3.1.7).

5.2.3 Signals and interrupts

Functions|
may be call
invocations’
storage dur
instructions

The func
objects with

5.2.4 Env

!

shall be implemented such-that they may be interrupted at any time by a signal, or
bd by a signal handler,. or’ both, with no alteration to earlier, but still active,
Fontrol flow (after thesinterruption), function return values, or objects with automatic
jon. All such objects shall be maintained outside the function image (the
at comprise thedexéCutable representation of a function) on a per-invocation basis.

jons in thetstandard library are not guaranteed to be reentrant and may modify
tatic storage duration.

ronmental limits

Both the

translation and execution environments constrain_the implementation of language

translators and libraries. The following summarizes the environmental limits on a conforming
implementation.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that contains
at least one instance of every one of the following limits:®

8 Implementations should avoid imposing fixed translation limits whenever possible.

12

Environment

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

— 15 nesting levels of compound statements, iteration control structures, and selection control
structures

— 8 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic, a
structure, a union, or an incomplete type in a declaration

— 31 nesting levels of parenthesized declarators within a full declarator

1 £ aorantbacizaod oavnracciance yathin o £l g e
ot

2-nestingtevels-of-parenthesized-expressions—within a—ful-expression
— 31 significant initial characters in an internal identifier or a macro name
— 6 significant initial characters in an external identifier

— 511 external identifiers in one translation unit

— 127 identifiers with block scope declared in one block

— 1024 macro identifiers simultaneously defined in one translation unit
— 31 parameters in one function definition

— 31 arguments in one function call

— 31 parameters in one macro definition

— 31 arguments in one macro invocation

— 509 characters in a logical source liné

— 509 characters in a character strifig*literal or wide string literal (after concatenatipn)
— 32767 bytes in an object (insa*hosted environment only)
— 8 nesting levels for #included files

— 257 case labels\lfor a switch statement (excluding those for any nested switch
statements)

— 127 members,in a single structure or union

— 127 entuiyeration constants in a single enumeration
— 15.Jevels of nested structure or union definitions in a single struct-declaration-list
5.24.2 Numerical limits

A conforming implementation shall document all the limits specified in this sulpclause, which
shall be specified in the headers <1limits.h> and <float.h>.

5.2.4.2.1 Sizes of integral types <limits.h>

The values given below shall be replaced by constant expressions suitable fqr use in #if
preprocessing directives. Moreover, except for CHAR BIT and MB_LEN MAX, |the following

Stratt-be Teptaced-by expressioms-thatave-tie—sametype-as—woutd-amrexpresston-that is an object
of the corresponding type converted according to the integral promotions. Their implementation-
defined values shall be equal or greater in magnitude (absolute value) to those shown, with the
same sign.

— number of bits for smallest object that is not a bit-field (byte)
CHAR BIT 8

— minimum value for an object of type signed char
SCHAR MIN -127

— maximum value for an object of type signed char
SCHAR MAX +127

Environment 13

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

— maximum value for an object of type unsigned char
UCHAR MAX 255

— minimum value for an object of type char
CHAR MIN see below

— maximum value for an object of type char
CHAR_ MAX see below

— maximum number of bytes in a multibyte character, for any supported locale

If the v43
expression, t
CHAR MAX
be 0 and the

5.2.4.2.2 Ch

The cha
representatio
implementati
model for eaj

MAX 1

value for an object of type short int
N -32767

value for an object of type short int
+32767

value for an object of type unsigned short int
65535

value for an object of type int
-32767

value for an object of type int
+32767

value for an object of type unsigned int
65535

value for an object of type long int
N -2147483647

value for an object of type long int
+2147483647

value for an object of type unsigned.long int
4294967295

lue of an object of type char\is treated as a signed integer when used in an
he value of CHAR MIN shall\be the same as that of SCHAR_MIN and the value of
Shall be the same as that-of SCHAR MAX. Otherwise, the value of CHAR MIN shall
value of CHAR MAX shall be the same as that of UCHAR MAX. o

aracteristics of floating types <float .h>

acteristics of \floating types are defined in terms of a model that describes a
h of floating-point numbers and values that provide information about an
on’s fleating-point arithmetic.' The following parameters are used to define the
ch floating-point type:

9 See 6.1.2.5.

10 The floating-point model is intended to clarify the description of each floating-point characteristic and
does not require the floating-point arithmetic of the implementation to be identical.

14

Environment

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

sign (1)

base or radix of exponent representation (an integer > 1)

exponent (an integer between a minimum e ;, and a maximum e)
precision (the number of base-b digits in the significand)
nonnegative integers less than b (the significand digits)

NSO

A normalized floating-point number x (f; > 0 if x # 0) is defined by the following model:

p
x:sxb"fokxb_k, €min S € < e

Of the values in the <float . h> header, FLT RADIX shall be a constant €xprgssion suitable
for use in #if preprocessing directives; all other values need not be constant expressions. All

except FLT_RADIX and FLT ROUNDS have separate names for all three. floating-point types.
The floating-point model representation is provided for all values except-PLT ROUNDS.

The rounding mode for floating-point addition is characterized-by the value of FLT ROUNDS:

-1 indeterminable

0 toward zero

1 to nearest

2 toward positive infinity
3 toward negative infinity

All other values for FLT ROUNDS characterize implementation-defined rounding behavior.

The values given in the following list shall be replaced by implementation-defingd expressions
that shall be equal or greater in magnitude* (absolute value) to those shown, with the|same sign:

— radix of exponent representation, b
FLT_RADIX 2

~— number of base-FLT_RADIX digits in the floating-point significand, p

FLT_MANT DIG
DBL_MANT DIG
LDBL_MANT DIG

— number of decimal digits, ¢, such that any floating-point number with ¢ decimall digits can be
rounded _into a floating-point number with p radix b digits and back again withput change to

. I 1 if b is a power of 10
theg-decimal digits, [(p —1)x loglobJ + {

0 otherwise

FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such that FLT RADIX raised to that power minus 1 is a
normalized floating-point number, e,

FI, T_MIN_F XP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of normalized
D .
floating-point numbers, [l og0b"™ -I

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL MIN 10 EXP -37

Environment 15

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

— maximum integer such that FLT RADIX raised to that power minus 1 is a representable finite
floating-point number, e .,
FLT MAX EXP
DBL_MAX EXP
LDBL_MAX EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, I logia((1 — bP) X bE™) |

+37
+37
+37

1E+37
1E+37
1E+37

1E-5
1E-9
1E-9
1

1E-37
1E-37
TE-37

Examples

1. The following describes an artificial floating-point representation that meets the minimum
requirements of this Internatienal Standard, and the appropriate values in a <float.h>
header|for type float:

6
x5 x16° X i x 1675, -31<e <432
K51

FLT RADIX 16
FLT_MANT DIG 6
_FLT EPSILON 9.53674316E=07F
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

16 Environment

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

2. The following describes floating-point representations that also meet the requirements for
single-precision and double-precision normalized numbers in ANSI/IEEE 754-1985,'" and
the appropriate values in a <float . h> header for types float and double:

24
xp=sx2°x Y fi x27%,

k=1

53
Xg=85x2°x Y fi x 27,

k=1

-125<e < +128

-1021 < e < +1024

FLT_RADIX
FLT_MANT DIG
FLT_EPSILON
FLT DIG
FLT_MIN_EXP
FLT_MIN
FLT_MIN_10_EXP
FLT_MAX EXP
FLT_MAX
FLT_MAX_10_EXP
DBL_MANT DIG

2

24
1.19209290E-07F
6

-125
1.17549435E-38F
-37

+128
3.40282347E+438F
+38

53

DBL_EPSILON 2.2204460492503131E-16

DBL_DIG
DBL_MIN_ EXP

15
-1021

DBL_MIN 2.2250738585072014E-308

DBL_MIN_10_EXP
DBL_MAX EXP

-307
+1024

DBL_MAX 1,7976931348623157E+308

DBL_MAX 10-EXP

+308

Forward references: .gonditional inclusion (6.8.1).

11 The floating-point model in that standard sums powers of b from zero, so the values of the exponent

limits are one less than shown here.

Environment

17

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6 Language

In the syntax notation used in the language clause (clause 6), syntactic categories
(nonterminals) are indicated by italic type, and literal words and character set members
(terminals) by bold type. A colon () following a nonterminal introduces its definition.
Alternative definitions are listed on separate lines, except when prefaced by the words ‘‘one of.”’
An optional symbol is indicated by the subscript ‘‘opt,”’ so that

{ expressiono

pr

indicates an ¢ptional expression enclosed in braces.
6.1 Lexical elements
Syntax

toke:

keyword
identifier
constant
string-literal
operator
punctuator

preprocessing-token:

header-name

identifier

pp-number

character-constant

string-literal

operator

punctuator

each non-white-space character that cannet be one of the above

Constraints

Each preprocessing token that is converted, to a token shall have the lexical form of a
keyword, an [identifier, a constant, a string literal, an operator, or a punctuator.

Semantics

A token |s the minimal lexical ¢lement of the language in translation phases 7 and 8. The
categories of tokens are: keywords, identifiers, constants, string literals, operators, and
punctuators.| A preprocessing token is the minimal lexical element of the language in translation
phases 3 thfough 6. The{categories of preprocessing token are: header names, identifiers,
preprocessing numbers;\character constants, string literals, operators, punctuators, and single
non-white-sppce charactérs that do not lexically match the other preprocessing token categories.
If a # or a "|character matches the last category, the behavior is undefined. Preprocessing tokens
can be separated by white space; this consists of comments (described later), or white-space

characters (space, torizomntal tab; lew-tine, vertical tab, and form-feed); or boti.—As described 1
6.8, in certain circumstances during translation phase 4, white space (or the absence thereof)
serves as more than preprocessing token separation. White space may appear within a
preprocessing token only as part of a header name or between the quotation characters in a
character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token.

18 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Examples

1. The program fragment 1Ex is parsed as a preprocessing number token (one that is not a
valid floating or integer constant token), even though a parse as the pair of preprocessing
tokens 1 and Ex might produce a valid expression (for example, if Ex were a macro
defined as +1). Similarly, the program fragment 1E1 is parsed as a preprocessing number
(one that is a valid floating constant token), whether or not E is a macro name.

2. The program fragment x+++++y is parsed as x ++ ++ + y, whrch violates a constraint on
: : 3 eet expression.

Forward references: character constants (6.1.3.4), comments (6.1.9), expressions|(6.3), floating
constants (6.1.3.1), header names (6 1.7), macro replacement (6.8.3), postﬁx ncrement and
nnnnnnnnnnnnnnn A2 ~fy v nAd AdAaprarmant Aanaratard Y& 22 1) | nranrace 1nn

A
UC\.«lClllClll U})Clal\.}lb \U Tl “f}, l,llblll\ lll\/lblll\/lll ana accrement UlJ\flal.UlD \U deJded Jy l.ll\/l.ll\}\.«\as)dl 15

directives (6.8), preprocessing numbers (6.1.8), string literals (6.1.4).
611 Kevwords

Veien ARTy VY UR WS

Syntax
keyword: one of

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Semantics

The above tokens (entirely in lowercase) are reserved (in translation phases 7 pnd 8) for use
as keywords, and shall\net be used otherwise.

6.1.2 Identifiérs

Syntax
identifier:
nondigit
identifier nondigit
identifier digit
nondigit: one of
_ a b c d e £ g h i j k 1 m
n o p qgq r s t u v w x y z
A B C D E F G H I J KL M
N O P Q R S T U V W X Y 2
digit: one of
0 1 2 3 4 5 6 7 8 9
Description

An identifier is a sequence of nondigit characters (including the underscore _ and the
lowercase and uppercase letters) and digits. The first character shall be a nondigit character.

Constraints

In translation phases 7 and 8, an identifier shall not consist of the same sequence of characters
as a keyword.

Language 19

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Semantics

An identifier denotes an object, a function, or one of the following entities that will be
described later: a tag or a member of a structure, union, or enumeration; a typedef name; a label

name; a macro name; Or a macro parameter.
enumeration constant.

because prior
the source fil
definitions.

There is n

A member of an enumeration is called an
Macro names and macro parameters are not considered further here,
to the semantic phase of program translation any occurrences of macro names in
e are replaced by the preprocessing token sequences that constitute their macro

b specific limit on the maximum length of an identifier.

Implementatipn limits

The imple

name or an id|

and uppercase]

external nam
distinctions o

implementatio

Any ident
differ in a nor

Forward refe]

mentation shall treat at least the first 31 characters of an internal name (a macro
entifier that does not have external linkage) as significant. Corresponding lowercase
letters are different. The implementation may further restrict the significance of an
b (an identifier that has external linkage) to six characters and may ignofe
f alphabetical case for such names.'> These limitations on identifiers are,\all
n-defined.

fiers that differ in a significant character are different identifiers. If twe.identifiers
significant character, the behavior is undefined.

rences: linkages of identifiers (6.1.2.2), macro replacement (6.8(3).

6.1.2.1 ScoIes of identifiers

An identi
scope. There
prototype is a

A label ng
statement) any
appearance (fi

Every oth
or type specif]
any block or
translation u
block or with
scope, which
specifier that
prototype (ng
terminates at
identifier exis

er is visible (i.e., can be used) only within a region~0f program text called its
are four kinds of scopes: function, file, block, and function prototype. (A function
declaration of a function that declares the types of-it$ parameters.)

me is the only kind of identifier that has function scope. It can be used (in a goto
where in the function in which it appears, and is declared implicitly by its syntactic
llowed by a : and a statement). Label fiames shall be unique within a function.

br identifier has scope determined by ‘the placement of its declaration (in a declarator

er). If the declarator or type speeifier that declares the identifier appears outside of
list of parameters, the identifier ‘has file scope, which terminates at the end of the
it. If the declarator or type) specifier that declares the identifier appears inside a
n the list of parameter (declarations in a function definition, the identifier has block
terminates at the _} that closes the associated block. If the declarator or type

declares the identifier appears within the list of parameter declarations in a function
t part of a funétion definition), the identifier has function prototype scope, which

the end of.the function declarator. If an outer declaration of a lexically identical
ts in thé.sdme name space, it is hidden until the current scope terminates, after

which it agaim becoines visible.

Two iden

ificts have the same scope if and only if their scopes terminate at the same point.

Structure,

union, and enumeration tags have scope that begins just after the appearance of the

tag in a type specifier that declares the tag. Each enumeration constant has scope that begins just
after the appearance of its defining enumerator in an enumerator list. Any other identifier has
scope that begins just after the completion of its declarator.

12 See ‘‘future

20

language directions’’ (6.9.1).

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Forward references: compound statement, or block (6.6.2), declarations (6.5), enumeration
specifiers (6.5.2.2), function calls (6.3.2.2), function declarators (including prototypes) (6.5.4.3),
function definitions (6.7.1), the goto statement (6.6.6.1), labeled statements (6.6.1), name spaces
of identifiers (6.1.2.3), scope of macro definitions (6.8.3.5), source file inclusion (6.8.2), tags
(6.5.2.3), type specifiers (6.5.2).

6.1.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be made to

refer ta the came r\hjnnf or function hy a prnnpcc called Iinl/ngo There are three kinds of linkage:

external, internal, and none.

In the set of translation units and libraries that constitutes an entire program} eagh instance of
a particular identifier with external linkage denotes the same object of)function.| Within one
translation unit, each instance of an identifier with internal linkage denotes the sgme object or
function. Identifiers with no linkage denote unique entities.

If the declaration of a file scope identifier for an object of -a-function containg the storage-
class specifier static, the identifier has internal linkage.'3

If the declaration of an identifier for an object erZa function contains the|storage-class
specifier extern, the identifier has the same linkagelas any visible declaration of|the identifier
with file scope. If there is no visible declaration with file scope, the identifier| has external
linkage.

If the declaration of an identifier for a-function has no storage-class specifier, |its linkage is
determined exactly as if it were declared with the storage-class specifier extijern. If the
declaration of an identifier for an object’has file scope and no storage-class specifier) its linkage is
external.

The following identifiers have no linkage: an identifier declared to be anything Jother than an
object or a function; an identifier declared to be a function parameter; a block scopq identifier for
an object declared without.the storage-class specifier extern.

If, within a transldtion unit, the same identifier appears with both internal|and external
linkage, the behavior is undefined.

Forward referénces: compound statement, or block (6.6.2), declarations (6.5), expfessions (6.3),
external definitions (6.7).

6.1.233, ‘Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point ir] a translation
unit, the syntactic context disambiguates uses that refer to different entities. Thus, there are
separate name spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any'* of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the .
or —> operator);

13 A function declaration can contain the storage-class specifier static only if it is at file scope; see
6.5.1.

14 There is only one name space for tags even though three are possible.

Language 21

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as
enumeration constants).

Forward references: enumeration specifiers (6.5.2.2), labeled statements (6.6.1), structure and
union specifiers (6.5.2.1), structure and union members (6.3.2.3), tags (6.5.2.3).

6.1.2.4 Storage durations of objects

An object has a storage duration that determines its lifetime.
durations: static and automatic.

There are two storage

An objedt whose identifier is declared with external or internal linkage, or with the storage-
class specifigr static has static storage duration. For such an object, storage is reserved and
its stored value is initialized only once, prior to program startup. The object exists and retains its
last-stored v4lue throughout the execution of the entire program.'

An objedt whose identifier is declared with no linkage and without the storage-class specifier
static hak automatic storage duration. Storage is guaranteed to be reserved for a new.
instance of quch an object on each normal entry into the block with which it is associated, oron

a ium

a guiil

initialization|is specified for the value stored in the object, it is performed on each notmal entry,
but not if the block is entered by a jump to a labeled statement. Storage for the~object is no
longer guardnteed to be reserved when execution of the block ends in any wady. (Entering an
enclosed block suspends but does not end execution of the enclosing block~'Calling a function
suspends buf does not end execution of the block containing the call.) Thevalue of a pointer that
referred to an object with automatic storage duration that is no longer guaranteed to be reserved
is indetermirjate.

outside the block to a labeled statement in the block or in an enclosed block. Jf an

n from
p fron

Forward references: compound statement, or block (6.6.2), function calls (6.3.2.2), initialization

type of the
such express
into object 1
incomplete
sizes).

An objeq

character sef.

char objec
object, the
nonnegative

There ar
long int.

ing of a value stored in an object or returned by a function is determined by the
pxpression used to access it. (An identifier declared to be an object is the simplest
ion; the type is specified in the declaration of the identifier.) Types are partitioned
pes (types that describe objects),\function types (types that describe functions), and
ypes (types that describe objects but lack information needed to determine their

t declared as type chax-is large enough to store any member of the basic execution
If a member of the required source character set enumerated in 5.2.1 is stored in a
[, its value is guaranteed to be positive. If other quantities are stored in a char
behavior is..implementation-defined: the values are treated as either signed or
integers.

e foufsigned integer types, designated as signed char, short int, int, and
(The signed integer and other types may be designated in several additional ways, as

described in

652
D)

An object declared as type signed char occupies the same amount of storage as a ‘‘plain’’

char object. A ‘‘plain’’ int object has the natural size suggested by the architecture of the
execution environment (large enough to contain any value in the range INT_MIN to INT MAX
as defined in the header <limits.h>). In the list of signed integer types above, the range of
values of each type is a subrange of the values of the next type in the list.

15 In the case of a volatile object, the last store may not be explicit in the program.

22 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

For each of the signed integer types, there is a corresponding (but different) un
type (designated with the keyword unsigned) that uses the same amount of stor

9899:1990 (E)

signed integer
age (including

sign information) and has the same alignment requirements. The range of nonnegative values of

a signed integer type is a subrange of the corresponding unsigned integer t

ype, and the

representation of the same value in each type is the same.'® A computation involving unsigned

operands can never overflow, because a result that cannot be represented by
unsigned integer type is reduced modulo the number that is one greater than the lar,
can be represented by the resulting unsigned integer type.

the resulting
gest value that

There are three floating types, designated as £loat, double, and Tong double. The set

of values of the type float is a subset of the set of values of the type doub
values of the type double is a subset of the set of values of the type long doub

The type char, the signed and unsigned integer types, and the floating types 4
called the basic types. Even if the implementation defines two ornoré basic typ
same representation, they are nevertheless different types.

The three types char, signed char, and unsigned<char are collectiy
character types.

An enumeration comprises a set of named integercconstant values. Each distin
constitutes a different enumerated type.

The void type comprises an empty set of yalues; it is an incomplete type
completed.

Any number of derived types can be constructed from the object, function, a
types, as follows:

An array type describes a centiguously allocated nonempty set of objects wi
member object type, called the element type.'” Array types are characterized by
type and by the number of elements in the array. An array type is said to be d
element type, and if ‘its’element type is T, the array type is sometimes called
The construction of'an array type from an element type is called ‘‘array type de

A structure typé describes a sequentially allocated nonempty set of member o
which hasvan-optionally specified name and possibly distinct type.

A uniontype describes an overlapping nonempty set of member objects, each o
optionally specified name and possibly distinct type.

A~ function type describes a function with specified return type. A fun
characterized by its return type and the number and types of its parameters. A
is said to be derived from its return type, and if its return type is T, the fu
sometimes called ‘‘function returning 7.”” The construction of a function type
type is called ‘‘function type derivation.”’

A pointer type may be derived from a function type, an object type, or an in
called the referenced type. A pointer type describes an object whose val

Le; the set of
le.

re collectively
es to have the

ely called the

t enumeration

hat cannot be

nd incomplete

th a particular
their element
erived from its
‘array of T.”’
rivation.’’

bjects, each of

I which has an

ction type is
function type
nction type is
from a return

tomplete type,
le provides a

£ + 41t £ +1 £, d ¢ A 1atartuna dasiuad £ tha
TCTCTOIC OO AT Oty OT tHCTOICTICIC U y pC—7 v pOTmCT— y pC— Ut v OO o oiac T

ferenced type

T is sometimes called ‘‘pointer to T.”” The construction of a pointer type from a referenced

type is called ‘‘pointer type derivation.”’

16 The same representation and alignment requirements are meant to imply interchangeabili
to functions, return values from functions, and members of unions.

ty as arguments

17 Since object types do not include incomplete types, an array of incomplete type cannot be constructed.

Language

23

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

These methods of constructing derived types can be applied recursively.

The type

char, the signed and unsigned integer types, and the enumerated types are

collectively called integral types. The representations of integral types shall define values by use
of a pure binary numeration system.'® The representations of floating types are unspecified.

Integral and floating types are collectively called arithmetic types. Arithmetic types and

pointer types
aggregate typ

An array

type, by spec

or union typ
completed, fo
defining contef

Array, fu

declarator typ
by the applicd

A type is
derived type
consists of no

Any type

corresponding
version, and §
are distinct ty
alignment req

from which it|

A pointer
to a characte
shall have the
have the samg

Examples
1. The tyg
pointer|

are collectively called scalar types. Array and structure types are collectively called
19
es.

pe of unknown size is an incomplete type. It is completed, for an identifier of that
ying the size in a later declaration (with internal or external linkage). A structure

of unknown content (as described in 6.5.2.3) is an incomplete type. It is
- all declarations of that type, by declaring the same structure or union tag with its
nt later in the same scope.

N
L

iction, and pointer types are collectively called derived declarator types. A
e derivation from a type T is the construction of a derived declarator type from(7
tion of an array-type, a function-type, or a pointer-type derivation to 7.

characterized by its fype category, which is either the outermost derivation of a
as noted above in the construction of derived types), or the type itselfif the type
derived types.

so far mentioned is an unqualified type. Each unqualified ™ ype has three
qualified versions of its type:’® a const-qualified versiony a volatile-qualified
version having both qualifications. The qualified or unqualified versions of a type
pes that belong to the same type category and have thé’same representation and
uirements.'® A derived type is not qualified by the qualifiers (if any) of the type
is derived.

to void shall have the same representation and alignment requirements as a pointer
type. Similarly, pointers to qualified or unqualified versions of compatible types
same representation and alignment requiréments.'® Pointers to other types need not
representation or alignment requirements.

e designated as ‘‘float *%_has type ‘‘pointer to £loat.”” Its type category is
not a floating type. The—const-qualified version of this type is designated as

“floalt * const’’ whereas-the/type designated as ‘‘const float *’’ is not a qualified

type —
The tyf

its type is ‘‘pointer to-Const-qualified £1loat’’ and is a pointer to a qualified type.

e designated as “‘struct tag (*[5]) (float)’’ has type ‘‘array of pointer to

function returning struct tag.”’ The array has length five and the function has a single

parame

Forward ref¢
declarations

er of typé.£loat. Its type category is array.

brenceés: character constants (6.1.3.4), compatible type and composite type (6.1.2.6),
635), tags (6.5.2.3), type qualifiers (6.5.3).

18 A positional representation for integers that uses the binary digits O and 1, in which the values

represented

by successive bits are additive, begin with 1, and are multiplied by successive integral

powers of 2, except perhaps the bit with the highest position. (Adapted from the American National
Dictionary for Information Processing Systems.)

19 Note that aggregate type does not include union type because an object with union type can only contain

one membe

r at a time.

20 See 6.5.3 regarding qualified array and function types.

24

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.1.2.6 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for determining
whether two types are compatible are described in 6.5.2 for type specifiers, in 6.5.3 for type
qualifiers, and in 6.5.4 for declarators.?! Moreover, two structure, union, or enumeration types
declared in separate translation units are compatible if they have the same number of members,
the same member names, and compatible member types; for two structures, the members shall be
in the same order; for two structures or unions, the bit-fields shall have the same widths; for two
enumerations, the members shall have the same values.

AT X Vet el a0 e ebio caans ALl PR AP PRy cha ava Arnmdnatilkhla wr .
All declarations that refer to the same object or function shall have conjpatible type;

otherwise, the behavior is undefined.
A COMpDOSi ito fump ran ho ~ranatriintad fram twn tunac that ara camnafihle: it 1ic b tune that i1g
[J(I.HLC l_y[lt Ldall UL LuliduuLivu 11ulil ww LY PUS diat alv LULLIPAuUDIT, it 15 R Ly po wadl 25

compatible with both of the two types and satisfies the following conditions:

— If only one type is a function type with a parameter type/list (a function pfototype), the
composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type'lists, the type of each parpmeter in the
composite parameter type list is the composite type’of the corresponding paramefers.

These rules apply recursively to the types from which the two types are derived.

For an 1dent1ﬁer w1th extemal or mtemal lnkage declared in the same scope as another

declaration for th:
Example
Given the following two filezscope declarations:

int £(int (*)~(), double (*)[3]);
int f£(int . (*) (char *), double (*)[]):

The resulting composite type for the function is:
int £(int (*) (char *), double (*)[3]);

Forward feferences: declarators (6.5.4), enumeration specifiers (6.5.2.2), structyre and union
specifiers_(6.5.2.1), type definitions (6.5.6), type qualifiers (6.5.3), type specifiers (6.5.2).

6.1.3-Constants

Syntax
constant:
floating-constant
integer-constant
enumeration-constant
character-constant
Constraints

The value of a constant shall be in the range of representable values for its type.

21 Two types need not be identical to be compatible.

Language 25

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Semantics

Each constant has a type, determined by its form and value, as detailed later.

6.1.3.1 Floating constants

Syntax
floating-constant:
fractional-constant exponent-part ﬂoating—sufﬁxo .
digit-seauence exponent-nart Aoatinge-suffix P
[<] 4 T r J [e] JJ ()p[
fradtional-constant:
digit-sequenceo ; digit-sequence
digit-sequence
exppnent-part:
e signo ; digit-sequence
E szgnop, digit-sequence
sign: one of
+ -
digit-sequence:
digit
digit-sequence digit
floating-suffix: one of
£f 1 F L
Description
A floatirjg constant has a significand part that may be folowed by an exponent part and a
suffix that bpecifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a period (.), followed by a digit
sequence representing the fraction part. The components of the exponent part are an e or E
followed by| an exponent consisting of an optignially signed digit sequence. Either the whole-
number parf or the fraction part shall be present; either the period or the exponent part shall be
present.
Semantics
The sigpificand part is interpreted as a decimal rational number; the digit sequence in the
exponent pdrt is interpreted as-a.decimal integer. The exponent indicates the power of 10 by
which the significand part is"to’be scaled. If the scaled value is in the range of representable
values (for jts type) the fesult is either the nearest representable value, or the larger or smaller
representable value immjediately adjacent to the nearest representable value, chosen in an

implementation-defined“manner.

An unsuffixéd floating constant has type double. If suffixed by the letter £ or F, it has type
float. If puffixed by the letter 1 or L, it has type long double.

6.1.3.2 Integer constants

Syntax

inte

26

ger-constant:
decimal-constant integer-suﬁ‘ixo .
octal-constant integer-sufﬁxo
hexadecimal-constant integer-suﬁ‘ixop y

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:

9899:1990 (E)

Ox I’“{./\udCLl‘lltut,'dl.Sl.lA

0X hexadecimal-digit

hexadecimal-constant hexadecimal-digit
nonzero-digit: one of

1 2 3 4 5 6 7 8 9

octal-digit: one of
01 2 3 4 5 6 7

hexadecimal-digit: one of

0 1 2 3 4 5 6 7 8-.\98
a b c¢c d e £
A B C D E F

integer-suffix:
unsigned-suffix long-suﬂixo .
long-suffix unsigned-suﬂixom
unsigned-suffix: one of
u U

long-suffix: one of
l L

Description

An integer constant begins with a digit, but has no period or exponent part.
prefix that spegifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of

[t may have a

Hecimal digits.

An octal”constant consists of the prefix O optionally followed by a sequence of the digits 0O

through 7 only. A hexadecimal constant consists of the prefix 0x or 0X followed
of\the decimal digits and the letters a (or A) through £ (or F) with values
respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal constant,
a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which it

by a sequence
0 through 15

base 8; that of

value can be

represented. Unsuffixed decimal: int, long int, unsigned long int; unsuffixed octal or

hexadecimal: int, unsigned int, long int, unsigned long int; suffixe

d by the letter

u or U: unsigned int, unsigned long int; suffixed by the letter 1 or L: long int,
unsigned long int; suffixed by both the letters u or U and 1 or L: unsigned long int.

Language

27

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.1.3.3 Enumeration constants
Syntax
enumeration-constant:
identifier
Semantics
An identifier declared as an enumeration constant has type int.
Forward ref¢rences: enumeration specifiers (6.5.2.2).
6.1.3.4 Chgracter constants
Syntax
character-constant:
' c-char-sequence’
L’ c-char-sequence’
c-chqr-sequence:
c-char
c-char-sequence c-char
c-char:
any member of the source character set except
the single-quote ’, backslash \, or new-line character
escape-sequence
escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
simfle-escape-sequence: one of
ANAEEE U N AN
\a \b \f \n \r \t \v
octaj-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit getal-digit octal-digit
hexddecimal-escapesequence:
\x hexadecimal-digit
hexadesimal-escape-sequence hexadecimal-digit
Description
An integ¢r‘character constant is a sequence of one or more multibyte characters enclosed in

single-quotes, as in ' x’ or “ab’. A wide character constant 1s the same, except prenixed Dy the
letter L. With a few exceptions detailed later, the elements of the sequence are any members of
the source character set; they are mapped in an implementation-defined manner to members of the
execution character set.

The single-quote ', the double-quote ", the question-mark ?, the backslash \, and arbitrary
integral values, are representable according to the following table of escape sequences:

28 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

single-quote ' \’
double-quote " \"
question-mark ? \?
backslash \ \\

octal integer
hexadecimal integer

\octal digits
\xhexadecimal digits

The double-quote " and question-mark ? are representable either by themselves or by the

escape sequences \" and \?. respectively. but the single-quote ’ and the backsla

represented, respectively, by the escape sequences \’ and \\.

The octal digits that follow the backslash in an octal escape sequence are-taken
the construction of a single character for an integer character constant’ or of 4
character for a wide character constant. The numerical value of thé-octal integ
specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the/letter x in a hexadg
sequence are taken to be part of the construction of a single“Character for an intg

sh \ shall be

to be part of
single wide
er so formed

cimal escape
ger character

constant or of a single wide character for a wide character\constant. The numeric

a
hexadecimal integer so formed specifies the value of the'desired character or wide ctr

Each octal or hexadecimal escape sequence is the longest sequence of chara
constitute the escape sequence.

In addition, certain nongraphic characters, are representable by escape sequences
the backslash \ followed by a lowercaseilefter: \a, \b, \ £, \n, \r, \t, and \v.?
escape sequence is encountered, the behavior is undefined.?®

Constraints

The value of an octal or_hexadecimal escape sequence shall be in the range of
values for the type unsigned char for an integer character constant, or the
corresponding to wchar_t for a wide character constant.

Semantics

An integer,_character constant has type int. The value of an integer charg
containing a.Single character that maps into a member of the basic execution chara
numerical value of the representation of the mapped character interpreted as an
value~ef. an integer character constant containing more than one character, or
chdracter or escape sequence not represented in the basic execution char
implementation-defined. If an integer character constant contains a single charad
sequence, its value is the one that results when an object with type char whose v{
the single character or escape sequence is converted to type int.

A wide character constant has type wchar_t, an integral type defined in the 4
header. The value of a wide character constant containing a single multibyte chara
into a member of the extended execution character set is the wide character (code)

value of the
aracter.

ters that can

consisting of
If any other

representable
insigned type

cter constant
cter set is the
integer. The
containing a
Acter set, is
ter or escape
plue is that of

stddef.h>
ter that maps
corresponding

to that mnltihytp character _as defined by the mbm’w

current locale.

tation-defined

The value of a wide character constant containing more than one multibyte

character, or containing a multibyte character or escape sequence not represented in the extended

execution character set, is implementation-defined.

22 The semantics of these characters were discussed in 5.2.2.
23 See ‘‘future language directions’” (6.9.2).

Language

29

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Examples

1. The construction ' \0’ is commonly used to represent the null character.

o} Cangida tat: th ’
<. . LOnsiacr imp.emeha tions tnat use tw mpl

bits for objects that have type char. In an implementation in Wthh type char has
same range of values as signed char, the integer character constant ' \XxFF’ has the
value —1; if type char has the same range of values as unsigned char, the character
constant ’ \xFF’ has the value +255 .

3. Even |f eight bits are used for objects that have type char, the construction ' \x123’
specifies an integer character constant containing only one character. (The value of this
single{character integer character constant is implementation-defined and violates the above
constrgint.) To specify an integer character constant containing the two characters whose
values|are 0x12 and ’ 3’, the construction ' \0223’ may be used, since a hexadecimal
escapg sequence is terminated only by a nonhexadecimal character. (The value of this
two-cHaracter integer character constant is implementation-defined also.)

4. Even |f 12 or more bits are used for objects that have type wchar_t, the construction
L’ \1234"’ specifies the implementation-defined value that results from the combimation of
the vajues 0123 and " 4.

Forward references: characters and integers (6.2.1.1) common definitions{<stddef.h>
(7.1.6), the Tbtowc function (7.10.7.2).

6.1.4 Str
Syntax

ng literals

strihg-literal:
"s-char-sequenceo t"

L"s-char-sequence "
opt

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source/character set except
the double-quote ", backslash \, or new-line character
escape-sequence
Description

A charafter string litéral”is a sequence of zero or more multibyte characters enclosed in
double-quotes, as in "xyz". A wide string literal is the same, except prefixed by the letter L.

The samle congiderations apply to each element of the sequence in a character string literal or
a wide strirlg literal as if it were in an integer character constant or a wide character constant,
except that theZsingle-quote ’ is representable either by itself or by the escape sequence \’, but

the double-quote " shall be represented by the escape sequence \".
Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of
adjacent character string literal tokens, or adjacent wide string literal tokens, are concatenated into
a single multibyte character sequence. If a character string literal token is adjacent to a wide
string literal token, the behavior is undefined.

30 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

9899:1990 (E)

In translation phase 7, a byte or code of value zero is appended to each multibyte character
sequence that results from a string literal or literals.?* The multibyte character sequence is then
used to initialize an array of static storage duration and length just sufficient to contain the

sequence. For character string literals, the array elements have type char, and

are initialized

with the individual bytes of the multibyte character sequence; for wide string literals, the array

elements have type wchar t, and are initialized with the sequence of w
corresponding to the multibyte character sequence.

ide characters

Identical string literals of either form need not be distinct. If the program attempts to modify

a string literal of either form, the behavior is undefined.
Example
This pair of adjacent character string literals
"\x12" "3"

produces a single character string literal containing the two eharacters whose va
and ’ 3’, because escape sequences are converted into single mémbers of the exec
set just prior to adjacent string literal concatenation.

Forward references: common definitions <stddefih> (7.1.6).

6.1.5 Operators

Syntax
operator: one of

[1) . o>
++ -- & *™\+ - ~ ! sizeof
/ % << 3> < > <= >= == I= * | &&
? .
= *= = = = -—= <<= >>= &= A= |=
P A £

Constraints

ues are \x12
ution character

The operators [1, (), and ? : shall occur in pairs, possibly separated by expressions. The

operators #and ## shall occur in macro-defining preprocessing directives only.
Semantics

An operator specifies an operation to be performed (an evaluation) that yiel
yields a designator, or produces a side effect, or a combination thereof. An operq|
on which an operator acts.

Forward references: expressions (6.3), macro replacement (6.8.3).

s a value, or
nd is an entity

24 A character string literal need not be a string (see 7.1.1), because a null character may be embedded in it

by a \0 escape sequence.

Language

31

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.1.6 Punctuators
Syntax

punctuator: one of

[1) ¢y * , = = ; ... #
Constraints

The punctuators [1, (), and { } shall occur (after translation phase 4) in pairs, possibly
separated by fOTTS; TOTTS; '
preprocessing [directives only.

Semantics

A punctugtor is a symbol that has independent syntactic and semantic significance but does
not specify ap operation to be performed that yields a value. Depending on context, the same
symbol may dlso represent an operator or part of an operator.

Forward references: expressions (6.3), declarations (6.5), preprocessing directives (6.8);
statements (6.p).

6.1.7 Header names
Syntax

headpr-name:
<h-char-sequence>
"g-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character setexcept
the new-line character and;>

q-char-sequence:
q-char
g-char-sequence q-char

q-char:
any member of-the-Source character set except
thediew-line character and "

Constraints

Header name preproCessing tokens shall only appear within a #include preprocessing
directive.

Semantics

The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 6.8.2.

If the characters ’, \, ", or /* occur in the sequence between the < and > delimiters, the
behavior is undefined. Similarly, if the characters ’, \, or /* occur in the sequence between the
v delimiters, the behavior is undefined.?

25 Thus, sequences of characters that resemble escape sequences cause undefined behavior.

32 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Example

The following sequence of characters:

nv‘l(l/a h>la2

vaosS KR.aaTae

#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token

delimited by a { on the left and a } on the right).

{ox3H<H1H{/Ha}.}H{h}{>}{1le2}
{#}{include} {<1/a.h>}
{#}{define} {const}{.}{member}{@}{$}

Forward references: source file inclusion (6.8.2).

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number

Description

A preprocessing number ‘begins with a digit optionally preceded by a period (.
followed by letters, undersecores, digits, periods, and e+, e-, E+, or E- character se

and may be
juences.

Preprocessing nurfibér tokens lexically include all floating and integer constant tgkens.

Semantics

A preprocessing number does not have type or a value; it acquires both afte
conversion-(as part of translation phase 7) to a floating constant token or an in
token:

6.1.9 Comments

I a successful
feger constant

Except within a character constant, a string literal, or a comment, the charactery /* introduce

a comment. The contents of a comment are examined only to identify multibyte
to find the characters */ that terminate it.?

Characters and

26 Thus, comments do not nest.

Language

33

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.2 Conversions

Several operators convert operand values from one type to another automatically. This
subclause specifies the result required from such an implicit conversion, as well as those that
result from a cast operation (an explicit conversion). The list in 6.2.1.5 summarizes the
conversions performed by most ordinary operators; it is supplemented as required by the
discussion of each operator in 6.3.

Conversion of an operand value to a compatible type causes no change to the value or the

representati

j=

Forward references: cast operators (6.3.4).
6.2.1 Arithmetic operands
6.2.1.1 Characters and integers

A char] a short int, or an int bit-field, or their signed or unsigned varieties, or af
enumeration|type, may be used in an expression wherever an int or unsigned int may./be
used. If an |Jint can represent all values of the original type, the value is converted to amdint;
otherwise, iff is converted to an unsigned int. These are called the integral proniotions.*’
All other arithmetic types are unchanged by the integral promotions.

The intggral promotions preserve value including sign. As discussed edrlier, whether a
“‘plain’’ char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.5.2.2), structure and unionSpecifiers (6.5.2.1).
6.2.1.2 Signed and unsigned integers

When a[value with integral type is converted to another integral type, if the value can be
represented by the new type, its value is unchanged.

When a |signed integer is converted to an unsigned integer with equal or greater size, if the
value of thq signed integer is nonnegative, its value_js ‘unchanged. Otherwise: if the unsigned
integer has greater size, the signed integer is first promoted to the signed integer corresponding to
the unsignex integer; the value is converted to(umsigned by adding to it one greater than the
largest number that can be represented in the urisigned integer type.”®

When a|value with integral type is demoted to an unsigned integer with smaller size, the
result is th¢ nonnegative remainder on)division by the number one greater than the largest
unsigned nymber that can be représénted in the type with smaller size. When a value with
integral typq is demoted to a signed’integer with smaller size, or an unsigned integer is converted
to its coresponding signed Zinteger, if the value cannot be represented the result is
implementatjon-defined.

27 The integral promotions are applied only as part of the usual arithmetic conversions, to certain argument
expressions, to the operands of the unary +, —, and ~ operators, and to both operands of the shift
operators, as specified by their respective subclauses.

281In a two’s-complement representation, there is no actual change in the bit pattern except filling the
high-order bits with copies of the sign bit if the unsigned integer has greater size.

34 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

6.2.1.3 Floating and integral

9899:1990 (E)

When a value of floating type is converted to integral type, the fractional part is discarded. If
the value of the integral part cannot be represented by the integral type, the behavior is

undefined.”

When a value of integral type is converted to floating type, if the value being converted is in

the range of values that can be represented but cannot be represented exactly, the
the nearest higher or nearest lower value, chosen in an implementation-defined man

result is either
ner.

6.2.1.4 Floating types

When a £loat is promoted to double or long double, or a double i

long double, its value is unchanged.

When a double is demoted to £loat or a long double tordouble or

value being converted is outside the range of values that can be-represented, th

undefined. If the value being converted is in the range of yalugs that can be r
cannot be represented exactly, the result is either the neareSt”higher or neares
chosen in an implementation-defined manner.

6.2.1.5 Usual arithmetic conversions

Many binary operators that expect operands<of arithmetic type cause convers
result types in a similar way. The purpose is<toJyield a common type, which is a
the result. This pattern is called the usual arithmetic conversions:

First, if either operand has type I'ong double, the other operand is conv
double.

Otherwise, if either operand-has type double, the other operand is converted

Otherwise, if either operand has type £loat, the other operand is converted

Otherwise, the integral promotions are performed on both operands. Then
rules are applied:

If eithet operand has type unsigned long int, the other operand i

unsigned long int.

Otherwise, if one operand has type long int and the other has tyj

int, if a long int can represent all values of an unsigned int,

type unsigned int is converted to long int; if a long int c4

all the values of an unsigned int, both operands are converted
long int.

Otherwise, if either operand has type long int, the other operand i
long int.

Otherwise, if either operand has type unsigned int, the oth
converted to unsigned int.

5 promoted to

float, if the
e behavior is
ppresented but
lower value,

ons and yield

so the type of

prted to long

to double.
o float.

the following

s converted to

¢ unsigned
he operand of
nnot represent
0 unsigned

5 converted to

br operand is

Otherwise, both operands have type int.

The values of floating operands and of the results of floating expressions may

be represented

in greater precision and range than that required by the type; the types are not changed thereby.*°

29 The remaindering operation performed when a value of integral type is converted to uns

igned type need

not be performed when a value of floating type is converted to unsigned type. Thus, the range of

portable floating values is (—1,Utype_ MAX+1).

30 The cast and assignment operators still must perform their specified conversions, as described in 6.2.1.3

and 6.2.1.4.

Language

35

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 989

9:1990 (E)

6.2.2 Other operands

6.2.2.1 Lvalues and function designators

An Ivalue is an expression (with an object type or an incomplete type other than void) that

designates an object.’’ When an object is said to have a particular type, the type is specified by
the Ivalue used to designate the object. A modifiable Ivalue is an lvalue that does not have array
type, does not have an incomplete type, does not have a const-qualified type, and if it is a
structure or union, does not have any member (including, recursively, any member of all

contained strW
Except when it is the operand of the sizeof operator, the unary & operator, the ++ operator,

the —- opera
does not hav

longer an lv

type of the lv

type and doe

Except w

character stri

to initialize a
is d
element of th

LX}

of type

A functio
of the size

returning fyp4

Forward refy

common defi
operators (6.

(6.3.3.4), stru
6.2.2.2 voi
The (nong

used in any

such an exp

expression is
its side effec

or, or the left operand of the . operator or an assignment operator, an lvalue that
b array type is converted to the value stored in the designated object (and is no
ue). If the lvalue has qualified type, the value has the unqualified version of the
lue; otherwise, the value has the type of the Ivalue. If the lvalue has an incomplete

§ not have array type, the behavior is undefined.

hen it is the operand of the sizeof operator or the unary & operator, Oris‘a
g literal used to initialize an array of character type, or is a wide string literal-used
array with element type compatible with wechar_t, an lvalue that has type™ ‘array
bnverted to an expression that has type ‘‘pointer to fype’’ that points to the initial
b array object and is not an lvalue.

i designator is an expression that has function type. Except when it is the operand
b€ operator’> or the unary & operator, a function designator,'with type ‘‘function
> is converted to an expression that has type ‘‘pointer to function returning type.”’

brences: address and indirection operators (6.3.3.2),, assignment operators (6.3.16),
pitions <stddef .h> (7.1.6), initialization (6.5.7)-postfix increment and decrement
.2.4), prefix increment and decrement operatots: (6.3.3.1), the sizeof operator
cture and union members (6.3.2.3).

d

xistent) value of a void expression (an’ expression that has type void) shall not be
vay, and implicit or explicit cofiversions (except to void) shall not be applied to
fession. If an expression of “amy other type occurs in a context where a void
required, its value or designator is discarded. (A void expression is evaluated for

)

6.2.2.3 Pointers

A pointer| to void may~be/converted to or from a pointer to any incomplete or object type.
A pointer to|any incomplete or object type may be converted to a pointer to void and back
again; the regult shall Cempare equal to the original pointer.

For any dualifier'g, a pointer to a non-g-qualified type may be converted to a pointer to the

q-qualified

compare equdt:

31 The name

1Sion of the type; the values stored in the original and converted pointers shall

““Ivalue’’ comes originally from the assignment expression E1 = E2, in which the left

operand E1 must be a (modifiable) lvalue. It is perhaps better considered as representing an object
““locator value.”” What is sometimes called ‘‘rvalue’’ is in this International Standard described as the
“‘value of an expression.”’

An obviou
expression

s example of an lvalue is an identifier of an object. As a further example, if E is a unary
that is a pointer to an object, *E is an lvalue that designates the object to which E points.

32 Because this conversion does not occur, the operand of the sizeof operator remains a function

designator

36

and violates the constraint in 6.3.3.4.

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

An integral constant expression with the value O, or such an expression cast to type void *,
is called a null pointer constant.*® 1If a null pointer constant is assigned to or compared for
equality to a pointer, the constant is converted to a pointer of that type. Such a pointer, called a
null pointer, is guaranteed to compare unequal to a pointer to any object or function.

Two null pointers, converted through possibly different sequences of casts to pointer types,
shall compare equal.

Forward references: cast operators (6.3.4), equality operators (6.3.9), simple assignment

(63 16 1)
\SoEarac e o

33 The macro NULL is defined in <stdde£f.h> as a null pointer constant; see 7.1.6.

Language 37

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.3 Expressions

An expression is a sequence of operators and operands that specifies computation of a value,
or that designates an object or a function, or that generates side effects, or that performs a
combination thereof.

Between the previous and next sequence point an object shall have its stored value modified
at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed
only to determine the value to be stored.*

Except as indicated by the syntax® or otherwise specified later (for the function-call operator
(), &&, ||| ?:, and comma operators), the order of evaluation of subexpressions and the order
in which side effects take place are both unspecified.

Some operators (the unary operator ~, and the binary operators <<, >>, &, %, and |,
collectively [described as bitwise operators) shall have operands that have integral type. These
operators refurn values that depend on the internal representations of integers, and thus haye
implementatjon-defined aspects for signed types.

If an expeption occurs during the evaluation of an expression (that is, if the result_is not
mathematicdlly defined or not in the range of representable values for its type), the behavior is
undefined.

An objegt shall have its stored value accessed only by an lvalue that has oneyof the following
36
types:

— the declgred type of the object,
— a qualifigd version of the declared type of the object,
— a type tHat is the signed or unsigned type corresponding to the‘declared type of the object,

— a type that is the signed or unsigned type corresponding-to a qualified version of the declared
type of the object,

— an aggregate or union type that includes one of.the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a characfer type.

34 This paragraph renders undéfined statement expressions such as

i = ++i 4\
while allowing

i =4+ 1;

35 The syntax specifics the precedernce of Operators 1T the evaluation Of A eXpression, which Ts—thesaneas
the order of the major subclauses of this subclause, highest precedence first. Thus, for example, the
expressions allowed as the operands of the binary + operator (6.3.6) shall be those expressions defined in
6.3.1 through 6.3.6. The exceptions are cast expressions (6.3.4) as operands of unary operators (6.3.3),
and an operand contained between any of the following pairs of operators: grouping parentheses ()
(6.3.1), subscripting brackets [] (6.3.2.1), function-call parentheses () (6.3.2.2), and the conditional
operator ?: (6.3.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is
indicated in each subclause by the syntax for the expressions discussed therein.

36 The intent of this list is to specify those circumstances in which an object may or may not be aliased.

38 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.3.1 Primary expressions

Syntax
primary-expression:
identifier
constant
string-literal
(expression)
Semantics

An identifier is a primary expression, provided it has been declared as deSigndting an object
(in which case it is an Ivalue) or a function (in which case it is a function-designator).

A constant is a primary expression. Its type depends on its formyand value, [as detailed in
6.1.3.

A string literal is a primary expression. It is an Ivalue withdype as detailed in §.1.4.

A parenthesized expression is a primary expression. Ats-type and value are ideptical to those
of the unparenthesized expression. It is an Ivalue, a function designator, or a void expression if
the unparenthesized expression is, respectively, af)lvalue, a function designatpr, or a void
expression.

Forward references: declarations (6.5).
6.3.2 Postfix operators
Syntax

postfix-expression:
primary-expression
postfix-expression [expression]

postfix-expression (argument—expression-listopt)
postfix-expression . identifier
postfix-expression > identifier .

postfix-expression ++
postfix-expression —-

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

6.3.2.1 Array subscripting
Constraints

One of the expressions shall have type ‘‘pointer to object rype,”’ the other efpression shall
have integral type, and the result has type *‘type.”’

Sermramtics

A postfix expression followed by an expression in square brackets [] is a subscripted
designation of an element of an array object. The definition of the subscript operator [] is that
E1[E2] is identical to (* (E1+(E2))). Because of the conversion rules that apply to the
binary + operator, if E1 is an array object (equivalently, a pointer to the initial element of an
array object) and E2 is an integer, E1 [E2] designates the E2-th element of E1 (counting from
ZET0).

Successive subscript operators designate an element of a multidimensional array object. If E
is an n-dimensional array (n>2) with dimensions iXjx ... Xk, then E (used as other than an
lvalue) is converted to a pointer to an (n—1)-dimensional array with dimensions jXx ... xk. If the
unary * operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the

Language 39

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

result is the pointed-to (n— 1)-dimensional array, which itself is converted into a pointer if used as
other than an Ivalue. It follows from this that arrays are stored in row-major order (last subscript
varies fastest).

Example

Consider the array object defined by the declaration

int
Here x is a
which is an
x is first con
the type of
pointer pointj
applied to yig
converted to {

Forward ref¢
declarators (6

x[3]1 5]/

ay of five ints. In the expression x[i], which is equivalent to (* (x+(1i))),
erted to a pointer to the initial array of five ints. Then i is adjusted according to
, which conceptually entails multiplying i by the size of the object to which the
, namely an array of five int objects. The results are added and indirection is
Id an array of five ints. When used in the expression x[i] [J], that in turn is
| pointer to the first of the ints, so x[i] [j] yields an int.

rences: additive operators (6.3.6), address and indirection operators (6.3.3.2), drray
5.4.2).

6.3.2.2 Furction calls

Constraints

The exprgssion that denotes the called function®’ shall have type pointer f@’function returning

void or retu

If the exf
number of ar
type such thal
its correspond

Semantics

A postfix
separated lis
function. Th

If the ex
solely of an i
declared exad

ming an object type other than an array type.

ression that denotes the called function has a type thatZincludes a prototype, the
ouments shall agree with the number of parameters. *Each argument shall have a
 its value may be assigned to an object with the uriqualified version of the type of
ing parameter.

expression followed by parentheses:. ()" containing a possibly empty, comma-
of expressions is a function call,)The postfix expression denotes the called
e list of expressions specifies the arguments to the function.

bression that precedes the parénthesized argument list in a function call consists
dentifier, and if no declaration is visible for this identifier, the identifier is implicitly
tly as if, in the innermost block containing the function call, the declaration

extprn int identifiéi|) ;

appeared.®

An arguni
the argumen
argument.*

ent may b an expression of any object type. In preparing for the call to a function,
s are_évaluated, and each parameter is assigned the value of the corresponding
The<value of the function call expression is specified in 6.6.6.4.

37 Most often,

this is the result of converting an identifier that is a function designator.

38 That is, an identifier with block scope declared to have external linkage with type function without

parameter
returning i
39 A function
arguments.
the value o

information and returning an int. If in fact it is not defined as having type ‘‘function
nt,”’ the behavior is undefined.
may change the values of its parameters, but these changes cannot affect the values of the

On the other hand, it is possible to pass a pointer to an object, and the function may change
f the object pointed to. A parameter declared to have array or function type is converted to a

parameter with a pointer type as described in 6.7.1.

40

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

If the expression that denotes the called function has a type that does not include a prototype,
the integral promotions are performed on each argument and arguments that have type £loat are
promoted to double. These are called the default argument promotions. If the number of
arguments does not agree with the number of parameiers, the behavior is undefined. If the
function is defined with a type that does not include a prototype, and the types of the arguments
after promotion are not compatible with those of the parameters after promotion, the behavior is
undefined. If the function is defined with a type that includes a prototype, and the types of the
arguments after promotion are not compatible with the types of the parameters, or if the prototype

ends with an ellipsis (, .. .), the behavior is undenned.

If the expression that denotes the called function has a type that includes”a prototype, the
arguments are implicitly converted, as if by assignment, to the types .of the g¢orresponding
parameters. The ellipsis notation in a function prototype declarator,“Causes afgument type
conversion to stop after the last declared parameter. The defaulf(argument promotions are
performed on trailing arguments. If the function is defined with- a“type that is npt compatible
with the type (of the expression) pointed to by the expression that denotes the called function, the
behavior is undefined.

No other conversions are performed implicitly; inZparticular, the number find types of
arguments are not compared with those of the parameters in a function definition [that does not
include a function prototype declarator.

The order of evaluation of the function désignator, the arguments, and subexprgssions within
the arguments is unspecified, but there is a sequence point before the actual call.

Recursive function calls shall be permitted, both directly and indirectly through| any chain of
other functions.

Example
In the function call
(*pE[£1() - (£2(), £3() + £4())

the functions £1(£2, £3, and £4 may be called in any order. All side effects shall be
completed before the function pointed to by p£[£1 ()] is entered.

Forward references: function declarators (including prototypes) (6.5.4.3), functipn definitions
(6.7.1), the return statement (6.6.6.4), simple assignment (6.3.16.1).

6.3:2:3 Structure and union members
Constraints

The first operand of the . operator shall have a qualified or unqualified struqture or union
type, and the second operand shall name a member of that type.

The first operand of the -> operator shall have type ‘‘pointer to qualified ¢r unqualified
structure’’ or ‘‘pointer to qualified or unqualified union,”” and the second operand| shall name a
member of the type pointed to

Semantics

A postfix expression followed by a dot . and an identifier designates a member of a structure
or union object. The value is that of the named member, and is an lvalue if the first expression
is an lvalue. If the first expression has qualified type, the result has the so-qualified version of
the type of the designated member.

Language 41

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

A postfix expression followed by an arrow -> and an identifier designates a member of a
structure or union object. The value is that of the named member of the object to which the first
expression points, and is an Ivalue.** If the first expression is a pointer to a qualified type, the
result has the so-qualified version of the type of the designated member.

With one exception, if a member of a union object is accessed after a value has been stored in
a different member of the object, the behavior is implementation—deﬁned.41 One special
guarantee is made in order to simplify the use of unions: If a union contains several structures
that share a common initial sequence (see below), and if the union object currently contains one

of these stryctures, it is permitted to inspect the common initial part of any of them. Two
structures share a common initial sequence if corresponding members have compatible types (and,
for bit-fields| the same widths) for a sequence of one or more initial members.

Examples

1. If £ if a function returning a structure or union, and x is a member of that structure or
union, [£ () . x is a valid postfix expression but is not an Ivalue.

2. The following is a valid fragment:

union {
struct {
int alltypes;
} n;
struct {
int type:
int intnode;
} ni;
struct {
int type;
double doublenode;
} nf;
} ou;

u.nf.type = 1;
u.nf.doublenode, =.3.14;
/*...%/
if (u.n.alltypes == 1)
/* ~. %/ sin(u.nf.doublenode) /*...*/

Forward references: address and-indirection operators (6.3.3.2), structure and union specifiers
(6.5.2.1).

6.3.2.4 Poptfix increment and decrement operators
Constraints

The opefand<of(the postfix increment or decrement operator shall have qualified or unqualified
scalar type gnd-shall be a modifiable lvalue.

‘¢

40 If &E is a valid pointer expression (where & is the ‘‘address-of’’ operator, which generates a pointer to
its operand), the expression (&E)—->MOS is the same as E.MOS.

41 The “‘byte orders’” for scalar types are invisible to isolated programs that do not indulge in type punning
(for example, by assigning to one member of a union and inspecting the storage by accessing another
member that is an appropriately sized array of character type), but must be accounted for when
conforming to externally imposed storage layouts.

42 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Semantics

The result of the postfix ++ operator is the value of the operand. After the result is obtained,
the value of the operand is incremented. (That is, the value 1 of the appropriate type is added to
it.) See the discussions of additive operators and compound assignment for information on
constraints, types, and conversions and the effects of operations on pointers. The side effect of
updating the stored value of the operand shall occur between the previous and the next sequence
point.

The postiix =="0peraror IS anatogous 10 e PoStiX ++ Operator, except thatthe value of the

operand is decremented (that is, the value 1 of the appropriate type is subtracted frgm it).
Forward references: additive operators (6.3.6), compound assignment (6.3:16.2).
6.3.3 Unary operators

Syntax

unary-expression:
postfix-expression
++ unary-expression
-— unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
& * + - ~ ()

6.3.3.1 Prefix increment and\décrement operators
Constraints

The operand of the prefix increment or decrement operator shall have qualified or unqualified
scalar type and shall be-a modifiable lvalue.

Semantics

The valuerof the operand of the prefix ++ operator is incremented. The regult is the new
value of thé ‘operand after incrementation. The expression ++E is equivalent to [(E+=1). See
the discussions of additive operators and compound assignment for information fon constraints,
typés, side effects, and conversions and the effects of operations on pointers.

The prefix —- operator is analogous to the prefix ++ operator, except that the value of the
operand is decremented.

Forward references: additive operators (6.3.6), compound assignment (6.3.16.2).
6.3.3.2 Address and indirection operators

Constraints

The operand of the unary & operator shall be either a function designator or an lvalue that
designates an object that is not a bit-field and is not declared with the register storage-class
specifier.

The operand of the unary * operator shall have pointer type.
Semantics

The result of the unary & (address-of) operator is a pointer to the object or function
designated by its operand. If the operand has type ‘‘type,”’ the result has type ‘‘pointer to type.”’

The unary * operator denotes indirection. If the operand points to a function, the result is a
function designator; if it points to an object, the result is an lvalue designating the object. If the

Language 43

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

operand has type ‘‘pointer to type,”’ the result has type ‘‘type.”’ If an invalid value has been
assigned to the pointer, the behavior of the unary * operator is undefined.*?

Forward references: storage-class specifiers (6.5.1), structure and union specifiers (6.5.2.1).
6.3.3.3 Unary arithmetic operators
Constraints

The operand of the unary + or - operator shall have arithmetic type; of the ~ operator,

integral type;[of e t—operator, scatar type:
Semantics

The result of the unary + operator is the value of its operand. The integral promotion is
performed on| the operand, and the result has the promoted type.

The resulk of the unary - operator is the negative of its operand. The integral promotion is
performed or| the operand, and the result has the promoted type.

of the ~ operator is the bitwise complement of its operand (that is, each bit"in\the

promotion is [performed on the operand, and the result has the promoted type. The expression ~E
is equivalent to (ULONG_MAX-E) if E is promoted to type unsigned-long, to
' _MAX-E) if E is promoted to type unsigned int. (The constants(ULONG_MAX and
UINT_MAX gre defined in the header <limits.h>.)

The resul} of the logical negation operator ! is O if the value of its operand compares unequal
to 0, 1 if the|value of its operand compares equal to 0. The result hasitype int. The expression
'E is equivalent to (0==E).

Forward refprences: limits <float .h> and <limits.h> (7,1.6).
6.3.3.4 The¢ sizeof operator
Constraints

The sizleof operator shall not be applied (to)an expression that has function type or an
incomplete type, to the parenthesized name of such a type, or to an lvalue that designates a bit-
field object.

Semantics

The sizlpof operator yields_thesize (in bytes) of its operand, which may be an expression
or the parenthesized name of adype. The size is determined from the type of the operand, which
is not itself dvaluated. The result is an integer constant.

When applied to an-operand that has type char, unsigned char, or signed char, (or a
qualified verpion thereof) the result is 1. When applied to an operand that has array type, the
result is the fotal Aumber of bytes in the array.*> When applied to an operand that has structure
or union type,the result is the total number of bytes in such an object, including internal and
trailing padding

42 It is always true that if E is a function designator or an lvalue that is a valid operand of the unary &
operator, *&E is a function designator or an lvalue equal to E. If *P is an lvalue and T is the name of
an object pointer type, * (T) P is an lvalue that has a type compatible with that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an
address inappropriately aligned for the type of object pointed to, and the address of an automatic storage
duration object when execution of the block with which the object is associated has terminated.

43 When applied to a parameter declared to have array or function type, the sizeof operator yields the
size of the pointer obtained by converting as in 6.2.2.1; see 6.7.1.

44 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

9899:1990 (E)

The value of the result is implementation-defined, and its type (an unsigned integral type) is

size_t defined in the <stddef.h> header.
Examples

1.

A principal use of the sizeof operator is in communication with routines such as storage

allocators and I/O systems. A storage-allocation function might accept a size (in bytes) of

an object to allocate and return a pointer to void. For example:

extern void *alloc(size t);

double *dp = alloc(sizeof *dp);

The implementation of the alloc function should ensure that its return-Value is aligned

suitably for conversion to a pointer to double.

sizeof array / sizeof array[0]

Forward references: common definitions <stddef . h> (7.1:6)s declarations (6.5),

union specifiers (6.5.2.1), type names (6.5.5).
6.3.4 Cast operators

Syntax
cast-expression:
unary-expression
(type-name) cast-expression
Constraints

Unless the type name specifies void type, the type name shall specify qualified
scalar type and the operand shall have scalar type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the
the named type. This construction is called a cast.** A cast that specifies no cony

effect on the_type or value of an expression.

Conyersions that involve pointers (other than as permitted by the constraints of
be specified by means of an explicit cast; they have implementation-defined
aspects:

A pointer may be converted to an integral type. The size of integer required

are implementation-defined. If the space provided is not long enough, th

undefined.

An arbitrary integer may be converted to a pointer.
defined.®

A pointer to an object or incomplete type may be converted to a pointer

Another use of the sizeof operator is to compute the number of elements in

d

The result is im

an array:

structure and

br unqualified

expression to

ersion has no

p.3.16.1) shall
nd undefined

and the result
e behavior is

plementation-

to a different

object type or a different incomplete type. The resulting pointer might not be valid if it is
improperly aligned for the type pointed to. It is guaranteed, however, that a pointer to an
object of a given alignment may be converted to a pointer to an object of the same

44 A cast does not yield an Ivalue. Thus, a cast to a qualified type has the same effect
unqualified version of the type.

as a cast to the

45 The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be

consistent with the addressing structure of the execution environment.

Language

45

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

alignment or a less strict alignment and back again; the result shall compare equal to the
original pointer. (An object that has character type has the least strict alignment.)

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function that has a type that is not compatible with the type of the

called

function, the behavior is undefined.

Forward references: equality operators (6.3.9), function declarators (including prototypes)
(6.5.4.3), Sil‘l‘pic FSSigmeEnt (6316 type mames(6-5-57-

6.3.5 Mu
Syntax

mul

Constraints

Each of

integral typd.

Semantics

The usug

tiplicative operators

tiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression [/ cast-expression
multiplicative-expression % cast-expression

the operands shall have arithmetic type. The operands of the % operator shall have

1 arithmetic conversions are performed on the operands.

The resuflt of the binary * operator is the product of the operands.

The resy
second; the
second oper:

It of the / operator is the quotient from the division of the first operand by the
result of the % operator is the remainder. In both operations, if the value of the

hind is zero, the behavior is undefined.

When i
of the / o
operator is
largest inte
equal to th
operator. |

6.3.6 Ad
Syntax

add

egers are divided and the division is-ineXact, if both operands are positive the result
rator is the largest integer less than-the algebraic quotient and the result of the %
ositive. If either operand is negative, whether the result of the / operator is the
r less than or equal to the algebraic quotient or the smallest integer greater than or
algebraic quotient is implermentation-defined, as is the sign of the result of the %
the quotient a/b is representable, the expression (a/b) *b + a%b shall equal a.

itive operators

itive-expréssion:
mudtiplicative-expression
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an object type and the other shall have integral type. (Incrementing is equivalent to

adding 1.)

For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible object types; or

46

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

— the left operand is a pointer to an object type and the right operand has
(Decrementing is equivalent to subtracting 1.)

Semantics

If both operands have arithmetic type, the usual arithmetic conversions are
them.

The result of the binary + operator is the sum of the operands.

integral type.

performed on

Fhe—restutt—of—the—binary—operator—s—the—difference—resulting—from—the—subtraction of the
second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of fbe -object ps its element
type.

When an expression that has integral type is added to or subtracted from a pointer, the result

=

has the type of the pointer operand. If the pointer operand<points to an elemer
object, and the array is large enough, the result points te~an' element offset frox

t of an array
h the original

element such that the difference of the subscripts of theyresulting and original drray elements

equals the integral expression. In other words, if thelexpression P points to the i
an array object, the expressions (P)+N (equivalently, N+ (P)) and (P)-N (wh
value n) point to, respectively, the i+n-th and i=rth elements of the array object,
exist. Moreover, if the expression P points to/the last element of an array object,
(P)+1 points one past the last element of\the array object, and if the expression

ik 4

th element of
bre N has the
provided they
he expression
Q points one

Tarnant of tha
iement of tne

array object. If both the pointer operand and the result point to elements of the same array

object, or one past the last element of the array object, the evaluation shall n
overflow; otherwise, the behavior'is undefined. Unless both the pointer operand
point to elements of the same-array object, or the pointer operand points one past th

t produce an
hnd the result
e last element

of an array object and the-result points to an element of the same array object, the behavior is

undefined if the result-is-used as an operand of the unary * operator.

When two pdintérs to elements of the same array object are subtracted, the
difference of the .subscripts of the two array elements. The size of the result is i
defined, and.its type (a signed integral type) is ptrdif£ t defined in the <stdd
As with~any other arithmetic overflow, if the result does not fit in the space

result is the
plementation-
£ .h> header.
provided, the

behayior. is undefined. In other words, if the expressions P and Q point to, respectively, the i-th

and~j-th elements of an array object, the expression (P)-(Q) has the value i—|
value fits in an object of type ptrdiff t. Moreover, if the expression P poin
element of an array object or one past the last element of an array object, and thg
points to the last element of the same array object, the expression ((Q)+1) - (P)
value as ((Q)-(P))+1 and as - ((P) - ((Q)+1)), and has the value zero if thg

provided the
s either to an
expression Q
has the same
expression P

points one past the last element of the array object, even though the expression (Q
point to an element of the array object. Unless both pointers point to elements of
object, or one past the last element of the array object, the behavior is undefined.*®

) +1 does not

]he same array

46 Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In

this scheme the integral expression added to or subtracted from the converted pointer is

first multiplied

by the size of the object originally pointed to, and the resulting pointer is converted back to the original

type. For pointer subtraction, the result of the difference between the character point
divided by the size of the object originally pointed to.

ers is similarly

When viewed in this way, an implementation need only provide one extra byte (which may overlap
another object in the program) just after the end of the object in order to satisfy the ‘‘one past the last

element’’ requirements.

Language

47

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 989

9:1990 (E)

Forward references: common definitions <stddef .h> (7.1.6).

6.3.7 Bitwise shift operators

wntow

shift

Constraints
Each of t

Semantics

The integ
of the promo
equal to the ¥

The resul
If E1 has an

the power E2

otherwise.

<limits.h|

The resul
E1l has a sig

quotient of E
negative valyl

-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

e operands shall have integral type.

Fal promotions are performed on each of the operands. The type of the result is that
fed left operand. If the value of the right operand is negative or is greater than,or
vidth in bits of the promoted left operand, the behavior is undefined.

of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with)Zeros.
unsigned type, the value of the result is E1 multiplied by the quantity,’2 taised to
, reduced modulo ULONG_MAX+1 if E1 has type unsigned longy UINT_MAX+1
The constants ULONG_MAX and UINT MAX are definedin the header
D)

of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 Has’an unsigned type or if
hed type and a nonnegative value, the value of the resul@is the integral part of the
1 divided by the quantity, 2 raised to the power E2. I{*E1 has a signed type and a
e, the resulting value is implementation-defined.

6.3.8 Relational operators

Syntax

relat

Constraints

One of th

ional-expression:

shift-expression

relational-expression < shiftexpression
relational-expression >_\shift-expression
relational-expression <=’shift-expression
relational-expression>= shift-expression

e following shall-hold:

— both operands havé apithmetic type;

— both operfandy are-pointers to qualified or unqualified versions of compatible object types; or

— both operanids are pointers to qualified or unqualified versions of compatible incomplete types.

Semantics

If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a

pointer to th
type.

e first element of an array of length one with the type of the object as its element

When two pointers are compared, the result depends on the relative locations in the address

space of the
object, point
declared ear

48

objects pointed to. If the objects pointed to are members of the same aggregate
ers to structure members declared later compare higher than pointers to members
lier in the structure, and pointers to array elements with larger subscript values

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

compare higher than pointers to elements of the same array with lower subscript values. All
pointers to members of the same union object compare equal. If the objects pointed to are not
members of the same aggregate or union object, the result is undefined, with the following
biect
bject

points to the last element of the same array object, the pointer expression Q+1 compares higher
than P, even though Q+1 does not point to an element of the array object.

ts to

.......... If the expression P points to an element of an array o and the expression Q

If two pointers to object or incomplete types both point to the same object, or both point one
past the last element of the same array object, they compare equal. If two pointers to object or

incomplete types compare equal, both point to the same object, or both point ong| past the last
element of the same array object.*’

Each of the operators < (less than), > (greater than), <= (less than.or*equal
(greater than or equal to) shall yield 1 if the specified relation is true_and-0 if it is
result has type int.

to), and >=
false.*® The

6.3.9 Equality operators

Syntax
equality-expression:
relational-expression
equality-expression == relationglzexpression
equality-expression = relational-expression
Constraints

One of the following shall hold:
— both operands have arithmetic type;

— both operands are pointers\tg-qualified or unqualified versions of compatible typgs;

k)

— one operand is a pointer to an object or incomplete type and the other is a
qualified or unqualified version of void; or

pointer to a

— one operand is.ajpointer and the other is a null pointer constant.
Semantics

the relational
alues suitable

The (=="(equal to) and the !'= (not equal to) operators are analogous to
operators except for their lower precedence.** Where the operands have types and V
for(the relational operators, the semantics detailed in 6.3.8 apply.

If two pointers to object or incomplete types are both null pointers, they compare equal. If

two pointers to object or incomplete types compare equal, they both are null poi
point to the same object, or both point one past the last element of the same array
pointers to function types are both null pointers or both point to the same function,

hters, or both
bject. If two
they compare

equal. If two pointers to function types compare equal, either both are null poipters, or both
point to the same function. If one of the operands is a pointer to an object or intomplete type
inte i ifie i i elpointer to an

object or incomplete type is converted to the type of the other operand.

47 If invalid prior pointer operations, such as accesses outside array bounds, produced undefined behavior,
the effect of subsequent comparisons is undefined.

48 The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means
(a<b) <c; in other words, *‘if a is less than b compare 1 to ¢; otherwise, compare 0 to c.”’

49 Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

Language 49

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.3.10 Bitwise AND operator

Syntax

AND-expression:

Constraints

equality-expression
AND-expression & equality-expression

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The resulf of the binary & operator is the bitwise AND of the operands (that is, each bit in the

result is set i

6.3.11 Bitwise exclusive OR operator

Syntax

exclysive-OR-expression:

Constraints

AND-expression
exclusive-OR-expression ~ AND-expression

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

F and only if each of the corresponding bits in the converted operands is set).

The result of the ~ operator is the bitwise exclusive @R of the operands (that is, each bit in

the result is
set).

6.3.12 Bitwise inclusive OR operator

Syntax

incl

Constraints

isive-OR-expression:
exclusive-OR-expréssion
inclusive-OR-expression | exclusive-OR-expression

Each of the operands ‘shall have integral type.

Semantics
The usu

The resu

arithmetic conversions are performed on the operands.

set if and only if exactly one of the corresponding bits in the converted operands is

t of the | operator 1s the bitwise inclusive OR of the operands (that is, each bit 1n

the result is set if and only if at least one of the corresponding bits in the converted operands is

set).

50

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

6.3.13 Logical AND operator
Syntax

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Constraints

haoll baova coalar ti 0o
o

9899:1990 (E)

Each-of th A
ZaC o miC-operanas—snarrav C—starar—t y pes

Semantics

The && operator shall yield 1 if both of its operands compare unegual to
yields 0. The result has type int.

Unlike the bitwise binary & operator, the && operator guarantees’left-to-right ey
is a sequence point after the evaluation of the first operand. If\the first operand g
to 0, the second operand is not evaluated.

6.3.14 Logical OR operator
Syntax

logical-OR-expression:
logical-AND-expression
logical-OR-expression | Nlogical-AND-expression

Constraints
Each of the operands shall have ‘scalar type.
Semantics

The || operator shallyield 1 if either of its operands compare unequal to (
yields 0. The result has-type int.

Unlike the bifwise | operator, the || operator guarantees left-to-right evaluaf
sequence point ‘after the evaluation of the first operand. If the first operand comp3
0, the secorid-operand is not evaluated.

6.3.15__ Conditional operator
Syntax

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints

The first operand shall have scalar type.

. otherwise, it

aluation; there
ompares equal

; otherwise, it

ion; there is a
res unequal to

Oneof the fottowingstratt-hotdforthe—secomd—amnd-third-operamds:
— both operands have arithmetic type;
— both operands have compatible structure or union types;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object or incomplete type and the other is a pointer to a

qualified or unqualified version of void.

Language

51

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Semantics

The first

operand is evaluated; there is a sequence point after its evaluation. The second

operand is evaluated only if the first compares unequal to O; the third operand is evaluated only if
the first compares equal to 0; the value of the second or third operand (whichever is evaluated) is

the result.>”

If both the second and third operands have arithmetic type, the usual arithmetic conversions
are performed to bring them to a common type and the result has that type. If both the operands

have structurg
has void type.

If both th

: 1 el 1 £ 1 del -l 1 1o
O UoIl type, UIT TCSUIL T1as tUlat 1ypce. 117 DU UpPULdIUs 1id Ve VOUIU Ty P, HIC TOSUIt

e second and third operands are pointers or one is a null pointer constant and the

other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the

types pointeq
types or diffq
one operand
operand is a
converted to

Example

-to by both operands. Furthermore, if both operands are pointers to compatible
rently qualified versions of a compatible type, the result has the composite type; if
s a null pointer constant, the result has the type of the other operand; otherwise, one
pointer to void or a qualified version of void, in which case the other operand,is
ype pointer to void, and the result has that type.

The comipon type that results when the second and third operands are pointets is determined

in two indepq
two pointers

Given the

ndent stages. The appropriate qualifiers, for example, do not depend on whether the
have compatible types.

declarations

conist void *c_vp;

voi
co

vol
int|

the third co
expression in

0

V]

0 <
o1

i
i

SR

d *vp;

t int *c_ip:;
tile int *v_ip;
*ip;

con]st char *c_cp;
1

imn in the following table is the common type that is the result of a conditional
which the first two columns are the ‘'second and third operands (in either order):

p c_ip const voigd %

p O volatile~int *

p Vv_ip const (volatile int *
c_cp const void *

c_ip const int *

ip void *

50 A conditional expression does not yield an Ivalue.

52

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.3.16 Assignment operators

Syntax
assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
assignment-operator: one of
= *= [= %= 4= -= <<= DdO= &= = |=
Constraints

An assignment operator shall have a modifiable lvalue as its left operand!
Semantics

An assignment operator stores a value in the object designated by the left
assignment expression has the value of the left operand after the ‘asdignment, but is

operand. An
not an lvalue.

The type of an assignment expression is the type of the left\opefand unless the left operand has

qualified type, in which case it is the unqualified version(of ‘the type of the left
side effect of updating the stored value of the left operand’ shall occur between the
the next sequence point.

The order of evaluation of the operands is unspecified.
6.3.16.1 Simple assignment
Constraints

One of the following shall hold:>!

the left operand has a qualified or unqualified version of a structure or union ty
with the type of the right;

both operands are pointers to qualified or unqualified versions of compatible f
type pointed to-by the left has all the qualifiers of the type pointed to by the righ

one operand is a pointer to an object or incomplete type and the other is a
qualified/or unqualified version of void, and the type pointed to by the le
qualifiers of the type pointed to by the right; or

—“the left operand is a pointer and the right is a null pointer constant.
Sémantics

In simple assignment (=), the value of the right operand is converted to th
assignment expression and replaces the value stored in the object designated by the

If the value being stored in an object is accessed from another object that overla
the storage of the first object, then the overlap shall be exact and the two obje

pperand. The
previous and

the left operand has qualified>or unqualified arithmetic type and the right has arithmetic type;

be compatible

y

pes, and the
t

)

pointer to a
ft has all the

b
L

type of the
eft operand.

ps in any way
cts shall have

quatified-or umquatifred-versions of @ compatibtetype; otherwise; the-betravior s

51 The asymmetric appearance of these constraints with respect to type qualifiers is due to

efined.

the conversion

(specified in 6.2.2.1) that changes lvalues to ‘‘the value of the expression’’ which removes any type

qualifiers from the type category of the expression.

Language

53

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Example

In the program fragment

int £ (void);

char c;
/*...%/
/*...%/ ((c = £() == -1) /*...*/

the int value returned by the function may be truncated when stored in the char, and then

converted b:Jc
char has th|

result of the

equal. Therg

k to int width prior to the comparison. In an implementation in which ‘‘plain’’
E same range of values as unsigned char (and char is narrower than int), the
conversion cannot be negative, so the operands of the comparison can never compare
fore, for full portability, the variable c should be declared as int.

6.3.16.2 Cpmpound assignment
Constraints
For the dperators += and -= only, either the left operand shall be a pointer to an objectytype

and the righ
arithmetic ty|

For the g

t shall have integral type, or the left operand shall have qualified or ufiqualified
pe and the right shall have arithmetic type.

ther operators, each operand shall have arithmetic type consistent with those allowed

by the corre§ponding binary operator.

Semantics

A comp

expression E

Ca

6.3.17
Syntax

exp

Semantics

The left

und assignment of the form E1 op= E2 differs from the simple assignment
1 = E1 op (E2) only in that the lvalue E1 is evaluated only once.

mma operator

ession:
assignment-expression
expression , assignment-expression

operand of a comma operator is evaluated as a void expression; there is a sequence

point after its evaluation. Then the tight operand is evaluated; the result has its type and value.*?

Example

As indic
to functions
appear. On

expression 0

hted by the syntax; in contexts where a comma is a punctuator (in lists of arguments
and lists of\initializers) the comma operator as described in this subclause cannot
the othershand, it can be used within a parenthesized expression or within the second
f a conditional operator in such contexts. In the function call

£(g/(t=3, t+2), c)

the function

has three arguments, the second of which has the value 5.

Forward references: initialization (6.5.7).

52 A comma

54

operator does not yield an lvalue.

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.4 Constant expressions

Syntax

A constant expression can be evaluated during translation rather than

runtime, and

1 1 1 1 1 PR Y 4 + 1a
dLLUlUlllél)’ llldy UC l.leU 11T au_y }Jlabb talial a LCUILISLarit ula_y UL,
Constraints

Constant expressions shall not contain assignment, increment, decrement, fu
comma operators, except when they are contained within the operand of’a‘sizeof

Each constant expression shall evaluate to a constant that is in) the range of
values for its type.

Semantics

An expression that evaluates to a constant is required in several contexts.>*
expression is evaluated in the translation environment; 'the arithmetic precision and
at least as great as if the expression were being evaluated in the execution environn

An integral constant expression shall have/integral type and shall only have op
integer constants, enumeration constants, character constants, sizeof expression
constants that are the immediate operands of casts. Cast operators in an int
expression shall only convert arithmetic types to integral types, except as part of
the sizeof operator.

hction-call, or
operator.53

representable

If a floating
range shall be
ent.

brands that are
5, and floating
gral consiant
an operand to

More latitude is permitted for constant expressions in initializers. Such a consfant expression

shall evaluate to one of the~following:
— an arithmetic constant expression,

a null pointer'constant,

an address\constant, or

an address constant for an object type plus or minus an integral constant expres

An) arithmetic constant expression shall have arithmetic type and shall only
that”are integer constants, floating constants, enumeration constants, character
sizeof expressions. Cast operators in an arithmetic constant expression shall
arithmetic types to arithmetic types, except as part of an operand to the sizeof of

ioil.

have operands
constants, and
only convert
erator.

An address constant is a pointer to an lvalue designating an object of static st

rage duration,

or to a function designator; it shall be created explicitly, using the unary & operator, or implicitly,

by the use of an expression of array or function type. The array-subscript [] and

ember-access

. and -> operators, the address & and indirection * unary operators, and pointer casts may be

used in the creation of an address constant, but the value of an object shall not be accessed by

use of these operators.

53 The operand of a sizeof operator is not evaluated (6.3.3.4), and thus any operator in 6.

3 may be used.

54 An integral constant expression must be used to specify the size of a bit-field member of a structure, the

value of an enumeration constant, the size of an array, or the value of a case constant.

constraints that apply to the integral constant expressions used in conditional-inclusio
directives are discussed in 6.8.1.

Language

Further
n preprocessing

55

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.>

Forward references: initialization (6.5.7).

55 Thus, in the following initialization,

static int i =2 || 1 / 0;
the expression is a valid integral constant expression with value one.

56 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.5 Declarations

Syntax
declaration:
declaration-specifiers init—declarator-listopt ;
declaration-specifiers:
storage-class-specifier declaration—speciﬁersopt
type-specifier declaration-specifiers
. . . UpPt
type-qualifier declaratzon-spectﬁersogt
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator
declarator = initializer
Constraints

A declaration shall declare at least a declarator, a¢tag, or the members of an enugneration.

If an identifier has no linkage, there shall be'no» more than one declaration of th
a declarator or type specifier) with the same scope and in the same name space, exc
specified in 6.5.2.3.

All declarations in the same scope;that refer to the same object or function
compatible types.

Semantics

A declaration specifies~the interpretation and attributes of a set of identifiers.
that also causes storage to be reserved for an object or function named by an
definition >

e identifier (in
ept for tags as

shall specify

A declaration
identifier is a

The declaration-specifiers consist of a sequence of specifiers that indicate the linkage, storage

duration, and_part of the type of the entities that the declarators denote. The init-dg
a comma-§eparated sequence of declarators, each of which may have additional typ|
or an initidlizer, or both. The declarators contain the identifiers (if any) being decla

If-an identifier for an object is declared with no linkage, the type for the o
complete by the end of its declarator, or by the end of its init-declarator if it has an

Forward references: declarators (6.5.4), enumeration specifiers (6.5.2.2), initiali
tags (6.5.2.3).

clarator-list is
e information,
ed.

bject shall be
initializer.

vation (6.5.7),

56 Function definitions have a different syntax, described in 6.7.1.

Language

57

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.5.1 Storage-class specifiers
Syntax

storage-class-specifier:
typedef
extern
static
auto

register

Constraints

At most, one storage-class specifier may be given in the declaration specifiers in a
5

declaration.

Semantics

The t def specifier is called a ‘‘storage-class specifier’” for syntactic convenience onlysit

is discussed [in 6.5.6. The meanings of the various linkages and storage durations were diScyssed
in 6.1.2.2 and 6.1.2.4.

A declarption of an identifier for an object with storage-class specifier register suggests
that access [to the object be as fast as possible. The extent to which suchiSuggestions are
effective is implementation-defined.’®

The declaration of an identifier for a function that has block scopesshall have no explicit
storage-clasq specifier other than extern.

Forward references: type definitions (6.5.6).
6.5.2 Type specifiers
Syntax

typ4-specifier:

void

char
short

int

long
float
double
signed
unsigned
struct-gr-union-specifier
enunmspecifier
fypedef-name

57 See ‘‘future language directions’’ (6.9.3).

58 The implementation may treat any register declaration simply as an auto declaration. However,
whether or not addressable storage is actually used, the address of any part of an object declared with
storage-class specifier register may not be computed, either explicitly (by use of the unary &
operator as discussed in 6.3.3.2) or implicitly (by converting an array name to a pointer as discussed in

6.2.2.1). Thus the only operator that can be applied to an array declared with storage-class specifier
register is sizeof.

58 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Constraints

Each list of type specifiers shall be one of the following sets (delimited by commas, when
there is more than one set on a line); the type specifiers may occur in any order, possibly
intermixed with the other declaration specifiers.

void

char

Semantics

Declarations of typedef names are discussed in 6.5.6. The characteristics of the o
discussed in-6:1.2.5.

the type signed int (or signed) may differ from int (or no type specifiers).

Forward references: enumeration specifiers (6.5.2.2), structure and union specif]
tags (6.5.2.3), type definitions (6.5.6).

6.5.2.1 Structure and union specifiers

Syntax

signedchar
unsigned char

short, signed short, short int, or signed short int
unsigned short, or unsigned short int

int, signed, signed int, or no type specifiers

unsigned, or unsigned int

long, signed long, long int, or signed long-int
unsigned long, or unsigned long int

float

double

long double

struct-or-union specifier

enum-specifier

typedef-name

Specifiers for @tructures, unions, and enumerations are discussed in 6.5.2.1 th

Each\.of the above comma-separated sets designates the same type, except that

struct-or-union-specifier:

ugh 6.5.2.3.
her types are

for bit-fields,

ers (6.5.2.1),

struct-or-union identifier { struct-declaration-list }

S oprT
struct-or-union identifier

Struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

Language

59

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier speciﬁer-qualiﬁer-listo ;
type-qualifier speciﬁer-quallﬁer-listopt
struct-declarator-list:
struct-declarator

SIFICT-Aeciararor-1sr—, SITucT-aeciararor

struct-declarator:
declarator
declaratorop ;o constant-expression

Constraints

A struciur¢ or union shall not contain a member with incomplete or function type. Hence it
shall not contdin an instance of itself (but may contain a pointer to an instance of itself).

The expregsion that specifies the width of a bit-field shall be an integral constant expression
that has nonnegative value that shall not exceed the number of bits in an ordinary«object of
compatible type. If the value is zero, the declaration shall have no declarator.

Semantics

As discus§ed in 6.1.2.5, a structure is a type consisting of a sequence)of named members,
whose storage] is allocated in an ordered sequence, and a union is a type censisting of a sequence
of named members, whose storage overlap.

Structure gnd union specifiers have the same form.

The presepice of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a transjation unit. The struct-declaration-list is a sequence of declarations for the members
of the structuge or union. If the struct-declaration-list,contains no named members, the behavior
is undefined. [The type is incomplete until after the~}\that terminates the list.

A membey of a structure or union may have ‘any object type. In addition, a member may be

shall have a type that)is a qualified or unqualified version of one of int,
t, or signed int,~Whether the high-order bit position of a (possibly qualified)

that does not|fit"is put into the next unit or overlaps adjacent units is implementation-defined.

The order of allocation of bit-fields within a unit (high-order to Iow-order or Iow-order o high-
order) is implementation-defined. The alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.%® As a special case of this, a bit-field structure member with a width of 0 indicates that

59 The unary & (address-of) operator may not be applied to a bit-field object; thus, there are no pointers to
or arrays of bit-field objects.

60 An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

60 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

no further bit-field is to be packed into the unit in which the previous bit-field,
placed.

if any, was

Each non-bit-field member of a structure or union object is aligned in an implementation-

defined manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields reside
have addresses that increase in the order in which they are declared. A pointer to a structure

s necessary to achieve the appropriate ali

structure object, but not at its beginning, a fod

The size of a union is sufficient to contain the largest of its members. The' val
one of the members can be stored in a union object at any time. A pointer to a
suitably converted, points to each of its members (or if a member is abit-field, then
which it resides), and vice versa.

There may also be unnamed padding at the end of a structure or union, as
achieve the appropriate alignment were the structure or union~to‘be an element of an

Forward references: tags (6.5.2.3).
6.5.2.2 Enumeration specifiers
Syntax

enum-specifier:
enum identiﬁero ;
enum identifier

{ enumerator-list }

enumerator-list:
enumerator

enumerator-list enumerator

14

enumerator:
enumeration-constant
enumeration-constant

C()l’lS[di’I[-e’XpV@SSiOﬂ
Constraints

The éxpression that defines the value of an enumeration constant shall be an intg
expreSsion that has a value representable as an int.

Semantics

The identifiers in an enumerator list are declared as constants that have type 3
appear wherever such are permitted.®’ An enumerator with = defines its enumeratig
the value of the constant expression. If the first enumerator has no =, the
enumeration constant is 0. Each subsequent enumerator with no defines its
constant as the value of the constant expression obtained by adding 1 to the value o
enumeration constant. (The use of enumerators with = may produce enumeration g

object, suitably converted, points to its initial member (or if that member is a bit-field, then to the
rH—H—whieh— tdesy—a i eFss here—tray—the ding within a

ment.

e of at most
union object,
to the unit in

necessary to
array.

gral constant

nt and may
n constant as
value of its
enumeration
the previous
onstants with

values that duplicate other values in the same enumeration.) The enumerators of an enumeration

are also known as its members.

Each enumerated type shall be compatible with an integer type; the choice of type is

implementation-defined.

61 Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from each

other and from other identifiers declared in ordinary declarators.

Language

61

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Example

enum hue { chartreuse, burgundy, claret=20, winedark };

/*...%/

enum hue col, *cp;

/*...%/

col = claret;

cp = &col;

/* * /

/*]..*/ (*cp !'= burgundy) /*...*/

makes hue fhe tag of an enumeration, and then declares col as an object that has that type and
cp as a poilter to an object that has that type. The enumerated values are in the set {0, 1, 20,
21}

Forward references: tags (6.5.2.3).
6.5.2.3 Taps

PR PP

Q
OCINAIIUCd
A type specifier of the form

strct-or-union identifier { struct-declaration-list '}
or
enum identifier { enumerator-list }

declares the|identifier to be the tag of the structure, union, or enumeration specified by the Iist.
The list defines the structure content, union content, or enumeratipn~content. If this declaration
of the tag i visible, a subsequent declaration that uses the tag and that omits the bracketed list
specifies the| declared structure, union, or enumerated type. :Subsequent declarations in the same
scope shall ¢mit the bracketed list.

If a type|specifier of the form
stryct-or-union identifier

occurs prior| to the declaration that defines the content, the structure or union is an incomplete
type.%? It dgclares a tag that specifies a type-that may be used only when the size of an object of
the specified type is not needed.®® If the,type is to be completed, another declaration of the tag
in the same|scope (but not in an ericlosed block, which declares a new type known only within
that block) ghall define the content:)A declaration of the form

stryct-or-union ideftifier ;

specifies a sfructure or upjon type and declares a tag, both visible only within the scope in which
the declaratjon occur$. It specifies a new type distinct from any type with the same tag in an
enclosing scope (if.any).

A type specifier of the form

62 A similar construction with enum does not exist and is not necessary as there can be no mutual
dependencies between the declaration of an enumerated type and any other type.

63 It is not needed, for example, when a typedef name is declared to be a specifier for a structure or union,
or when a pointer to or a function returning a structure or union is being declared. (See incomplete
types in 6.1.2.5.) The specification shall be complete before such a function is called or defined.

62 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

struct-or-union { struct-declaration-list }
or
enum { enumerator-list }

specifies a new structure, union, or enumerated type, within the translation unit, that can only be
referred to by the declaration of which it is a part.®*

Examples

1. This mechanism allows declaration of a self-referential structure.

struct tnode {
int count;
struct tnode *left, *right;

};

specifies a structure that contains an integer and two pointefs’to objects of the same type.
Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and”sp to be a pointer to anp object of the
given type. With these declarations, the expression sp->left refers to the left struct
tnode pointer of the object to which S§p points; the expression s.rilght->count
designates the count member of the right)struct tnode pointed to from|s.

The following alternative formulation uses the typedef mechanism:

typedef struct tnode TNODE;
struct tnode {
int count;
TNODE/*left, *right;
}:
TNODE s~ *sp;

2. To illustratesthe’use of prior declaration of a tag to specify a pair of mutuplly referential
structures, the declarations

struct sl { struct s2 *s2p; /*...*/ }; /* D1 */
struct s2 { struct sl *slp; /*...*/ }; /* D2 */

specify a pair of structures that contain pointers to each other. Note, howeper, that if s2
were already declared as a tag in an enclosing scope, the declaration D1 wquld refer to i,
not to the tag s2 declared in D2. To eliminate this context sensitivity, the d¢claration

struct s2;

may be inserted ahead of D1. This declares a new tag s2 in the inper scope; the
declaration D2 then completes the specification of the new type.

Forward references: type definitions (6.5.6).

64 Of course, when the declaration is of a typedef name, subsequent declarations can make use of the
typedef name to declare objects having the specified structure, union, or enumerated type.

Language 63

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.5.3 Type qualifiers

Syntax

type-

Constraints

qualifier:
const
volatile

The same
list, either din

Semantics

The prop
Ivalues.®

h Bl Joadl k) - 4l = 1. Lo
L_ypc quallllcl S1lall 11U alJlJCdl MUIT Ulall UHCT T HIC - Saltiv SPUU It llbt Ul qudiinct

ectly or via one or more typedefs.

prties associated with qualified types are meaningful only for expressions that are

If an atiempt is made to modify an object defined with a const-qualified type through use of

an lvalue wit
to an object
qualified typg

An objed
implementati
an object sha
5.1.2.3. Furt
that prescribg
previously.%’
implementati

If the sp
qualified, not
the behavior

h non-const-qualified type, the behavior is undefined. If an attempt is made to _refer
defined with a volatile-qualified type through use of an lvalue with non-volatile-
| the behavior is undefined.®

t that has volatile-qualified type may be modified in ways upknewn to the
n or have other unknown side effects. Therefore any expression referring to such
1 be evaluated strictly according to the rules of the abstract machine; as described in
nermore, at every sequence point the value last stored in the object shall agree with
d by the abstract machine, except as modified by the unknown factors mentioned

What constitutes an access to an object that has\&olatile-qualified type is
n-defined.

pcification of an array type includes any type ‘qudlifiers, the element type is so-
the array type. If the specification of a fungtion type includes any type qualifiers,
s undefined.®®

ualified types to be compatible, both.shall have the identically qualified version of a

compatible type; the order of type qualifiers within-a list of specifiers or qualifiers does not affect

For two (
the specified
Examples

1. An obj
may beg
2. The fo
modify

Lype.

ect declared
extern const_volatile int real_time clock;
modifiable by hardware, but cannot be assigned to, incremented, or decremented.

llowing declarations and expressions illustrate the behavior when type qualifiers
an aggregate type:

65 The impler

H—a-ra L
o

F 1 o ohioae cLos o 4+ a3 ad-on recion—of-storaae
ICTILAtIVUIT ulay pla\.\, a " CVillo o UUJ\/ML OIac IS IUT VORa U T T TOaG— O y— ToSToTT T—toTa 5o

Moreover, the implementation need not allocate storage for such an object if its address is never used.

66 This applies to those objects that behave as if they were defined with qualified types, even if they are
never actually defined as objects in the program (such as an object at a memory-mapped input/output

address).

67 A volatile declaration may be used to describe an object corresponding to a memory-mapped
input/output port or an object accessed by an asynchronously interrupting function. Actions on objects
so declared shall not be ‘‘optimized out’’ by an implementation or reordered except as permitted by the
rules for evaluating expressions.

68 Both of these can only occur through the use of typedefs.

64

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

const struct s { int mem; } cs

struct s ncs;
typedef int A[2][3];
A {{4, 5

conet a = 61 Q11
27 L

{11}
/* the object ncs is modifiable */

/* arr

ISO/IEC 9899:1990 (E)

wTLALS - aAa & = ~-r 4 L 4 ~r L4 wJ J wJ = -
int *pi;
const int *pci;
ncs = cs; /* valid */
CsS = ncs; /* violates modifiable Ivalue constraint for = */
pi = &ncs.mem; /* valid */
Pi = &cs.mem; /* violates type constraints for = */
pci = &cs.mem; /* valid */
pi = af0}; /* invalid: a[0] has type ‘‘const int¥" */
6.5.4 Declarators
Syntax
declarator:
pointerop y direct-declarator
direct-declarator:
identifier
(declarator)
direct-declarator [constam-expressionop[1
direct-declarator (parameter-type-list)
direct-declarator (identiﬁer-listop y)
pointer:
* type-qualiﬁer-listo .
* type-qualiﬁer-listop ; pointer
type-qualifier-1ist:
type-gualifier
type-qualifier-list type-qualifier
parameter-type-list:
parameter-list
parameter-list ,
parameter-list:
parameter-declaration
parameter-list , parameter-declaration
parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratorop .
identifier-list:
identifier
identifier-list , identifier
Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as
the declarator appears in an expression, it designates a function or object with the scope, storage

duration, and type indicated by the declaration specifiers.
In the following subclauses, consider a declaration

T D1

Language

65

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

where T co

ntains the declaration specifiers that specify a type T (such as int) and D1 is a

declarator that contains an identifier ident. The type specified for the identifier ident in the
various forms of declarator is described inductively using this notation.

If, in the declaration ‘‘T D1,”” D1 has the form

identifier

then the type specified for ident is T.

If, in th

(

then ident h|
identical to
by parenth

|
Implement.

The imp|
and function
or an incom

Forward re
6.54.1 Po
Semantics

If, in the

*

and the typ!
then the typ

1

PR . i PEEEY PR 1 £
dcClalratoll Ul, UL TIad UIT 10T

)

hs the type specified by the declaration ‘T D.”” Thus, a declarator in parentheses is
he unparenthesized declarator, but the binding of complex declarators may be altered
es.

E

tion limits

ementation shall allow the specification of types that have at least 12 pointer;~array,
declarators (in any valid combinations) modifying an arithmetic, a structuré,-a Gnion,
plete type, either directly or via one or more typedef£fs.

ferences: type definitions (6.5.6).

inter declarators

declaration ‘‘T D1,”” D1 has the form

D
t

specified for ident in the declaration ‘T D’2\s ‘‘derived-declarator-type-list T,”
e specified for ident is ‘‘derived-declaratorstype-list type-qualifier-list pointer to T.”

ype-qualtﬁer-listop

b
L

For each type qualifier in the list, ident is a so-qualified-pointer.

For two
pointers to (

Example

The foll
a constant V|

co

ini
The content
pointer, but

pointer types to be compatible, both shall be identically qualified and both shall be
ompatible types.

bwing pair of declarations, demonstrates the difference between a ‘‘variable pointer to
alue’” and a ‘‘constantpointer to a variable value.”’

hst int *ptr-to constant;
E *const constant_ptr;

5 of an object pointed to by ptr_to_constant shall not be modified through that

the content
itself shall

3

ptr_to>constant itself may be changed to point to another object. Similarly,
of the/int pointed to by constant_ptr may be modified, but constant_ptr
Iways point to the same location.

The dec

laration of the constant pointer constant_ptr may be clarified by including a

definition for the type ‘‘pointer to int.”’

typedef int *int ptr;
const int_ptr constant ptr;

declares constant_ptr as an object that has type ‘‘const-qualified pointer to int.”

66

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.5.4.2 Array declarators
Constraints

The expression delimited by [and] (which specifies the size of an array) shall be an integral
constant expression that has a value greater than zero.

Semantics

If, in the declaration ‘‘T D1,”’” D1 has the form

D[constant-expr esszonop[]

and the type specified for ident in the declaration ‘T D’ is ‘‘derived-declaratof-type-list T,”
then the type specified for ident is ‘‘derived-declarator-type-list array of T.”*®®" If the size is not
present, the array type is an incomplete type.

For two array types to be compatible, both shall have compatible,€lement typels, and if both
size specifiers are present, they shall have the same value.

Examples
1. float fa[ll], *afp[l17];
declares an array of £loat numbers and an,arfay of pointers to £loat numbers.
2. Note the distinction between the declaratign$

extern int *x;
extern int y[];

The first declares x to be a pgiiter to int; the second declares y to be an arfay of int of
unspecified size (an incompléte type), the storage for which is defined elsewhdre.

Forward references: function“definitions (6.7.1), initialization (6.5.7).
6.5.4.3 Function declarators (including prototypes)
Constraints
A function declarator shall not specify a return type that is a function type or an|array type.
The only,storage-class specifier that shall occur in a parameter declaration is register.

An_identifier list in a function declarator that is not part of a function definjtion shall be
empty.

Semantics
If, in the declaration ‘‘T D1,”’ D1 has the form

D (parameter-type-list)
or
D (ldennﬁer-llstop[)

3 aFa p “type-list T,”
then the type specified for ident is *‘derived-declarator-type-list function returning 7.”’

A parameter type list specifies the types of, and may declare identifiers for, the parameters of
the function. If the list terminates with an ellipsis (, .. .), no information about the number or
types of the parameters after the comma is supplied.”’ The special case of void as the only

69 When several ‘‘array of”’ specifications are adjacent, a multidimensional array is declared.

70 The macros defined in the <stdarg.h> header (7.8) may be used to access arguments that correspond
to the ellipsis.

Language 67

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

item in the list specifies that the function has no parameters.

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract
declarator that specifies a function with a single parameter, not as redundant parentheses around
the identifier for a declarator.

The storage-class specifier in the declaration specifiers for a parameter declaration, if present,
is ignored unless the declared parameter is one of the members of the parameter type list for a
function definition.

An identiffer list declares only the identifiers of the parameters of the function. An empty list
in a function| declarator that is part of a function definition specifies that the function has no
parameters. [The empty list in a function declarator that is not part of a function definition
specifies that po information about the number or types of the parameters is supplied.”!

For two [function types to be compatible, both shall specify compatible return types.’?
Moreover, th¢ parameter type lists, if both are present, shall agree in the number of parameters
and in use of the ellipsis terminator; corresponding parameters shall have compatible types.~f
one type has [a parameter type list and the other type is specified by a function declarator that is
not part of a [function definition and that contains an empty identifier list, the parameter list shall
not have an dllipsis terminator and the type of each parameter shall be compatible with the type
that results frpm the application of the default argument promotions. If one type has‘a parameter
type list and [the other type is specified by a function definition that contains a (possibly empty)
identifier list| both shall agree in the number of parameters, and the typécof each prototype
parameter shhll be compatible with the type that results from the application of the default
argument prgmotions to the type of the corresponding identifier. (For each parameter declared
with function|or array type, its type for these comparisons is the onecthat results from conversion
to a pointer type, as in 6.7.1. For each parameter declared with qualified type, its type for these
comparisons |s the unqualified version of its declared type.)

Examples
1. The de¢laration
int £(void), *fip(), (*pfd) ();

declarep a function £ with no parameters returning an int, a function £ip with no
paramefer specification returning a.pointer to an int, and a pointer p£fi to a function with
no pargmeter specification returning an int. It is especially useful to compare the last
two. The binding of *£ip{).is * (£ip()), so that the declaration suggests, and the
same cpnstruction in an expression requires, the calling of a function £ip, and then using
indirection through the¢pointer result to yield an int. In the declarator (*pfi) (), the
extra pprentheses are‘siecessary to indicate that indirection through a pointer to a function
yields g function designator, which is then used to call the function; it returns an int.

If the declaration occurs outside of any function, the identifiers have file scope and
externd] linkage. If the declaration occurs inside a function, the identifiers of the functions
£ and £ip have block scope and either internal or external linkage (depending on what file

scope declarations for these identifiers are visible), and the identifier of the pointer p£i has
block scope and no linkage.

2. The declaration

71 See ‘‘future language directions’’ (6.9.4).
72 If both function types are ‘‘old style,”” parameter types are not compared.

68 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

int (*apfi[3]) (int *x, int *y);

declares an array apfi of three pointers to functions returning int. Each of these
functions has two parameters that are pointers to int. The identifiers x and y are declared
for descriptive purposes only and go out of scope at the end of the declaration of ap£i.

3. The declaration

int (*fpfi(int (*) (long), int)) (int, ...);

int. The

A frarith
t (with one

Lot e ac tiiim maramaetercs 4 e ter

function £p£i has two parameters: a pointer to a function returning an'ir
parameter of type long), and an int. The pointer returned by £p£i points |to a function
that has one int parameter and accepts zero or more additional arguments of any type.

Forward references: function definitions (6.7.1), type names (6.5.5).

655 Tvnp names

Ve en) j3 223 33 Lo}

Syntax
type-name:
specifier-qualifier-list abstract-declaratorop ;
abstract-declarator:
pointer
pointeropt direct-abstract-declarator
P RPN KPR PR DU
atreci-aoytiraci-aeciaraLor .
(abstract-declarator™)
direct-abstract-declarator [constant-expressionop p 1
dzrect-abstract—declaratorop’ (parameter-type-l zstop ;)
Semantics

In several contexts,Nt-is desired to specify a type. This is accomplished using ja type name,
which is syntactically:"a declaration for a function or an object of that type that omits the
identifier.”

Example

The constructions

(a) int
(b) int *
(©) int *[3]

(d) int (*)[3]

(e) int *()

® int (*) (void)

(g) int (*const []) (unsigned int, ...)

name respectively the types (a) int (b) pointer to int (c) array of three pointerk to int, (d)
pointer to an array of three ints, (e) function with no parameter specification returning a pointer
to int, (f) pointer to function with no parameters returning an int, and (g) array of an
unspecified number of constant pointers to functions, each with one parameter that has type
unsigned int and an unspecified number of other parameters, returning an int.

73 As indicated by the syntax, empty parentheses in a type name are interpreted as ‘‘function with no
parameter specification,” rather than redundant parentheses around the omitted identifier.

Language 69

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.5.6 Type definitions
Syntax

In a declaration whose storage-class specifier is typedef, each declarator defines an

< rmadaf momna v 1
s a typedef name with the lype specified by the declaration

(know as T), and the identifier in D has the type ‘‘derived-declarator-type-list T
the derived-leclarator-type-list is specified by the declarators of D. A typedef name shares ‘the
same name| space as other identifiers declared in ordinary declarators. If the idéntifier is
redeclared i an inner scope or is declared as a member of a structure or union in thé same or an
inner scope,|the type specifiers shall not be omitted in the inner declaration.

n-a 'cl
m
'c'
[
=
E
>
(=N
9
o
(=9
I

Examples
1. After

typedef int MILES, KLICKSP ()
typedef struct { double re, im; } complex;

the constructions

MILES distance;

extern KLICKSP *metricp;
complex x;

complex z, *zp;

are al] valid declarations. The type of distance is int, that of metricp is ‘‘pointer to
functipn with no parameter specification returning int,”’ and that of x and z is the
speciffed structure; zp is a pointer/to such a structure. The object distance has a type
compitible with any other int _object.

2. After [the declarations

typedef {(struct sl { int x; } tl, *tpl;
typedef struct s2 { int x; } t2, *tp2;

type 1 and the type pointed to by tpl are compatible. Type t1 is also compatible with
type $truct si, but not compatible with the types struct s2, t2, the type pointed to
by tg2;7and int.

3. The following obscure constructions

typedef signed int t;

typedef int plain;

struct tag {
unsigned t:4;
const t:5;
plain r:5;

}:

declare a typedef name t with type signed int, a typedef name plain with type int,
and a structure with three bit-field members, one named t that contains values in the range

70 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

[0,15], an unnamed const-qualified bit-field which (if it could be accessed) would contain
values in at least the range [—15,+15], and one named r that contains values in the range
[0,31] or values in at least the range [—15,+15]. (The choice of range is implementation-
defined.) The first two bit-field declarations differ in that unsigned is a type specifier
(which forces t to be the name of a structure member), while const is a type qualifier
(which modifies t which is still visible as a typedef name). If these declarations are
followed in an inner scope by

t £(t ()’

long t;

then a function £ is declared with type ‘‘function returning signed int with one
unnamed parameter with type pointer to function returning signed int with one
unnamed parameter with type signed int,”’ and an identifier £ With type long.

4. On the other hand, typedef names can be used to improve code)readability. All three of the
following declarations of the signal function specify (exactly the same [type, the first
without making use of any typedef names.

typedef void fv(int), (*pfv) (int);

void (*signal (int, wvoid (*)(int))) (int);
fv *signal (int, fv *);
pfv signal (int, pfv);

Forward references: the signal function.(7.7.1.1).

6.5.7 Initialization

Syntax
initializer:
assignment-expression
{ initializer-list }
{..initializer-list , '}
initializer-list:
initializer
initializer-list , initializer
Constraints

There shall be no more initializers in an initializer list than there are objects to pe initialized.
The type of the entity to be initialized shall be an object type or an array of unknown size.

All the expressions in an initializer for an object that has static storage dufation or in an
initializer list for an object that has aggregate or union type shall be constant exprepsions.

If the declaration of an identifier has block scope, and the identifier has extefnal or internal
linkage, the declaration shall have no initializer for the identifier.

Semantics
An initializer specifies the initial value stored in an object.
All unnamed structure or union members are ignored during initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate.”® If an object that has static storage duration is not initialized explicitly, it is

Language 71

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

initialized implicitly as if every member that has arithmetic type were assigned O and every

member that

The initi
initial value

has pointer type were assigned a null pointer constant.

alizer for a scalar shall be a single expression, optionally enclosed in braces. The
of the object is that of the expression; the same type constraints and conversions as

for simple assignment apply, taking the type of the scalar to be the unqualified version of its
declared type.

A brace-

declaration li

enclosed initializer for a union object initializes the member that appears first in the

£l .
L OI'UIC uniomn typc.

The initidlizer for a structure or union object that has automatic storage duration either shall

be an initiali
structure or uj

The rest

An array

in braces.
rift

An array

literal, option
terminating 2
elements of t

Otherwis

aro lC rnnm rr
Tv.u is room or if the arra

zer list as described below, or shall be a single expression that has compatible

nion type. In the latter case, the initial value of the object is that of the expression.

gf this subclause deals with initializers for objects that have aggregate or union type.

of character type may be initialized by a character string literal, optionally enclosed
ccessive characters of the character strmg literal (including the terminating \nuil

v initialize the elements of the arrav

ia i1 1T CIC “liay.

with element type compatible with wchar_t may be initialized by a ‘wide string
ally enclosed in braces. Successive codes of the wide string literal (including the
ero-valued code if there is room or if the array is of unknown §ize) initialize the
e array.

. the initializer for an object that has aggregate type shall be arbrace-enclosed list of

initializers fof the members of the aggregate, written in increasing subscript or member order; and
the initialize for an object that has union type shall be a brace-enclosed initializer for the first

member of t

union.

If the aggregate contains members that are aggregates or-unions, or if the first member of a
union is an pggregate or union, the rules apply recursively to the subaggregates or contained

unions.

If the initializer of a subaggregate or contaified union begins with a left brace, the

initializers emclosed by that brace and its matching* right brace initialize the members of the

subaggregate
from the list
contained un
of which the

If there a
the remainde

storage durat

If an arrq

provided for
type.

Examples

1. The de

or the first member of the contained union. Otherwise, only enough initializers
are taken to account for the members of the subaggregate or the first member of the
on; any remaining initializer§_are left to initialize the next member of the aggregate
current subaggregate or contained union is a part.

fe fewer initializers in-a brace-enclosed list than there are members of an aggregate,
F of the aggregate (shall be initialized implicitly the same as objects that have static
on.

y of unknewn size is initialized, its size is determined by the number of initializers
its elemeénts. At the end of its initializer list, the array no longer has incomplete

claration

int x[] {1, 3,51}

defines and initializes x as a one-dimensional array object that has three elements, as no
size was specified and there are three initializers.

74 Unlike in t

72

he base document, any automatic duration object may be initialized.

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

2. The declaration

float y[4][3] = {
{1, 3, 51,
{2, 4, 6},
{ 3, 5, 71},

};

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y
} 5 : > —Likawise the next
two lines initialize y[1] and y[2]. The initializer ends early, so y [3] s ipitialized with
zeros. Precisely the same effect could have been achieved by

float y[4]1[3] = {
1, 3, 5, 2, 4, 6, 3, 5, 1
};

The initializer for y[0] does not begin with a left brace; 5o three items from the list are
used. Likewise the next three are taken successively for\y [1] and y[2].

3. The declaration

float z[4][3] = {
{1}, {2}, {3H {4}
};

initializes the first column of z as specified and initializes the rest with zeros.
4. The declaration
struct { int a[3], b; } w[l = { { 11}, 2 };

is a definition with an-inconsistently bracketed initialization. It defines an afray with two
element structures: w.[0] .a[0] is 1 and w[1] .a[0] is 2; all the other elements are zero.
5. The declaration
short q[4]1[3][2] = {
{1}
{ 2, },
{ 4 , 6}

oW~

14

|

contains an incompletely but consistently bracketed initialization. It defjnes a three-
dimensional array object: q[0] [0] [0] is 1, g[1][0][0] is 2, q[1][0]1|[1] is 3, and
4, 5, and 6 initialize q[2] [0]1[0], q[2][0][1], and g[2] [1] [O], rejpectively; all
the rest are zero. The initializer for g[0] [0] does not begin with a left bface, so up to
six items from the current list may be used. There is only one, so the VYalues for the
remaining five elements are initialized with zero. Likewise, the initializers for q[1] [0]

and q[2] [0] do not begin with a left brace, so each uses up to six items, injtializing their
—mmmmmems in any of

the lists, a diagnostic message would have been issued. The same initialization result could
have been achieved by:

short q[4][3][2] = {
i, o, 0, O, 0, O,
2, 3, 0, 0, 0, 0,
4, 5, 6

or by:

Language 73

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

short q[4]1[3][2] = {

{
{11,
b
{
{2 31},
b,
{
7517
{ 61,
}

};

in a fully bracketed form.

Nofe that the fully bracketed and minimally bracketed forms of initialization are, i
general, less likely to cause confusion.

One fqrm of initialization that completes array types involves typedef names. Given the
declardtion

typedef int A[];

the deg¢laration

Aa={1, 2}, b={3, 4, 5}

is idengical to

due to

int a[] = {1, 2]’, b[] = {31 4/ 5}1

the rules for incomplete types.

The ddclaration

define
string

The ¢

define

char s[] = "abc", t[3] = ltabc";

“plain>> char array objects s and £ whose elements are initialized with character
literals. This declaration is identical to
char s|[] { ra’,(B", 'c’, '\0" },

t[l = { "an-'b’, "¢’ };

ntents of the arrays-are’modifiable. On the other hand, the declaration
char *p = \labc";

b p with type “‘pointer to char’’ that is initialized to point to an object with type

““array of chaxr® with length 4 whose elements are initialized with a character string

literal
undefi

If anattempt is made to use p to modify the contents of the array, the behavior is

rled.

Forward references: common definitions <stddef.h> (7.1.5).

74

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.6 Statements
Syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement

LCTAItorn=iaicrricril

jump-statement
Semantics

A statement specifies an action to be performed. Except as indicatéd statement
in sequence.

A full expression is an expression that is not part of janother expression.
following is a full expression: an initializer; the expressionvin an expression
controlling expression of a selection statement (i £ or swit/ch); the controlling e
while or do statement; each of the three (optional)~expressions of a for
(optional) expression in a return statement. The end of a full expression is a seq

Forward references: expression and null (Statements (6.6.3), selection state
iteration statements (6.6.5), the return statément (6.6.6.4).

6.6.1 Labeled statements

Syntax
labeled-statement:
identifier : 'statement
case conustant-expression statement
default statement
Constraints

A case or default label shall appear only in a switch statement. Further
such labels-are discussed under the switch statement.

Semantics

Any statement may be preceded by a prefix that declares an identifier as a label
in themselves do not alter the flow of control, which continues unimpeded across th

Forward references: the goto statement (6.6.6.1), the switch statement (6.6.4.2
6.6.2 Compound statement, or block

Syntax

s are executed

Each of the
statement; the
xpression of a
statement; the
pence point.

ments (6.6.4),

constraints on

name. Labels
m.

).

3
L

compound-statement:

{declaration-1ist Statement-1ist ;
opt 0,

pt
declaration-list:

declaration

declaration-list declaration

statement-list:
statement
statement-list statement

Language

75

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

A compound statement (also called a block) allows a set of statements to be grouped into one
syntactic unit, which may have its own set of declarations and initializations (as discussed in
6.1.2.4). The initializers of objects that have automatic storage duration are evaluated and the
values are stored in the objects in the order their declarators appear in the translation unit.

6.6.3 Expression and null statements

Syntax

expression-statement:
expression ;
p opt '
Semantics
The expression in an expression statement is evaluated as a void expression for its side
effects.”

A null stqtement (consisting of just a semicolon) performs no operations.

Examples

1. If a fynction call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expresSion to a void
expresgion by means of a cast:

int p(int);
/*...%/
(void)p (0) ;

2. In the program fragment

char *s;
/*...%/
while (*s++ != '\0’)

’

a null $tatement is used to supply an enipty loop body to the iteration statement.

3. A null|statement may also be used-to-carry a label just before the closing } of a compound
statement.

while (loopl){

VA ¥/
while’ (loop2) {
/*...%/

if (want_out)
goto end_loopl;
/*...%/

}

/*...%/
end loopl: ;
}

Forward references: iteration statements (6.6.5).

75 Such as assignments, and function calls which have side effects.

76 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.6.4 Selection statements
Syntax

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

Semantics

A selection statement selects among a set of statements depending ony\th
controlling expression.

6.6.4.1 The if statement
Constraints

The controlling expression of an if statement shall have scalac'type.
Semantics

In both forms, the first substatement is executed if the/expression compares ung
the else form, the second substatement is executedyif the expression compares ¢

the first substatement is reached via a label, the ségond substatement is not executed.

An else is associated with the lexically\immediately preceding else-less if]
same block (but not in an enclosed block).

6.6.4.2 The switch statement

Constraints

e value of a

qual to 0. In
qual to 0. If

that is in the

The controlling expression6f a switch statement shall have integral type. The expression

of each case label shall-be an integral constant expression. No two of the ¢
expressions in the same switch statement shall have the same value after conv
may be at most one. default label in a switch statement. (Any enclosed swit
may have a default label or case constant expressions with values that du
constant expressions in the enclosing switch statement.)

Semantics

A-switch statement causes control to jump to, into, or past the statement tha
body,-depending on the value of a controlling expression, and on the presence o

ase constant
ersion. There
tch statement
plicate case

is the switch
 a default

label and the values of any case labels on or in the switch body. A case or deflault label is

accessible only within the closest enclosing switch statement.

The integral promotions are performed on the controlling expression. The const
in each case label is converted to the promoted type of the controlling exp
converted value matches that of the promoted controlling expression, control
statement following the matched case label. Otherwise, if there is a default

hnt expression
ression. If a
jumps to the
label, control

jumps to the label tement. If no converted case constant expression match
no default label, no part of the switch body is executed.

Implementation limits

s and there is

As discussed previously (5.2.4.1), the implementation may limit the number of case values

in a switch statement.
Example

In the artificial program fragment

Language

7

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

switch (expr)
{
int 1 = 4;
£(i);
case 0:
i=17; /* falls through into default code */
default:
printf ("$d\n", i);

}

the object whose identifier is i exists with automatic storage duration (within the block) but is
never initialjzed, and thus if the controlling expression has a nonzero value, the call to the
printf£ furlction will access an indeterminate value. Similarly, the call to the function £ cannot
be reached.

6.6.5 Iterption statements

Syntax
iter@tion-statement:
while (expression) statement
do statement while (expression) ;
1 ; "essi ; ressi tatem
for (expresstonop, ; expr eswonop[exp essmnopt) Sratement
Constraints

The contyolling expression of an iteration statement shall have scalar type.

Semantics

An iteratjon statement causes a statement called the loop -body to be executed repeatedly until
the controlling expression compares equal to 0.

6.6.5.1 The while statement

The evaluation of the controlling expression-takes place before each execution of the loop
body.

6.6.5.2 The do statement
The evalpation of the controlling expression takes place after each execution of the loop body.
6.6.5.3 The for statement
Except for the behavior of-a-continue statement in the loop body, the statement
foxr (expression-1 ; expression-2 ; expression-3) statement
and the sequence of_Statements

explession=1 ;
while) (expression-2) {

statement
expression-3 ;

}

are equivalent.76

76 Thus, expression-1 specifies initialization for the loop; expression-2, the controlling expression, specifies
an evaluation made before each iteration, such that execution of the loop continues until the expression
compares equal to 0; expression-3 specifies an operation (such as incrementing) that is performed after
each iteration.

78 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Both expression-1 and expression-3 may be omitted. Each is evaluated as a void expression.

An omitted expression-2 is replaced by a nonzero constant.
Forward references: the continue statement (6.6.6.2).

6.6.6 Jump statements

Syntax
jump-statement:
aoto identifier
- J
continue ;
break ;
return expression ;
opt
Semantics
A jump statement causes an unconditional jump to another place.

6.6.6.1 The goto statement
Constraints

The identifier in a goto statement shall name a\abel located somewhere in
function.

Semantics

the enclosing

A goto statement causes an unconditional jump to the statement prefixed by the named label

in the enclosing function.
Example

It is sometimes convenient4o jump into the middle of a complicated set of st
following outline presents one possible approach to a problem based on these three

1. The general initidlization code accesses objects only visible to the current fun
2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation must be at the head of the loop.
be reached by continue statements, for example.)

7*...%/

goto first time;

for (;;) {
/* determine next operation */
/*...%/

if (need to reinitialize) {
/* reinitialize-only code */

/*...%/

htements. The
assumptions:

ction.

To allow it to

first time:

/* general imnialization code */

[*...%/

continue;
}
/* handle other operations */
/*...%/

Language

79

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.6.6.2 The continue statement
Constraints

A continue statement shall appear only in or as a loop body.
Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in each of the

statements

whi

/

~N 0

con

}

unless the cg
interpreted w

6.6.6.3 The

le (/*...*/) { do { for (/*...*/) {
SV /*...%/ /*...%/
bntinue; continue; continue;
Sy /*...%/ [/*...*%/
Ein: contin: ; contin: ;

} while (/*...*/); }

ntinue statement shown is in an enclosed iteration statement (in which case ifMs
thin that statement), it is equivalent to goto contin;.”’

break statement

Constraints
A break] statement shall appear only in or as a switch body or loop body:
Semantics
A brealk statement terminates execution of the smallest en¢losing switch or iteration
statement.
6.6.6.4 Thq return statement
Constraints
A retunn statement with an expression shall not’appear in a function whose return type is
void.
Semantics
A retuzn statement terminates exécution of the current function and returns control to its

caller. A fun

ction may have any nuniber of return statements, with and without expressions.

If a retyrn statement with-an expression is executed, the value of the expression is returned

to the caller
from that of
that type.

If a retq
is used by t

as the value of ¢he-function call expression. If the expression has a type different
he function ifavhich it appears, it is converted as if it were assigned to an object of

hrn statement without an expression is executed, and the value of the function call
ne_caller, the behavior is undefined. Reaching the } that terminates a function is

equivalent to

executing a return statement without an expression.

77 Following the contin: label is a null statement.

80

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.7 External definitions
Syntax
translation-unit:
external-declaration
translation-unit external-declaration
external-declaration:
function-definition
deciararion
Constraints

The storage-class specifiers auto and register shall not appear in th

specifiers in an external declaration.

There shall be no more than one external definition for each identifier declared

linkage in a translation unit. Moreover, if an identifier declared,'with internal linka
an expression (other than as a part of the operand of a sizeof operator), there sh

one external definition for the identifier in the translation unit.

Semantics

As discussed in 5.1.1.1, the unit of prograni\dext after preprocessing is a tra

declaration

with internal
e is used in
1l be exactly

hslation unit,

which consists of a sequence of external declarations. These are described as ‘‘external’’ because

they appear outside any function (and hence\have file scope). As discussed in 6.5,
that also causes storage to be reserved for)an object or a function named by the
definition.

a declaration
dentifier is a

An external definition is an exterhal declaration that is also a definition of a fiinction or an

object. If an identifier declared(with external linkage is used in an expression (othe

of the operand of a sizeof-operator), somewhere in the entire program there sh
one external definition for<thé identifier; otherwise, there shall be no more than one.

6.7.1 Function définitions
Syntax

function-definition:
declaration-specifiers _ declarator declaration-list
opt opt

Constraints

The identifier declared in a function definition (which is the name of the functig

a function type, as specified by the declarator portion of the function definition.”

78 Thus, if an identifier declared with external linkage is not used in an expression, the

external definition for it.

79 The intent is that the type category in a function definition cannot be inherited from a typg

7

compound-

I than as part

111 be exactly
3

d

statement

n) shall have

e need be no

def:

typedef int F(void); 7% fype F Is Junciion of no arguments TeTuraing

nt'’ */

F £, g; /* £ and g both have type compatible with ¥ */
F£{/*...%/} /* WRONG: syntaxi/constraint error */
Fg() { /*...*/ } /* WRONG: declares that g returns a function */

int £(void) { /*...*/ }
int g() { /*...*/ }

F *e(void) { /*...*/ }

F *((e)) (void) { /*...*/ }
int (*£fp) (void);

F *Fp;

/* RIGHT: £ has type compatible with ¥ */
/* RIGHT: g has type compatible with ¥ */
/* e returns a pointer to a function */

/* same: parentheses irrelevant */

/* £p points to a function that has type F */
/* Fp points to a function that has type F */

Language

81

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

The return type of a function shall be void or an object type other than array.

The storage-class specifier, if any, in the declaration specifiers shall be either extern or
static.

If the declarator includes a parameter type list, the declaration of each parameter shall include
an identifier (except for the special case of a parameter list consisting of a single parameter of
type void, in which there shall not be an identifier). No declaration list shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall have at

least one ddclarator, and those declarators shall declare only identifiers from the identifier list.
An identifiet declared as a typedef name shall not be redeclared as a parameter. The declarations
in the declgration list shall contain no storage-class specifier other than register and no
initializatio
Semantics

The declarator in a function definition specifies the name of the function being defined and
the identifiefs of its parameters. If the declarator includes a parameter type list, the list\also
specifies the| types of all the parameters; such a declarator also serves as a function prototype for

later calls {o the same function in the same translation unit.

identifier lis
parameter th

If a fund
list that end

On entry
of its corre
function deg

parameter ak ‘‘array of type’’ shall be adjusted to ‘‘pointerlto type,’

parameter a

as in 6.2.2.1.

Each pal

If the declarator includes an
80 the types of the parameters may be declared in a following declaration list. -Any
at is not declared has type int.

tion that accepts a variable number of arguments is defined without“a parameter type
with the ellipsis notation, the behavior is undefined.

to the function the value of each argument expression shall ‘be converted to the type
kponding parameter, as if by assignment to the parameter. Array expressions and
ignators as arguments are converted to pointers before the call. A declaration of a
> and a declaration of a
‘“function returning type’’ shall be adjusted to “*pointer to function returning type,’’
The resulting parameter type shall be an object type.

81

ameter has automatic storage duration,Mts identifier is an lvalue.®® The layout of the

storage for parameters is unspecified.

Examples

1. In the

following:
extern int max(int a, int b)
{
retirma > b ? a b;
}

extelrn is the'storage-class specifier and int is the type specifier (each of which may be

omittg

d as those are the defaults); max (int a, int b) is the function declarator; and

}

{ ‘'return a > b ? a b;

is the
param

function body. The following similar definition uses the identifier-list form for the
eter declarations:

80 See ‘‘future language directions’’ (6.9.5).

81 A parameter is in effect declared at the head of the compound statement that constitutes the function
body, and therefore may not be redeclared in the function body (except in an enclosed block).

82 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

extern int max(a, b)
int a, b;
{

return a > b ? a b;

}

Here int a, b; is the declaration list for the parameters, which may be o
those are the defaults.

9899:1990 (E)

mitted because

The difference between these two definitions is that the first form

acts as a prototype declaration that forces conversion of the arguments of subsequent calls

to the tunction, whereas the second Iorm may not.
To pass one function to another, one might say

int £ (void);
/*...%/
g(£f);

Note that £ must be declared explicitly in the calling/function, as its app
expression g (£) was not followed by (. Then the definifion of g might reagl

g(int (*funcp) (void))

{
/*...*/ (*funcp) (V./* or funcp() */
}
or, equivalently,
g(int func(void))
{
/*...*%/\ func() /* or (*func) () */
}

6.7.2 External object,definitions
Semantics

If the declaration of an identifier for an object has file scope and an initializer,
is an external\definition for the identifier.

A declaration of an identifier for an object that has file scope without an
without\.d storage-class specifier or with the storage-class specifier static,
tentative definition. If a translation unit contains one or more tentative defi
identifier, and the translation unit contains no external definition for that iden
behavior is exactly as if the translation unit contains a file scope declaration of
with the composite type as of the end of the translation unit, with an initializer equ

If the declaration of an identifier for an object is a tentative definition an
linkage, the declared type shall not be an incomplete type.

Example

earance in the

the declaration

nitializer, and
constitutes a
hitions for an
ifier, then the
that identifier,
hl to 0.

d has internal

int i1 = 1;
static int i2
extern int i3
int i4;

static int i5;

/* definition, external linkage * /
/* definition, internal linkage */
/* definition, external linkage * /
/* tentative definition, external linkage
/ * tentative definition, internal linkage

Language

*/
*/

83

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

84

int il; /* valid tentative definition, refers to previous */
int i2; /* 6.1.2.2 renders undefined, linkage disagreement * /
int i3; /* valid tentative definition, refers to previous */
int i4; /* valid tentative definition, refers to previous */
int i5; /* 6.1.2.2 renders undefined, linkage disagreement * /
extern int il; /* refers to previous, whose linkage is external * /
extern int i2; /* refers to previous, whose linkage is internal */
extern int i3; /* refers to previous, whose linkage is external * /
extirn int i4; /* refers to previous, whose linkage 1s external */
extern int i5; /* refers to previous, whose linkage is internal * /

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.8 Preprocessing directives

Syntax
preprocessing-file:
group,,
group:
group-part
group group-part
group-part:
pp—tokenso ; new-line
if-section
control-line
if-section:
if-group elzf-groupsopl else-groupop' endif-line
if-group:
if constant-expression new-line group
ifdef identifier new-line group - P
ifndef identifier new-line groupoﬁt
elif-groups:
elif-group
elif-groups elif-group
elif-group:
elif constant-expression new-line groupopr
else-group:
else new-line groupopt
endif-line:

endif new-line

control-line’

include pp-tokens new-line

define identifier replacement-list new-line

define identifier Iparen identiﬁer-listopt) replacement-list new-line

undef identifier new-line

line pp-tokens new-line

error pp-tokensn . new-line

pragma pp-tokenso . new-line
new-line

3H 3 I

Iparen:
the left-parenthesis character without preceding white-space

replacement-list:

pp-tokensopt

pp-tokens:

preprocessing-token

pp-tokens preprocessing-token
new-line:

the new-line character

Language 85

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Description

A preprocessing directive consists of a sequence of preprocessing tokens that begins with a #
preprocessing token that is either the first character in the source file (optionally after white space
containing no new-line characters) or that follows white space containing at least one new-line
character, and is ended by the next new-line character.?

Constraints

The only white-space characters that shall appear between preprocessing tokens within a

preprocessing directive (from just after the introducing # preprocessing token through just before
the terminating new-line character) are space and horizontal-tab (including spaces that have
replaced conyments or possibly other white-space characters in translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include other
source filesy and replace macros. These capabilities are called preprocessing, because
conceptually| they occur before translation of the resulting translation unit.

The prep
unless othery

6.8.1 Con

Constraints

rocessing tokens within a preprocessing directive are not subject to macro_éxpansion
vise stated.

ditional inclusion

The exp
except that:
are interprets

fession that controls conditional inclusion shall be an integral constant expression
t shall not contain a cast; identifiers (including those lexically identical to keywords)
d as described below;% and it may contain unary operator expressions of the form

defined identifier
or

defined (identifier)

which evaldate to 1 if the identifier is currently.defined as a macro name (that is, if it is
predefined ¢r if it has been the subject of al #idefine preprocessing directive without an
intervening $undef directive with the same subject identifier), O if it is not.

Each preprocessing token that remain§ after all macro replacements have occurred shall be in
the lexical form of a token.

Semantics

Preproc

#
#

check whet

Prior to

sing directives of\the forms

£ constantiexpression new-line group
1if constant-expression new-line groupom

r theleontrolling constant expression evaluates to nonzero.

valuation, macro invocations in the list of preprocessing tokens that will become the

controlling constant expression are replaced (except for those macro names modified by the
defined unary operator), just as in normal text. If the token defined is generated as a result
of this replacement process or use of the defined unary operator does not match one of the two

)

82 Thus, preprocessing directives are commonly called ‘‘lines.”” These ‘‘lines”” have no other syntactic
significance, as all white space is equivalent except in certain situations during preprocessing (see the #
character string literal creation operator in 6.8.3.2, for example).

83 Because the controlling constant expression is evaluated during translation phase 4, all identifiers either
are or are not macro names — there simply are no keywords, enumeration constants, etc.

86 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

specified forms prior to macro replacement, the behavior is undefined. After all replacements due
to macro expansion and the defined unary operator have been performed, all remaining
identifiers are replaced with the pp-number 0, and then each preprocessing token is converted
into a token. The resulting tokens comprise the controlling constant expression which is
evaluated according to the rules of 6.4 using arithmetic that has at least the ranges specified in
5.2.4.2, except that int and unsigned int act as if they have the same representation as,
respectively, long and unsigned long. This includes interpreting character constants, which
may involve converting escape sequences into execution character set members. Whether the

numeric_value for these character constants matches the value obtained whe

n an identical

character constant occurs in an expression (other than within a #if or #eldi
implementation-defined.®* Also, whether a single-character character con$tant
negative value is implementation-defined.

Preprocessing directives of the forms

ifdef identifier new-line groupom

ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined @sya macro name. Their
equivalent to #if defined identifier and #if 'defined identifier respectively.

Each directive’s condition is checked in order. If)it evaluates to false (zero), th
controls is skipped: directives are processed only<through the name that determing
in order to keep track of the level of nested conditionals; the rest of the directives
tokens are ignored, as are the other preprocessing tokens in the group. Only
whose control condition evaluates to tru¢ (nonzero) is processed. If none of
evaluates to true, and there is a #else directive, the group controlled by
processed; lacking a #else directive, all the groups until the #endif are skipped

Forward references: macro réplacement (6.8.3), source file inclusion (6.8.2).
6.8.2 Source file inclusion
Constraints

A #include directive shall identify a header or source file that can be pr
implementation.

Semantics
A-preprocessing directive of the form
include <h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uf
specified sequence between the < and > delimiters, and causes the replacement o
by the entire contents of the header. How the places are specified or the head
implementation-defined.

f directive) is
may have a

conditions are

e group that it
s the directive
preprocessing
the first group
the conditions

the #else is
85

cessed by the

niquely by the
[that directive
br identified is

84 Thus, the constant expression in the following #if directive and if statement is not guaranteed to

evaluate to the same value in these two contexts.

rar

25
25)

#if 'z’

if ('z’

a

ra’

85 As indicated by the syntax, a preprocessing token shall not follow a #else or #endif

directive before

the terminating new-line character. However, comments may appear anywhere in a source file, including

within a preprocessing directive.

Language

87

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

A preprocessing directive of the form
include "g-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the
specified sequence between the " delimiters. The named source file is searched for in an
implementation-defined manner. If this search is not supported, or if the search fails, the
directive is reprocessed as if it read

include <h-char-sequence> new-line

PR TR T, !J.,Att__r| PRURSSPURL SN SRR L. SRS RN L EURRY U, I RPN AR ~ + M 1 Aivnntivrn
wiin ine aenycai contained sequence (mciuding 2 Cnaracicrs, ii aity) 1roin uic Origiial dirciuve.

A preprocpssing directive of the form
imclude pp-tokens new-line

(that does not| match one of the two previous forms) is permitted. The preprocessing tokens after
include in [the directive are processed just as in normal text. (Each identifier currently defingd
as a macro rjame is replaced by its replacement list of preprocessing tokens.) The directive
resulting after all replacements shall match one of the two previous forms.? The metHod by
which a sequgnce of preprocessing tokens between a < and a > preprocessing token pairn0r/a pair
of " charactgrs is combined into a single header name preprocessing token is implementation-
defined.

There shall be an implementation-defined mapping between the delimited/s€équence and the
external sour¢e file name. The implementation shall provide unique mappings for sequences

consisting of Jone or more letters (as defined in 5.2.1) followed by a period (.) and a single
letter. The implementation may ignore the distinctions of alphabeti¢al case and restrict the
mapping to sik significant characters before the period.

A #incljude preprocessing directive may appear in a sout¢é file that has been read because
of a #inclyde directive in another file, up to an implementation-defined nesting limit (see
5.24.1).

Examples
1. The mdst common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h!

2. This illjistrates macro-replaced-#include directives:

#if VERSION-==

#define INCFILE '"versl.h"
#elif VERSION ==

f#define INCFILE '"vers2.h" /* and so on */
#telse

#define INCFILE "versN.h"

_#_enri-i £
#include INCFILE

Forward references: macro replacement (6.8.3).

86 Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

88 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.8.3 Macro replacement

Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have the
same number, ordering, spelling, and white-space separation, where all white-space separations

are considered identical.

An identifier currently defined as a macro without use of lparen (an object-like macro) may be
redefined by another #define preprocessing directive provided that the second definition is an

object-like macro definition and the two replacement lists are 1dentical.

An identifier currently defined as a macro using lparen (a function-like ina
redefined by another #define preprocessing directive provided that the s€eond d
function-like macro definition that has the same number and spelling of parameters
replacement lists are identical.

The number of arguments in an invocation of a function,like macro shall ag
number of parameters in the macro definition, and there shall\&ist a) preprocessi
terminates the invocation.

A parameter identifier in a function-like macro shall be"uniquely declared within
Semantics

The identifier immediately following the define is called the macro name.
name space for macro names. Any white-space characters preceding or f

replacement list of preprocessing tokens are’not considered part of the replacement

form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the poi
preprocessing directive could bégin, the identifier is not subject to macro replacemen

A preprocessing directive of the form
define. (dentifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro
replaced by _the feplacement list of preprocessing tokens that constitute the rem
directive. (The replacement list is then rescanned for more macro names as specified

A preprocessing directive of the form

define identifier Iparen idenriﬁer-listop) replacement-list new-lin

t
défines a function-like macro with arguments, similar syntactically to a functi
parameters are specified by the optional list of identifiers, whose scope exten
declaration in the identifier list until the new-line character that terminates

preprocessing directive. Each subsequent instance of the function-like macro name
(as the next preprocessing token introduces the sequence of preprocessing tokens th
by the replacement list in the definition (an invocation of the macro). The replace

i

cro) may be
efinition is a
and the two

ree with the
ng token that

its scope.

There is one
bllowing the
list for either

nt at which a
(.

hame®’ to be
hinder of the
below.

a

n call. The
s from their
e #define
followed by a
at is replaced
 sequence of

——__preprocessing Tokens 1S terminated by e Marcing J Preprocessing ToKerr, SKippin
matched pairs of left and right parenthesis preprocessing tokens. Within the
preprocessing tokens making up an invocation of a function-like macro, new-line is
normal white-space character.

g intervening
sequence of
considered a

87 Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not
sequences possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they are

never scanned for macro names or parameters.

Language

89

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within the list
are separated by comma preprocessing tokens, but comma preprocessing tokens between
matching inner parentheses do not separate arguments. If (before argument substitution) any
argument consists of no preprocessing tokens, the behavior is undefined. If there are sequences
of preprocessing tokens within the list of arguments that would otherwise act as preprocessing
directives, the behavior is undefined.

6.8.3.1 Argument substitution

After th¢ arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded by a # or
preprocepsing token or followed by a ## preprocessing token (see below), is replaced by the
correspondinlg argument after all macros contained therein have been expanded. Before being

substituted, feach argument’s preprocessing tokens are completely macro replaced as if they
formed the rest of the translation unit; no other preprocessing tokens are available.
6.8.3.2 The # operator
Constraints
Each # freprocessing token in the replacement list for a function-like macro shall:be followed

by a parameler as the next preprocessing token in the replacement list.
Semantics

If, in thg replacement list, a parameter is immediately preceded by, a“#" preprocessing token,

both are rep

of the prepr
space betwd

character st

preprocessin|
preprocessin|
handling foj
inserted bef]
delimiting "

behavior is

6833 T

for either fo
Semantics

If, in t
preprocessi

aced by a single character string literal preprocessing token that contains the spelling -
bcessing token sequence for the corresponding arguments Each occurrence of white
en the argument’s preprocessing tokens becomes @, single space character in the
ing literal. White space before the first preprocessing token and after the last
b token comprising the argument is deleted. Otherwise, the original spelling of each
o token in the argument is retained in the ¢haracter string literal, except for special
producing the spelling of string literals)and character constants: a \ character is
bre each " and \ character of a character constant or string literal (including the
characters). If the replacement that Tesults is not a valid character string literal, the
indefined. The order of evaluationof # and ## operators is unspecified.

t]e ## operator

Constraints|

A ## pr

eprocessing token Shall not occur at the beginning or at the end of a replacement list
'm of macro definition.

e replacement list, a parameter is immediately preceded or followed by a ##
token, the parameter is replaced by the corresponding argument’s preprocessing

token sequence.

For both object-like and function-like macro invocations, before the replacement list is

reexamined for more macro names to replace, each instance of a ## preprocessing token in the
replacement list (not from an argument) is deleted and the preceding preprocessing token is
concatenated with the following preprocessing token. If the result is not a valid preprocessing
token, the behavior is undefined. The resulting token is available for further macro replacement.
The order of evaluation of ## operators is unspecified.

90 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.8.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted, the resulting

preprocessing

token sequence is rescanned with all subsequent preprocessing tokens of the source file for more

macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source file’s preprocessing tokens), it is not repiaced. Further, if any
nested replacements encounter the name of the macro bemg replaced it is not replaced. These

even if they are later (re)examined in contexts in which that macro name prepig
would otherwise have been replaced.

- MEATACACCING 1 a comiianna ag nat

The ICbUILlllg LOlllp tely 1acr0-rep}awu preprocessing toxken Sequence 1S not
preprocessing directive even if it resembles one.
6.8.3.5 Scope of macro definitions

A macro definition lasts (independent of block structure)”until a corresponfli

dire

(833 Lo)

ctive is encountered or (if none is encountered) until the_end of the translation u

WUt © Wil transiatit

A preprocessing directive of the form
undef identifier new-line

causes the specified identifier no longer to ‘be ‘defined as a macro name. It is

specified identifier is not currently defined as~a macro name.
Examples

1. The simplest use of this facility is to define a ‘‘manifest constant,”” as in

#define TABSIZE 100
int table[TABSIZE];

The following-defines a function-like macro whose value is the maximum of
It has the (advantages of working for any compatible types of the argy
generating in-line code without the overhead of function calling. It has the
of evaluating one or the other of its arguments a second time (including siq
gefierating more code than a function if invoked several times. It also c{
address taken, as it has none.

b) ((a) > (b) ? (a) (b))

The parentheses ensure that the arguments and the resulting expression are boj

#define max(a,

To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f£(a) £(x * (a))

har replacemem

Lﬁbblllg lUl\Cll

rafagqa

gnored if the

its arguments.
ments and of
disadvantages
e effects) and
innot have its

und properly.

#hundef x
f#define x 2
#define g £
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a

f(y+l) + £(£(z)) % t(t(g) (0) + t)(1);
g(x+(3,4)-w) | h 5) &m
(£) “m(m) ;

Language

91

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

results in

£(2 * (y+1)) + £(2 * (£(2 * (z[0])))) % £(2 * (0)) + t(1);
£(2 * (2+(3,4)-0,1)) | £(2 * (~ 5)) & £(2 * (0,1))"m(0,1);

4. To illustrate the rules for creating character string literals and concatenating tokens, the

sequence
#define str(s) # s
#define xstr(s) str(s)

#ddfine debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
x ## s, x ## t)
f#iddfine INCFILE(n) vers ## n /* from previous #include example */
#ddfine glue(a, b) a ## b
#ddfine xglue(a, b) glue(a, b)
#ddfine HIGHLOW "hello"
#ddfine LOW LOW ", world"

dehug (1, 2);

fpyts (str(strncmp ("abc\0d", "abec", ’'\4’) /* this goes (@away */
== 0) str(: @\n), s);

#include xstr (INCFILE(2) .h)

glye (HIGH, LOW);

xgllue (HIGH, LOW)

results [in
Printf("x" "1" "W %d, xll HZII "= %sll’ xl[x2) ;
fputs ("strncmp (\"abc\\0d\", \"abc\", ’'\\4¥) == 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hgllo";

"hgllo" ", world"
or, aftgr concatenation of the character string lit€rals,

printf ("x1= %d, x2= %s", x1,“-x2);

fpyts ("strncmp (\"abc\\0d\", ‘\"abc\", "\\4’) == 0: @\n", s);
#fifclude "vers2.h" (after macro replacement, before file access)
"hqllo";

"hello, world"

Space pround the # and ##.tokens in the macro definition is optional.

5. And fipally, to demonstrate the redefinition rules, the following sequence is valid.

#define OBJ,(LIKE (1-1)
#define ‘OBJ_LIKE /* white space */ (1-1) /* other */
#dgefine(FTN_LIKE (a) (a)
#define FTN LIKE(a) (/* note the white space */ \
a /* other stuff on this Iine
*/)

But the following redefinitions are invalid:
#define OBJ_LIKE (0) « [/* different token sequence */
#define OBJ_LIKE (1 - 1) /* different white space */

#define FTN LIKE(b) (a) /* different parameter usage */
#define FTN LIKE(b) (b) /* different parameter spelling */

92 Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.8.4 Line control

Constraints

The string literal of a #1ine directive, if present, shall be a character string literal.

Semantics

The line number of the current source line is one greater than the number of new-line

characters read or introduced in translation phase 1 (5.1.1.2) while processing the

source file to

+1a ol
IV CUrivIm tUNUIT,
A preprocessing directive of the form
line digit-sequence new-line

causes the implementation to behave as if the following sequence offsource lines
source line that has a line number as specified by the digit sequence (interpreted

integer). The digit sequence shall not specify zero, nor a number'\greater than 32767.

A preprocessing directive of the form

line digit-sequence "s-char-sequence '\ new-line
8 q q opt

begins with a
as a decimal

sets the line number similarly and changes the presumed name of the source file to be the

contents of the character string literal.
A preprocessing directive of the form
line pp-tokens new-line

(that does not match one of the two<previous forms) is permitted. The preprocessin
line on the directive are processed just as in normal text (each identifier currentl
macro name is replaced by its\replacement list of preprocessing tokens). The dire
after all replacements shall match one of the two previous forms and is then
appropriate.

6.8.5 Error directive
Semantics
A preprogessing directive of the form
error pp-tokensom new-line
causes the implementation to produce a diagnostic message that includes the spec
of) preprocessing tokens.

6.8.6 Pragma directive
Semantics

A preprocessing directive of the form

g tokens after

defined as a
tive resulting
processed as

fied sequence

pragma nn-t()kens“[” new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is

not recognized by the implementation is ignored.

Language

93

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.8.7 Null directive

Semantics

has no effect.

6.8.8 Predefined macro names

The folid

__STDC___|

The valfies of the predefined macros (except for

constant thr

None of

wing macro names shall be defined by the impiementation:

The line number of the current source line (a decimal constant).

_| The presumed name of the source file (a character string literal).

The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy", where the names of the months are the same as those generated

by the asctime function, and the first character of dd is a space character_if\the
value is less than 10). If the date of translation is not available] an

yaiuvo IUSS uidail GaiC O HallsiduiVil IS 20V avallatio

implementation-defined valid date shall be supplied.

The time of translation of the source file (a character string literal~of the form
"hh:mm:ss" as in the time generated by the asctime functign)> If the time of
translation is not available, an implementation-defined valid time’ shall be supplied.

The decimal constant 1, intended to indicate a conformingtimplementation.

__LINE (\"and __FILE _) remain

ughout the translation unit.

these macro names, nor the identifier defined; shall be the subject of a #define

or a #unddf preprocessing directive. All predefined macro names shall begin with a leading

underscore f]

Forward re

pllowed by an uppercase letter or a second uriderscore.

ferences: the asctime function (7 42:3.1).

94

Language

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

6.9 Future language directions
6.9.1 External names

Restriction of the significance of an external name to fewer than 31 characters or to only one

case is an obsolescent feature that is a concession to existing implementations.

6.9.2 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other

characters mav be used in extensions
A

6.9.3 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of t
specifiers in a declaration is an obsolescent feature.

6.9.4 Function declarators

The use of function declarators with empty parentheses (nQt prototype-format f
declarators) is an obsolescent feature.

6.9.5 Function definitions

The use of function definitions with separate, parameter identifier and declard
prototype-format parameter type and identifier deelarators) is an obsolescent feature

6.9.6 Array parameters

The use of two parameters declared*with an array type (prior to their adjustm
type) in separate lvalues to designate the' same object is an obsolescent feature.

ne declaration

arameter type

tion lists (not

ent to pointer

Language

95

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)
7 Library

7.1 Introduction

7.1.1 Definitions of terms
A string is a contiguous sequence of characters terminated by and including the first null

character. A ‘‘pointer to’’ a string is a pointer to its initial (lowest addressed) character. The

66length7’0f ;‘ Lo oo oy NP o a st st o o b & a a + a o) .o

the sequence] of the values of the contained characters, in order.

t O v Tara PTC O g—tn yye eraracer—ana

A letter |s a printing character in the execution character set corresponding to any of the 52
required lowgrcase and uppercase letters in the source character set, listed in 5.2.1.

The deciymal-point character is the character used by functions that convert floating-point
numbers to pr from character sequences to denote the beginning of the fractional part of such
character sequences.®® It is represented in the text and examples by a period, but may be changed
by the setllocale function.

Forward references: character handling (7.3), the setlocale function (7.4.1.1).
7.1.2 Standard headers

Each libgary function is declared in a header %° whose contents are made_available by the
#include [preprocessing directive. The header declares a set of related functions, plus any
necessary types and additional macros needed to facilitate their use.

The standlard headers are

<agsert .h> <locale.h> <stddef.h>
<ctiype.h> <math.h> <stdio.h>
<exrno.h> <setjmp.h> <stdlib.h>
<float.h> <signal.h> <string.h>
<limits.h> <stdarg.h> <time.h>

If a file pith the same name as one of the abeve < and > delimited sequences, not provided
as part of the implementation, is placed in‘any of the standard places for a source file to be
included, theg behavior is undefined.

Headers [may be included in any-order; each may be included more than once in a given
scope, with po effect different from-being included only once, except that the effect of including
<assert .}> depends on the defifiition of NDEBUG. If used, a header shall be included outside
of any exterpal declaration or définition, and it shall first be included before the first reference to
any of the fiinctions or objeCts it declares, or to any of the types or macros it defines. However,
if the identffier is declared or defined in more than one header, the second and subsequent
associated h¢aders may ‘be included after the initial reference to the identifier. The program shall
not have anfy macros with names lexically identical to keywords currently defined prior to the
inclusion.

Forward references: diagnostics (7.2).

88 The functions that make use of the decimal-point character are localeconv, fprintf, fscanf,
printf, scanf, sprintf, sscanf, vfprintf, vprintf, vsprintf, atof, and strtod.

89 A header is not necessarily a source file, nor are the < and > delimited sequences in header names
necessarily valid source file names.

96 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and optionally
declares or defines identifiers listed in its associated future library directions subclause and

identifiers which are always reserved either for any use or for use as file scope ident

underscore are always reserved for any use.

ifiers.

All identifiers that begin with an underscore and either an uppercase letter or another

All identifiers that begin with an underscore are always reserved for use as identifiers with file

scope 1n both the ordinary identiner and tag name spaces.

Each macro name listed in any of the following subclauses (includingythe
directions) is reserved for any use if any of its associated headers is included.

All identifiers with external linkage in any of the following subclauses (includ
library directions) are always reserved for use as identifiers with external linkage

Each identifier with file scope listed in any of the following subclauses (includ
library directions) is reserved for use as an identifier with file"scope in the same
any of its associated headers is included.

future library

ng the future
90

ng the future
name space if

No other identifiers are reserved. If the programideclares or defines an idenfifier with the

same name as an identifier reserved in that context,(other than as allowed by 7.1.7)
is undefined.®!

7.1.4 Errors <errno.h>

The header <errno.h> defines,several macros, all relating to the repor
conditions.

The macros are

EDOM
ERANGE

which expand to integral constant expressions with distinct nonzero values, suital
#if preprocessing. directives; and

errno

which expands to a modifiable Ivalue®” that has type int, the value of which is se
errorcnumber by several library functions. It is unspecified whether exrrno is a
identifier declared with external linkage. If a macro definition is suppressed in orde
actual object, or a program defines an identifier with the name errno, the behavior

The value of errno is zero at program startup, but is never set to zero b
function.”® The value of errno may be set to nonzero by a library function call W
there is an error, provided the use of errno is not documented in the description o
in this International Standard.

the behavior

ting of error

le for use in

to a positive
macro or an
I to access an
is undefined.

y any library
hether or not
f the function

90 The list of reserved identifiers with external linkage includes errno, set jmp, and va_end.

91 Since macro names are replaced whenever found, independent of scope and name space, macro names
matching any of the reserved identifier names must not be defined if an associated header, if any, is

included.

92 The macro errno need not be the identifier of an object. It might expand to a modifiable lvalue

resulting from a function call (for example, *errno ()).
93 Thus, a program that uses errno for error checking should set it to zero before a librar

y function call,

then inspect it before a subsequent library function call. Of course, a library function can save the value
of errno on entry and then set it to zero, as long as the original value is restored if errno’s value is

still zero just before the return.

Library

97

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 989

9:1990 (E)

Additional macro definitions, beginning with E and a digit or E and an uppercase letter,”* may

also be speci

fied by the implementation.

7.1.5 Limits <float.h> and <limits.h>

The headers <float.h> and <limits.h> define several macros that expand to various
limits and parameters.

The macros, their meanings, and the constraints (or restrictions) on their values are listed in

5.2.4.2.

7.1.6 Conlmon definitions <stddef .h>

The follo

also defined

The types
ptx
which is the Js

si

which is the

wch

which is an
the largest e
have the cod
code value e

The maci

NUI
which expan|
off

which expan
offset in byt
of its structu

wing types and macros are defined in the standard header <stddef.h>. Some are
n other headers, as noted in their respective subclauses.

are

diff t

igned integral type of the result of subtracting two pointers;

e t

unsigned integral type of the result of the sizeof operator; and
ar_t

ntegral type whose range of values can represent distinct codes for all members of
ktended character set specified among the supported locales; the null character shall
b value zero and each member of the basic character set.defined in 5.2.1 shall have a
hual to its value when used as the lone character in an integer character constant.

0s are

L

s to an implementation-defined null pointér constant; and
setof (type, member-designator)

ds to an integral constant expression that has type size_t, the value of which is the
s, to the structure member-(designated by member-designator), from the beginning
re (designated by type). The’member-designator shall be such that given

static tHype t;

then the exp
member is a

Forward ref

ression & (t . mefiiher-designator) evaluates to an address constant. (If the specified
bit-field, the behavior is undefined.)

erences: “localization (7.4).

94 See ‘‘future library directions’’ (7.13.1).

98

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.1.7 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow. If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program, or a
null pointer), the behavior is undefined. If a function argument is described as being an array,
the pointer actually passed to the function shall have a value such that all address computations
and accesses to objects (that would be valid if the pointer did point to the first element of such an
array) are in fact valid. Any function declared in a header may be additionally implemented as a

macro defined in the header, so a library funciion should not be declared explicitly if its header is

included. Any macro definition of a function can be suppressed locally by enclosin

the function in parentheses, because the name is then not followed by the left p

indicates expansion of a macro function name. For the same syntactic redson, it i

take the address of a library function even if it is also defined as a macre)”’ The ug

to remove any macro definition will also ensure that an actual fumction is refe
invocation of a library function that is implemented as a macro shall expand
evaluates each of its arguments exactly once, fully protected by, parentheses where
it is generally safe to use arbitrary expressions as arguments. Likewise, those

b the name of
renthesis that
b permitted to
e of #undef
red to. Any
to code that
necessary, so
function-like

macros described in the following subclauses may be-invoked in an expressiof anywhere a

function with a compatible return type could be called.’® All object-like mag

expanding to integral constant expressions shall ‘ddditionally be suitable for
preprocessing directives.

Provided that a library function can be’declared without reference to any typd
header, it is also permissible to declaré<the function, either explicitly or implicit
without including its associated header(ZIf a function that accepts a variable number
is not declared (explicitly or by including its associated header), the behavior is und

Example
The function atoi mayybe used in any of several ways:
— by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char *str;
[*¥...%/

i atoi (str);

95 This means that an implementation must provide an actual function for each library fun
also provides a macro for that function.

96 Because external identifiers and some macro names beginning with an underscorg
implementations may provide special semantics for such names. For example,
_BUILTIN abs could be used to indicate generation of in-line code for the abs func
appropriate header could specify

ros listed as
use in #if

defined in a

y, and use it
of arguments
pfined.

tion, even if it

are reserved,
the identifier
ion. Thus, the

“éega‘ ne—abs (“) BUILTIN abs (x\
g — g 7
for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs wi
function may write

#undef abs

whether the implementation’s header provides a macro implementation of abs

1 be a genuine

or a built-in

implementation. The prototype for the function, which precedes and is hidden by any macro definition,

is thereby revealed also.

Library

99

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi
const char *str;
/*...*/
i = atoi(str);

or
#include <stdlib.h>

onst char *str;
x, . x/
= (atoi) (str);

— by explicif declaration

xtern int atoi(const char *);

donst char *str;
N*...*/
i = atoi(str);

— by implic{t declaration

donst char *str;
.../

i = atoi(str);

100

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.2 Diagnostics <assert .h>

The header <assert .h> defines the assert macro and refers to another macro,

which is not defined by <assert.h>. If NDEBUG is defined as a macro name at the point in
ource fil <a

ssert h> is included, the assert macro is defined simply as

#define assert (ignore) ((void)O0)

The assert macro shall be implemented as a macro, not as an actual function, | If the macro
definition is suppressed in order to access an actual function, the behavior is undefingd.

7.2.1 Program diagnostics
7.2.1.1 The assert macro
Synopsis

#lnclude <assert.h>

Description

The assert macro puts diagnostics into progrdms. When it is executed, if expression is
false (that is, compares equal to 0), the assert’ macro writes information about fhe particular
call that failed (including the text of the atgument, the name of the source file, and the source
line number — the latter are respectively‘the values of the preprocessing macros ILE__ and

LINE) on the standard error filé’in an implementation-defined format. 97 Tt fhen calls the
abort function.

Returns
The assert macro retarns no value.

Forward references; (the abort function (7.10.4.1).

97 The message written might be of the form

Assertion failed: expression, file xyz, line nnn

Library 101

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 989

9:1990 (E)

7.3 Character handling <ctype.h>

The hea
characters.”®
unsigned

der <ctype.h> declares several functions useful for testing and mapping
In all cases the argument is an int, the value of which shall be representable as an
char or shall equal the value of the macro EOF. If the argument has any other

value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that have

implementati

on-defined aspects only when not in the "C" locale are noted below.

The tern printing character refers to a member of an implementation-defined set of

characters, e

hich of which occupies one printing position on a display device; the term control

character refers to a member of an implementation-defined set of characters that are not printing

: e 99
characiers.
Forward r
7.3.1 Ch

The func
¢ conforms

7.3.1.1 Th
Synopsis

#in

int

Description

The isa

7.3.1.2 Th
Synopsis

#in

int

Description

The isa
any charactg
iscntrl, §
true only for

7.3.1.3 Th
Synopsis

#in

eaﬁtrences: EOF (7.9.1), localization (7.4).

acter testing functions

ions in this subclause return nonzero (true) if and only if the value of the argument
o that in the description of the function.

P isalnum function

clude <ctype.h>
isalnum(int c);

Inum function tests for any character for which isalpha or isdigit is true.

e isalpha function

clude <ctype.h>
isalpha(int c);

1pha function tests for any.character for which isupper or islower is true, or
r that is one of an_ implementation-defined set of characters for which none of
sdigit, ispunct,-or isspace is true. In the "C" locale, isalpha returns
the characters forwhich isupper or islower is true.

b i scntrl-function

clude <ctype.h>

int

iscntrl (int c);

98 See ‘‘future library directions’” (7.13.2).

99 In an implementation that uses the seven-bit ASCII character set, the printing characters are those whose
values lie from 0x20 (space) through Ox7E (tilde); the control characters are those whose values lie from
0 (NUL) through Ox1F (US), and the character 0x7F (DEL).

102

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Description

The iscntrl function tests for any control character.
7.3.1.4 The isdigit function
Synopsis

#include <ctype.h>
int isdigit (int c);

Description

The isdigit function tests for any decimal-digit character (as defined in3:2.1).
7.3.1.5 The isgraph function
Synopsis

#include <ctype.h>
int isgraph(int c);

Description

The isgraph function tests for any printing character except space (* ').
7.3.1.6 The islower function
Synopsis

#include <ctype.h>
int islower (int c);

Description

The islower function_tests for any character that is a lowercase letter or|is one .of an
implementation-defined set~of characters for which none of iscntrl, isdigit,|ispunct, or
isspace is true. In.the”"C" locale, islower returns true only for the characters defined as
lowercase letters (as-defined in 5.2.1).

7.3.1.7 The isprint function
Synopsis

#include <ctype.h>
int isprint(int c);

Description

The isprint function tests for any printing character including space (* ’).
7.3.1.8 The ispunct function
Synopsis

#include <ctype.h>

int ispunct (int c);
Description

The ispunct function tests for any printing character that is neither space (/ ‘) nor a
character for which isalnum is true.

Library 103

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.3.1.9 The isspace function

Synopsis

#include <ctype.h>
int isspace(int c);

Description

The isspace function tests for any character that is a standard white-space character or is

one of an i
white-space

Synopsis

The standard

is—false

haracters are the following: space (* '), form feed (' \£’), new-line (\n’),
(\r’), horizontal tab (*\t’), and vertical tab (“\v’). In the "C" locale,

e isupper function

#include <ctype.h>

int]

Description

isupper (int c);

The isupper function tests for any character that is an uppercase letter ©r 1S one of an

implementati

isspace i
Iers (as defined in 5.2.1).

uppercase le
73111 T
Synopsis

#in
int

Description

The isx

pn-defined set of characters for which none of iscntrl, isdigit, ispunct, or
true. In the "C" locale, isupper returns true only for the characters defined as

e isxdigit function

clude <ctype.h>
isxdigit (int c);

Higit function tests for any hexadeeimal-digit character (as defined in 6.1.3.2).

7.3.2 Character case mapping funetions

7.3.2.1 Th
Synopsis

#in

int

Description
The tol]

Returns

b tolower function

clude <ctype.h>
tolower (int/c) ;

bwe r-function converts an uppercase letter to the corresponding lowercase letter.

If the argument is a character for which isupper is true and there is a corresponding
character for which islower is true, the tolower function returns the corresponding character;
otherwise, the argument is returned unchanged.

7.3.2.2 The toupper function

Synopsis

#include <ctype.h>
int toupper(int c);

104

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Description
The toupper function converts a lowercase letter to the corresponding uppercase letter.
Returns

If the argument is a character for which islower is true and there is a corresponding
character for which isupper is true, the toupper function returns the corresponding character;
otherwise, the argument is returned unchanged.

Library 105

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.4 Localization <locale.h>
The header <locale.h> declares two functions, one type, and defines several macros.
The type is
struct lconv

which contains members related to the formatting of numeric values. The structure shall contain
at least the following members, in any order. The semantics of the members and their normal
ranges is explamed—m—742+—In-the—€ ' Joealethe-tner sheH-ha e : i 4

chgr *decimal point; /* m.nox/
chgr *thousands_sep; /* " ox/
chir *grouping; /* "%/
chgr *int_ curr_ symbol; /* nnox/
chgr *currency symbol; /* "%/
char *mon_decimal point; /* "ox/
char *mon_thousands_sep; /* "" */
char *mon_grouping; /* "o/
char *positive sign; /* "mox/
char *negative_sign; J* "%/
ch3ar int_frac digits; /* CHAR MAX */
char frac_digits; /* CHAR MAX */
ch3ar p_cs_precedes; /* CHAR MAX */
char p sep by space; /* CHAR MAX */
char n_cs_precedes; /* CHAR MAX */
char n_sep_by space; /* CHAR MAX '*/
char p_sign_posn; /* CHAR MAXJ */
char n_sign_posn; /* CHAR-MAX */

The macfos defined are NULL (described in 7.1.6):and

LC|ALL
LC[COLLATE
LC[CTYPE
LC [MONETARY
LC [NUMERIC

LC|TIME

which expand to integral constant expressions with distinct values, suitable for use as the first
argument tg the setlocale function. Additional macro definitions, beginning with the

-

characters LE__ and an uppercase letter,'® may also be specified by the implementation.

100 See ‘‘future library directions’’ (7.13.3).

106 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

7.4.1 Locale control
7.4.1.1 The setlocale function
Synopsis

#include <locale.h>

char *setlocale(int category, const char *locale);

Description

9899:1990 (E)

The setlocale function selects the appropriate portion of the program’s locgle as specified

by the category and locale arguments. The setlocale function may(be

or query the program’s entire current locale or portions thereof. The, “value
category names the program’s entire locale; the other values for category
portion of the program’s locale. X
strxfrm functions. LC_CTYPE affects the behavior of the character handling fu
the multibyte functions. LC_MONETARY affects the monetary formatting informati
the localeconv function. LC_NUMERIC affects the decithdl<point character fo

sed to change
LC_ALL for
name only a

LC COLLATE affects the behavior of the $trcoll and

nctions'®! and

pon returned by
the formatted

input/output functions and the string conversion functions,(as ‘well as the nonmonefary formatting

information returned by the localeconv function:
strftime function.

LC_TIME affects the bg

A value of "C" for locale specifies the minimal environment for C translati
for locale specifies the implementation-defined native environ

wn

havior of the

on; a value of
ment. Other

implementation-defined strings may be passed as the second argument to setlocalle.

At program startup, the equivalent of
setlocale (LC_ALL, "C");

is executed.

The implementation shall behave as if no library function calls the setlocalg function.

Returns

If a pointer to a string is given for locale and the selection can be
setlocaleffurction returns a pointer to the string associated with the specified ¢
the new locale. If the selection cannot be honored, the setlocale function
pointer (and the program’s locale is not changed.

A-null pointer for locale causes the setlocale function to return a pointg
associated with the category for the program’s current locale; the program’s
changed.'?

honored, the
rtategory for
returns a null

r to the string
locale is not

The pointer to string returned by the setlocale function is such that a subsequent call with

that string value and its associated category will restore that part of the program
string pointed to shall not be modified by the program, but may be overwritten by
call to the setlocale function.

n

s locale. The
a subsequent

acter functions

(7.10.7), the multibyte string functions (7.10.8), string conversion functions (7.10.1), the
strcoll function (7.11.4.3), the strftime function (7.12.3.5), the strxfrm function
(7.11.4.5).

101 The only functions in 7.3 whose behavior is not affected by the current locale are isdigit and
isxdigit.

102 The implementation must arrange to encode in a string the various categories due to a heterogeneous
locale when category has the value LC_ALL.

Library 107

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.4.2 Numeric formatting convention inquiry

7.4.2.1 The localeconv function

Description

The locgdleconv function sets the components of an object with type struct lconv with

values approgriate for the formatting of numeric quantities (monetary and otherwise) according to
the rules of tle current locale.

The members of the structure with type char * are pointers to strings, any of which (except
decimal p¢int) can point to "", to indicate that the value is not available in the current
focale or is ¢f zero length. The members with type char are nonnegative numbers, any of
which can bd CHAR_MAX to indicate that the value is not available in the current locale. The
members inclpde the following:

char *decimal point
[he decimal-point character used to format nonmonetary quantities.

char *thopsands_sep
The character used to separate groups of digits before the decimal-point character in
formatted nonmonetary quantities.

char *gropping
A string whose elements indicate the size of each ‘group of digits in formatted
lonmonetary quantities.

char *int| curr_symbol

The international currency symbol applicable-to the current locale. The first three
Characters contain the alphabetic international currency symbol in accordance with
hose specified in ISO 4217:1987. The-fourth character (immediately preceding the
hull character) is the character used fo separate the international currency symbol
from the monetary quantity.

char *curgency_ symbol
The local currency symbol applicable to the current locale.

char *mon| decimal point
The decimal-poirt used to format monetary quantities.

char *mon| thousands. sep _
The sepafator for groups of digits before the decimal-point in formatted monetary
quantities.

char *mon| grouping

A . 1 1 LI - AR . £ L £ Aot M ttad
AT SUITE WITOST CITIITCIIS THUTC AT HICT S IZUUT vat I s TOUp—UT U s its i ToanT ™
monetary quantltles.

char *positive_ sign
The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char int_frac digits
The number of fractional digits (those after the decimal-point) to be displayed in a
internationally formatted monetary quantity.

108 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in a
formatted monetary quantity.

char p_cs_precedes
Set to 1 or O if the currency symbol respectively precedes or succeeds the
value for a nonnegative formatted monetary quantity.

char p sep by space

Set—to—l—or0-if the currency symbol respectively is or isnot-separated by a

space from the value for a nonnegative formatted monetary quantity.

char n_cs_precedes
Set to 1 or O if the currency_symbol respectively précedes or [succeeds the
value for a negative formatted monetary quantity.

char n_sep by space
Set to 1 or O if the currency_symbol respectively is or is not sgparated by a
space from the value for a negative formatted monetary quantity.

char p sign_posn
Set to a value indicating the positioning of.the positive_sign for 4 nonnegative
formatted monetary quantity.

char n_sign_posn
Set to a value indicating the ‘positioning of the negative sign fpr a negative
formatted monetary quantity:

The elements of grouping and:mon_grouping are interpreted according to the following:
CHAR MAX No further grouping:is to be performed.
0 The previous.element is to be repeatedly used for the remainder of thq digits.

other The integer value is the number of digits that comprise the currenf group. The
next_element is examined to determine the size of the next group of| digits before
the ‘eurrent group.

The value:of p_sign_posn and n_sign_posn is interpreted according to thg following:
Parentheses surround the quantity and currency_symbol.

The sign string precedes the quantity and currency symbol.
The sign string succeeds the quantity and currency_symbol.

The sign string immediately precedes the currency symbol.

w» W) B O

The sign string immediately succeeds the currency_symbol.

The implementation shall behave as if no library function calls the localecony function.

Returns

The localeconv function returns a pointer to the filled-in object. The structure pointed to
by the return value shall not be modified by the program, but may be overwritten by a subsequent
call to the localeconv function. In addition, calls to the setlocale function with
categories LC_ALL, LC_MONETARY, or LC_NUMERIC may overwrite the contents of the
structure.

Example

The following table illustrates the rules which may well be used by four countries to format
monetary quantities.

Library 109

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Country Positive format Negative format International format
-L.1.234 ITL.1.234
F -1.234,56 NLG 1.234,56
krl.234,56- NOK 1.234,56
56 SFrs.1,234.56C CHF 1,234.56
ve valuecs for the monetarv members of the structure
ve values for the monetary members of the structure
Netherlands Norway Switzerland
L. n "NLG ” "NOK " A\l CHF n
"F" ii_krﬁ "S?rs R T
L . ¥ . i . " . "W " , "
mon_grouping "\3" m\3" n"\3" n\3"
POSit.LVe;Sign nn un nn nn
ﬁegat LVé_sigﬁ "w_n nw_n n_mn "C"
int_frac digits 0 2 2 2
frac_digits 0 2 2 2
pP_cs_precedes 1 1 1 1
p_sep|by space 0 1 0 0
n_cs_precedes 1 1 1 1
n_sep|by_ space 0 1 0 0
P_sigh_posn 1 1 1 1
n_sign posn 1 4 2 2

110 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.5 Mathematics <math.h>

The header <math.h> declares several mathematical functions and defines one macro. The

functions take double arguments and return double values.'®

iscussed later.

Integer arithm

The macro defined is

TT.
v

AT YIAT
Sa vaala

r
2

r conditions

etic functions

The behavior of each of these functions is defined for all repfesentable valugs of its input

arguments. Each function shall execute as if it were a singie operation, without g
externally visible exceptions.

0CC

For all functions, a domain error il
which the mathematical function is defined. The description of each function listg
domain errors; an implementation may define additional domain errors, provided th

are consistent with the mathematical definition.©f the function.'”® On a dom

L T2 Y 3 NN e
urs 11 dan mput.argullcit 15> outsiae tne dUl

enerating any

jain over
any required
at such errors

hin error, the

function returns an implementation-defined «alu¢; the value of the macro EDOM is stored in

errno.

Similarly, a range error occurs if, the result of the function cannot be rep|
double value. If the result overflows (the magnitude of the result is so large tha
represented in an object of the «Specified type), the function returns the value
HUGE_VAL, with the same sigh (except for the tan function) as the correct
function; the value of the.macro ERANGE is stored in errno. If the result ur
magnitude of the result is-so small that it cannot be represented in an object of
type), the function returns zero; whether the integer expression errno acquires th
macro ERANGE is iniplementation-defined.

7.5.2 Trigonometric functions
7.5.2.1 /The acos function
Synapsis

#include <math.h>
double acos (double x);

Description

The acos function computes the principal value of the arc cosine of x. A
occurs for arguments not in the range [—1, +1].

resented as a
t it cannot be
of the macro
value of the
iderflows (the
the specified
b value of the

domain error

103 See ‘‘future library directions’’ (7.13.4).
104 HUGE_VAL can be positive infinity in an implementation that supports infinities.

105 In an implementation that supports infinities, this allows infinity as an argument to be a
the mathematical domain of the function does not include infinity.

Library

domain error if

111

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

e asin function

Th

’

,

le atan (double x)

iude <math.h>

lude <math.h>

N

r

7

c

double-x)

’

)

X

1

iouble

le atanZ (double v,

o

o

#4
O

#
d

#i

&

#include <math _ h>

double cos (d

do

Description

.

The cos function computes the cosine of x (measured in radians).

Descripiion

-

J

Library

N

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.5.2.6 The sin function
Synopsis

#include <math.h>
double sin(double Xx);

Description

The sin function computes the sine of x (measured in radians).

Returns

The sin function returns the sine value.
7.5.2.7 The tan function
Synopsis

#include <math.h>
double tan(double x);

Description
The tan function returns the tangent of x (measureéd in radians).
Returns
The tan function returns the tangent value(
7.5.3 Hyperbolic functions
7.5.3.1 The cosh function
Synopsis

#include <math:h>
double cosh(double x);

Description

The cosh function computes the hyperbolic cosine of x. A range error
magnitude of.x\is too large.

Returns

The/ cosh function returns the hyperbolic cosine value.
7:5.3.2 The sinh function
Synopsis

#include <math.h>
double sinh(double x);

Description

occurs if the

The sinh function computes the hyperbolic sine of x. A range error occurs If
of x is too large.

Returns

The sinh function returns the hyperbolic sine value.

Library

he magnitude

113

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 989

9:1990 (E)

7.5.3.3 The tanh function

Synopsis

#include <math.h>
double tanh(double x);

Description

The tanh function computes the hyperbolic tangent of x.

Returns

The tanh function returns the hyperbolic tangent value.

7.5.4 Exp

7.5.4.1 The

pnential and logarithmic functions

exp function

Synopsis
#include <math.h>
douple exp (double x);
Description
The exp| function computes the exponential function of x. A range errof occurs if the
magnitude of] x is too large.
Returns
The exp |function returns the exponential value.

7.5.4.2 The

Synopsis

#i
do

Description

The £re
power of 2.

Returns

The fre
interval [1/2)

frexp function

lude <math.h>

le frexp(double value, int *exp);

kp function breaks a floating-pQint number into a normalized fraction and an integral
[t stores the integer in the ¥nt-object pointed to by exp.

kp function returns-the value x, such that x is a double with magnitude in the
1) or zero, and\value equals x times 2 raised to the power *exp. If value is

zero, both pafts of the resultare zero.

7.5.4.3 Thq
Synopsis

b 1dexp function

#include <math h>

double ldexp (double x,

Description

int exp);

The 1dexp function multiplies a floating-point number by an integral power of 2. A range
€ITor may occur.

Returns

The 1dexp function returns the value of x times 2 raised to the power exp.

114

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.5.4.4 The log function
Synopsis

#include <math.h>
double log(double x);

Description

The log function computes the natural logarithm of x. A domain error occurs if the
argument is negative. A range error may occur if the argument is zero

Returns

The 1og function returns the natural logarithm.
7.5.4.5 The 10g10 function
Synopsis

#include <math.h>
double loglO (double x);

Description

The 1ogl0 function computes the base-tenlogarithm of x. A domain errof occurs if the
argument is negative. A range error may occuf. if the argument is zero.

Returns

The 1o0g10 function returns the base-ten logarithm.
7.5.4.6 The modf function
Synopsis

#include <math.h>
double modf (double value, double *iptr);

Description

The mod€ function breaks the argument value into integral and fractional [parts, each of
which hag™the same sign as the argument. It stores the integral part as a double in the object
pointed(to by iptr.

Returns
The modf function returns the signed fractional part of value.
7.5.5 Power functions
7.5.5.1 The pow function
Synopsis

#include <math.h>

double pow(double x, double y);
Description

The pow function computes x raised to the power y. A domain error occurs if x is negative
and y is not an integral value. A domain error occurs if the result cannot be represented when x
is zero and y is less than or equal to zero. A range error may occur.

Returns

The pow function returns the value of x raised to the power y.

Library 115

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.5.5.2 The sqrt function

Synopsis

#include <math.h>
double sgrt (double x);

Description

The sqrt function computes the nonnegative square root of x. A domain error occurs if the

argument is n

Returns

gative.

The sqrt|function returns the value of the square root.

7.5.6 Nearpst integer, absolute value, and remainder functions

7.5.6.1 The
Synopsis

ceil function

#inglude <math.h>
doubhle ceil (double x);

Description

The ceil|function computes the smallest integral value not less than x.

Returns

The ceil function returns the smallest integral value not less than %; expressed as a double.

7.5.6.2 The
Synopsis

fabs function

#in¢lude <math.h>
double fabs (double x);

Description

The fabs function computes the absolute value of a floating-point number x.

Returns

The £abgd function returns the absolute value of x.

7.5.6.3 The
Synopsis

#in
doul

Description

floor function

tlude <math.h>
ble floor (double Xx);

The £loor function computes the largest integral value not greater than x.

Returns

The £loor function returns the largest integral value not greater than x, expressed as a

double.

116

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.5.6.4 The £mod function
Synopsis

#include <math.h>
double fmod(double x, double y);

Description

The £mod function computes the floating-point remainder of x/y.

D
NCUrin

The £mod function returns the value x — i * y, for some integer i such that)if [y is nonzero,
the result has the same sign as x and magnitude less than the magnitudenof’ y. |If y is zero,
whether a domain error occurs or the fmod function returns zero is.implementation-defined.

Library 117

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.6 Nonlocal jumps <set jmp.h>

The header <setjmp.h> defines the macro setjmp, and declares one function and one

type, for bypassing the normal function call and return discipline.

The type

106

declared is

jmp_buf

which is an array type suitable for holding the information needed to restore a calling

environment

It is unspecified whether set jmp is a macro or an identifier declared with external linkage.

If a macro

finition is suppressed in order to access an actual function, or a program defines an

external identifier with the name set jmp, the behavior is undefined.

7.6.1 Sav

7.6.1.1 The

Synopsis
#in
int

Description

The set

e calling environment

set jmp macro

clude <setjmp.h>
set jmp (jmp_buf env);

jmp macro saves its calling environment in its jmp_buf argument for later use by

the longjmp function.

Returns

If the re
return is fr

urn is from a direct invocation, the setjmp macrg, réturns the value zero. If the
a call to the longjmp function, the set jmp macro returns a nonzero value.

OI
Environmental constraint

An invod

the entirg

expressid
or iterati

the oper
expressid

the entirg

ation of the set jmp macro shall appear-only in one of the following contexts:

controlling expression of a selection or iteration statement;

one operand of a relational or equality«operator with the other operand an integral constant

n, with the resulting expression being the entire controlling expression of a selection
bn statement;

ind of a unary ! operator with the resulting expression being the entire controlling
n of a selection or(iteration statement; or

expression of anexpression statement (possibly cast to void).

106 These fun
program.

118

ctions are useful for dealing with unusual conditions encountered in a low-level function of a

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

7.6.2 Restore calling environment
7.6.2.1 The longjmp function
Synopsis

#include <setjmp.h>
void longjmp (jmp buf env, int val);

Description

The Iongjmp function restores the environment saved Dy the MOSt recent iny
setjmp macro in the same invocation of the program, with the correspond
argument. If there has been no such invocation, or if the function contaiping the
the set jmp macro has terminated execution'?’ in the interim, the behaviof is unde

All accessible objects have values as of the time longjmp was. called, except
of objects of automatic storage duration that are local to the function‘containing th
the corresponding setjmp macro that do not have volatile-qualified type and have
between the set jmp invocation and longjmp call are indeterminate.

As it bypasses the usual function call and return meohanisms, the longjmp
execute correctly in contexts of interrupts, signals, and any of their associa
However, if the longjmp function is invoked/from a nested signal handler (f
function invoked as a result of a signal raised duning the handling of another signal
is undefined.

Returns

After longjmp is completed, program execution continues as if the correspond
of the setjmp macro had just feturned the value specified by val. The lon
cannot cause the setjmp macro to return the value 0; if val is 0, the set jmp
the value 1.

9899:1990 (E)

ocation of the
ng jmp_buf
invocation of
fined.

that the values
e invocation of
been changed

function shall
ted functions.
hat is, from a
), the behavior

ing invocation
yjmp function
macro returns

107 For example, by executing a return statement or because another longjmp call has caused a transfer

to a set jmp invocation in a function earlier in the set of nested calls.

Library

119

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.7 Signal handling <signal.h>

The header <signal.h> declares a type and two functions and defines several macros, for
handling various signals (conditions that may be reported during program execution).

The type defined is
sig_atomic_t

which is the integral type of an object that can be accessed as an atomic entity, even in the
presence of a

vnchronousinterrupts
ps S

The macr¢s defined are

SIG| DFL
SIG| ERR
SIG| IGN

which expand to constant expressions with distinct values that have type compatible with the
second argunfient to and the return value of the signal function, and whose value compares
unequal to thf address of any declarable function; and the following, each of which expands)to a
positive integral constant expression that is the signal number corresponding to the\specified

condition:

SIGABRT abnormal termination, such as is initiated by the abort function

SIGFPE an erroneous arithmetic operation, such as zero divide or an op€ration resulting in
oyerflow

SIGILL d¢tection of an invalid function image, such as an illegal.instruction

SIGINT rdceipt of an interactive attention signal

SIGSEGV ap invalid access to storage

SIGTERM a

An imple
to the rais

definitions bg

an uppercase
their semanti
positive.

7.7.1 Spec
7.7.1.1 Thg

Synopsis

termination request sent to the program

mentation need not generate any of these-signals, except as a result of explicit calls
g function. Additional signals and ‘pointers to undeclarable functions, with macro
ginning, respectively, with the letters SIG and an uppercase letter or with SIG_ and
letter,'® may also be specified\by the implementation. The complete set of signals,
bs, and their default handling)is implementation-defined; all signal numbers shall be

ify signal handling

signal function

#include <signal.h>

voi

Description

d_1(*signal (int sig, wvoid (*func) (int))) (int);

The signal function chooses one of three ways in which receipt of the signal number sig

is to be subsequently handled. If the value of func is SIG_DFL, default handling for that
signal will occur. If the value of func is SIG_IGN, the signal will be ignored. Otherwise,

108 See ‘‘future library directions’” (7.13.5). The names of the signal numbers reflect the following terms
(respectively): abort, floating-point exception, illegal instruction, interrupt, segmentation violation, and
termination.

120 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

func shall point to a function to be called when that signal occurs. Such a function is called a
signal handler.

When a signal occurs, if func points to a function, first the equivalent of signal (sig,
SIG_DFL); is executed or an impiementation-defined blocking of the signai is performed. (If
the value of sig is SIGILL, whether the reset to SIG_DFL occurs is implementation-defined.)
Next the equivalent of (*func) (sig); is executed. The function func may terminate by
executing a return statement or by calling the abort, exit, or longjmp function. If func
executes a return statement and the value of sig was SIGFPE or any other implementation-

defined value corresponding to a computational exception, the behavior 1s undefined. Otherwise,
the program will resume execution at the point it was interrupted.

If the signal occurs other than as the result of calling the abort or.'raise|function, the
behavior is undefined if the signal handler calls any function in the standard library pther than the
signal function itself (with a first argument of the signal number. corresponding| to the signal
that caused the invocation of the handler) or refers to any object with-static storage fluration other
than by assigning a value to a static storage duration, variable of type] volatile
sig_atomic_t. Furthermore, if such a call to the signal function results if a SIG_ERR
return, the value of errno is indeterminate.'”

At program startup, the equivalent of
signal (sig, SIG_IGN);

may be executed for some signals selected.in{an implementation-defined manner; the equivalent
of

signal (sig, SIG_DFL)-
is executed for all other signals defined by the implementation.
The implementation shall.behave as if no library function calls the signal fungtion.
Returns

If the request canbe honored, the signal function returns the value of fund for the most
recent call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned
and a positivetvalue is stored in errno.

Forward-references: the abort function (7.10.4.1), the exit function (7.10.4.3).
7.7.2"Send signal

7.7.2.1 The raise function

Synopsis

#include <signal.h>
int raise(int sig);

Description

The raise function sends e signal s1g [0 The EXEClll'llig prograr.

Returns

The raise function returns zero if successful, nonzero if unsuccessful.

109 If any signal is generated by an asynchronous signal handler, the behavior is undefined.

Library 121

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.8 Variable arguments <stdarg.h>

The header <stdarg.h> declares a type and defines three macros, for advancing through a
list of arguments whose number and types are not known to the called function when it is

translated.

A function may be called with a variable number of arguments of varying types.

described in
plays a spec

The type]
va |

which is a ty

va end. [

objgct (refert
as an argum
ap, the valu

macro prior

As
6.7.1, its parameter list contains one or more parameters. The rightmost parameter
ial role in the access mechanism, and will be designated parmN in this description.

declared 1s
[list

pe suitable for holding information needed by the macros va_start, va_arg, and
f access to the varying arguments is desired, the called function shall declare an
ed to as ap in this subclause) having type va_list. The object ap may be passed
ent to another function; if that function invokes the va_arg macro with parametér
e of ap in the calling function is indeterminate and shall be passed to the va end
to any further reference to ap.

7.8.1 Vaijiable argument list access macros

The va |

macros, not

start and va_arg macros described in this subclause shall be/implemented as
as actual functions. It is unspecified whether va_end is a macro or an identifier

declared with external linkage. If a macro definition is suppressed in order{to access an actual

function, or
undefined.

varying num

a program defines an external identifier with the name wa.,end, the behavior is
he va_start and va_end macros shall be invoked jn the function accepting a
ber of arguments, if access to the varying arguments is;desired.

7.8.1.1 The va_start macro

Synopsis

#include <stdarg.h>

vo
Description
The va |
The va |

The pard
in the funct

Ld va_start (va_list ap, parmNy;

|start macro shall be invoked,before any access to the unnamed arguments.
start macro initializes ap-for subsequent use by va_arg and va_end.

meter parmN is the identifier of the rightmost parameter in the variable parameter list
on definition (the‘ene just before the , .). If the parameter parmN is declared

with the register storage class, with a function or array type, or with a type that is not

compatible

with the type,that results after application of the default argument promotions, the

behavior is findefined:

Returns

The va

start macro returns no value.

7.8.1.2 The va_arg macro

Synopsis

#include <stdarg.h>
type va_arg(va_list ap, type);

Description

The va_

arg macro expands to an expression that has the type and value of the next

argument in the call. The parameter ap shall be the same as the va_list ap initialized by
va_start. Each invocation of va_arg modifies ap so that the values of successive arguments

122 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

are returned in turn. The parameter fype is a type name specified such that the type of a pointer

to an object that has the specified type can be obtained simply by postfixing a * to

type. If there

is no actual next argument, or if fype is not compatible with the type of the actual next argument

(as promoted according to the default argument promotions), the behavior is undefin
Returns

The first invocation of the va_arg macro after that of the va_start mac

ed.

ro returns the

value of the argument after that specified by parmN. Successive invocations return the values of

the remnining argnments In succession
7.8.1.3 The va_end macro
Synopsis

#include <stdarg.h>
void va_end(va_list ap) ;

Description

The va_end macro facilitates a normal return from the function whose variablg argument list

was referred to by the expansion of va_start that inifidlized the va_list ap.
macro may modify ap so that it is no longer usable (without an intervening

The va_end
invocation of

va_start). If there is no corresponding invocation of the va_start madro, or if the

va_end macro is not invoked before the returd, the behavior is undefined.
Returns
The va_end macro returns no value.

Example

The function £1 gathers info’an array a list of arguments that are pointers to sfrings (but not

more than MAXARGS argumerits), then passes the array as a single argument to fung
number of pointers is specified by the first argument to £1.

#include’ <stdarg.h>
#define MAXARGS 31

void\'fl(int n_ptrs, ...)

{
va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start (ap, n_ptrs);
while (ptr_no < n_ptrs)
array[ptr_no++] = va_arg(ap, char *);

tion £2. The

va_end (ap)

f2(n_ptrs, array);
}

Each call to £1 shall have visible the definition of the function or a declaration such as

void fl(int, ...);

Library

123

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.9 Input/output <stdio.h>
7.9.1 Introduction

The header <stdio.h> declares three types, several macros, and many functions for
performing input and output.

The types

declared are size_t (described in 7.1.6);

FILE

which is an
including its
that records
whether the g

object type capable of recording all the information needed to control a stream,
file position indicator, a pointer to its associated buffer (if any), an error indicator
whether a read/write error has occurred, and an end-of-file indicator that records
nd of the file has been reached; and

fpos t

which is an ¢
position with

bject type capable of recording all the information needed to specify uniquely every
n a file.

The macrps are NULL (described in 7.1.6);
_IOFBF
_IOLBF
_IONBF

which expan
argument to

BUF

which expan
setbuf fun

EOF

which expan
indicate end-

to integral constant expressions with distinct values, suitable, for use as the third
he setvbuf function;

SIZ

s to an integral constant expression, which is the-Size of the buffer used by the
Ction;

Is to a negative integral constant expression that is returned by several functions to
bf-file, that is, no more input from a stréam;

FOPEN_MAX

which expan
implementati

s to an integral constant €xpression that is the minimum number of files that the
bn guarantees can be opé€n, simultaneously;

FILENAME MAX

which expan
large enough
opened;''0

s to an integral\constant expression that is the size needed for an array of char
to hold the,lengest file name string that the implementation guarantees can be

L_tmpnam

which expan

S0 an integral constant expression that is the size needed for an array of char

large enough

to hold a temporary file name string generated by the tmpnam function;

110 If the implementation imposes no practical limit on the length of file name strings, the value of
FILENAME MAX should instead be the recommended size of an array intended to hold a file name

string. Of

course, file name string contents are subject to other system-specific constraints; therefore all

possible strings of length FILENAME MAX cannot be expected to be opened successfully.

124

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

P
—Tmamces that siathbe generated-by the-tmprram furctior;

ISO/IEC 9899:1990 (E)

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integral constant expressions with distinct values, suitable for use as the third
argument to the £seek function;

TMP_MAX

which expands to an integral constant expression that is the minimum number of unique file

stderr
stdin
stdout

which are expressions of type ‘‘pointer to FILE’’ that point to the"FILE objec}s associated,

respectively, with the standard error, input, and output streams.

Forward references: files (7.9.3), the £seek function (7.9.9.2), streams (7.9.2),
function (7.9.4.4).

7.9.2

Input and output, whether to or from physical«devices such as terminals and t
whether to or from files supported on structured/storage devices, are mapped intg
streams, whose properties are more uniformnthan their various inputs and outputs.
mapping are supported, for rext streams andfor binary streams.'"!

the tmpnam

Streams

pe drives, or
logical data
Two forms of

A text stream is an ordered sequence of characters composed into lines, each ljne consisting
of zero or more characters plus a terminating new-line character. Whether the last ljne requires a

terminating new-line character (is* implementation-defined. Characters may have

to be added,

altered, or deleted on input and output to conform to differing conventions for repredenting text in

the host environment. Thus, there need not be a one-to-one correspondence
characters in a stream and those in the external representation. Data read in from

between the
a text stream

will necessarily conipare equal to the data that were earlier written out to that streamn only if: the
data consist only, ofprintable characters and the control characters horizontal tab and new-line; no
new-line character is immediately preceded by space characters; and the last charagter is a new-
line charaéter: Whether space characters that are written out immediately before a new-line
character. appear when read in is implementation-defined.

cord internal
arlier written
ver, have an

A binary stream is an ordered sequence of characters that can transparently rg
data. Data read in from a binary stream shall compare equal to the data that were ¢
but to that stream, under the same implementation. Such a stream may, howg
implementation-defined number of null characters appended to the end of the stream

Environmental limits

4 characters,
h1l be at least

An implementation shall support text files with lines containing at least 23
including the terminating new-line character. The value of the macro BUFSIZ sh

256.

111 An implementation need not distinguish between text streams and binary streams. In such an
implementation, there need be no new-line characters in a text stream nor any limit to the length of a
line.

Library 125

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.9.3 Files

A stream is associated with an external file (which may be a physical device) by opening a
file, which may involve creating a new file. Creating an existing file causes its former contents
to be discarded, if necessary. If a file can support positioning requests (such as a disk file, as
opposed to a terminal), then a file position indicator''? associated with the stream is positioned at
the start (character number zero) of the file, unless the file is opened with append mode in which
case it is implementation-defined whether the file position indicator is initially positioned at the
beginning or the end of the file. The file position indicator is maintained by subsequent reads,

writes, and positioning requests, to facilitate an orderly progression through the file. All input
takes place ds if characters were read by successive calls to the £getc function; all output takes

place as if characters were written by successive calls to the fputc function.

Binary files are not truncated, except as defined in 7.9.5.3. Whether a write on a text stream

causes the as

When a
destination
from the ho
be transmittg
is line buffe
block when
transmitted 3
an unbuffere
transmission
implementat

A file m
flushed (any
is disassocial
associated fi
which no ¢
defined.

The file
contents reg
returns to its
output streaj
such as calli

The add
FILE objec

At prog

i

sociated file to be truncated beyond that point is implementation-defined.

stream is unbuffered, characters are intended to appear from the source or at the
soon as possible. Otherwise characters may be accumulated and transmitted \to ot
environment as a block. When a stream is fully buffered, characters are intended to
d to or from the host environment as a block when a buffer is filled. Whena’stream
‘ed, characters are intended to be transmitted to or from the host environment as a
a new-line character is encountered. Furthermore, characters arelintended to be
s a block to the host environment when a buffer is filled, when input is requested on
d stream, or when input is requested on a line buffered stream that requires the
of characters from the host environment. Support for.these characteristics is
on-defined, and may be affected via the setbuf and setwbuf functions.

hy be disassociated from a controlling stream by closing-the file. Output streams are
unwritten buffer contents are transmitted to the hest environment) before the stream
ted from the file. The value of a pointer to a FILE object is indeterminate after the
e is closed (including the standard text streams). Whether a file of zero length (on
aracters have been written by an output\Stream) actually exists is implementation-

may be subsequently reopened, by the same or another program execution, and its
laimed or modified (if it cantbe"repositioned at its start). If the main function
original caller, or if the exit/function is called, all open files are closed (hence all
ms are flushed) before jprogram termination. Other paths to program termination,
hg the abort function,need not close all files properly.

ress of the FILE ‘gbject used to control a stream may be significant; a copy of a
may not necessarily serve in place of the original.

m startup;three text streams are predefined and need not be opened explicitly —

standard input (for-reading conventional input), standard output (for writing conventional

output), an
stream is n

standard error (for writing diagnostic output). When opened, the standard error
fully buffered; the standard input and standard output streams are fully buffered if

: " 1 1 . 1 £, : . 1 :
and Only lf T Sucdaiil Call UC UCLCTHIITIICU TTUU U ITITT U all [HIcidtiive UCVILT.

Function
The rules fo

s that open additional (nontemporary) files require a file name, which is a string.
r composing valid file names are implementation-defined. Whether the same file can

be simultaneously open multiple times is also implementation-defined.

112 This is described in the Base Document as a file pointer. That term is not used in this International

Standard t

126

o avoid confusion with a pointer to an object that has type FILE.

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

Environmental limits

The value of FOPEN_MAX shall be at least eight, including the three standard te

9899:1990 (E)

Xt streams.

Forward references: the exit function (7.10.4.3), the £getc function (7.9.7.1), the fopen

function (7.9.5.3), the £putc function (7.9.7.3), the setbuf function (7.9.5.5),
function (7.9.5.6).

7.9.4 Operations on files
7.9.4.1 The remove function

the setvbuf

Synopsis

#include <stdio.h>
int remove (const char *filename);

Description

The remove function causes the file whose name is the string pointed to by

filename to

be no longer accessible by that name. A subsequent attempt\to open that file us|ng that name
will fail, unless it is created anew. If the file is open, the_behavior of the remoye function is

implementation-defined.
Returns
The remove function returns zero if the gperdation succeeds, nonzero if it fails.
7.9.4.2 The rename function
Synopsis

#include <stdio.h>
int rename (const’,char *old, const char *new);

Description

The rename function causes the file whose name is the string pointed to By old to be
henceforth known/by.the name given by the string pointed to by new. The file named old is no

longer accessible by that name. If a file named by the string pointed to by new
the call to the \rename function, the behavior is implementation-defined.

Returns

eXists prior to

113

The rename function returns zero if the operation succeeds, nonzero if it fails,"” in which

case4f the file existed previously it is still known by its original name.
7.9.4.3 The tmpfile function
Synopsis

#include <stdio.h>
FILE *tmpfile(void);

noenripﬁnn

The tmpfile function creates a temporary binary file that will automaticall

y be removed

when it is closed or at program termination. If the program terminates abnormally, whether an
open temporary file is removed is implementation-defined. The file is opened for update with

"wb+" mode.

113 Among the reasons the implementation may cause the rename function to fail are that
or that it is necessary to copy its contents to effectuate its renaming.

Library

the file is open

127

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The tmpfile function returns a pointer to the stream of the file that it created. If the file
cannot be created, the tmp£file function returns a null pointer.

Forward references: the fopen function (7.9.5.3).

7.9.4.4 The tmpnam function

Synopsis
#include <stdio.h>
chafr *tmpnam(char *s);
Description
The tmpham function generates a string that is a valid file name and that is not the same as
the name of 3n existing file.''*
The tmppam function generates a different string each time it is called, up to TMP_MAX
times. If it i called more than TMP_MAX times, the behavior is implementation-defined.
The impl¢mentation shall behave as if no library function calls the tmpnam function,
Returns
If the argument is a null pointer, the tmpnam function leaves its result i an’ internal static

object and refurns a pointer to that object. Subsequent calls to the tmpnam function may modify
the same object. If the argument is not a null pointer, it is assumed to point to an array of at
least L_tmppam chars; the tmpnam function writes its result in that array and returns the

argument as
Environmen

The valug
7.9.5 File
7.9.5.1 The¢

Synopsis

ts value.

al limits

of the macro TMP_MAX shall be at least 25.
access functions

fclose function

#inlclude <stdio.h>

int
Description
The £cl
associated fil

environment
disassociated

fclose (FILE *stream);

ose function causes the stream pointed to by stream to be flushed and the
E to be closedi/Any unwritten buffered data for the stream are delivered to the host
to be writterl to the file; any unread buffered data are discarded. The stream is
from theMile. If the associated buffer was automatically allocated, it is deallocated.

114 Files creat

ed using strings generated by the tmpnam function are temporary only in the sense that their

names should not collide with those generated by conventional naming rules for the implementation. It
is still necessary to use the remove function to remove such files when their use is ended, and before

program te

128

rmination.

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC

Returns

9899:1990 (E)

The £close function returns zero if the stream was successfully closed, or EOF if any errors

were detected.
7.9.5.2 The ££f1lush function
Synopsis

#include <stdio.h>
int £fflush(FILE *stream)

Description

If stream points to an output stream or an update stream in which the most re¢ent operation
was not input, the ££1ush function causes any unwritten data for that-stream to bg delivered to

the host environment to be written to the file; otherwise, the behavior i$~undefined.

If stream is a null pointer, the ££lush function perfofms this flushing
streams for which the behavior is defined above.

Returns

The ££1ush function returns EOF if a write error‘occurs, otherwise zero.

Forward references: the fopen function (7.9.53), the ungetc function (7.9.7.11)).

7.9.5.3 The fopen function
Synopsis

#include <stdio.h>

FILE *fopen (const _'char *filename, const char *mode)

Description

action on all

The fopen function*gpéns the file whose name is the string pointed to by fiflename, and

associates a stream with:it.

The argument(mode points to a string beginning with one of the following sequ

r open text file for reading

w truncate to zero length or create text file for writing

a append; open or create text file for writing at end-of-file

rb open binary file for reading

whb truncate to zero length or create binary file for writing

ab append; open or create binary file for writing at end-of-file

r+ open text file for update (reading and writing)

w+t truncate to zero length or create text file for update

a+ append; open or create text file for update, writing at end-of-file

r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for update

a+b or ab+ aP_Pend' Qpen Qr create b]naraz file for]]p_da[e M“:]nng at ﬁnd_Qf-ﬁIQ

nces:'d

Opening a file with read mode (’ x’ as the first character in the mode argument) fails if the

file does not exist or cannot be read.

Opening a file with append mode (" a’ as the first character in the mode argument) causes all

subsequent writes to the file to be forced to the then current end-of-file, regardless

115 Additional characters may follow these sequences.

Library

of intervening

129

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

calls to the £seek function. In some implementations, opening a binary file with append mode
("b’ as the second or third character in the above list of mode argument values) may initially
position the file position indicator for the stream beyond the last data written, because of null
character padding.

When a file is opened with update mode (’+’ as the second or third character in the above
list of mode argument values), both input and output may be performed on the associated stream.
However, output may not be directly followed by input without an intervening call to the
f£lush function or to a file positioning function (£seek, £setpos, or rewind), and input

may not be directly followed by output without an intervening call to a file positioning function,
unless the irfput operation encounters end-of-file. Opening (or creating) a text file with update
mode may instead open (or create) a binary stream in some implementations.

When opgned, a stream is fully buffered if and only if it can be determined not to refer to an
interactive dgvice. The error and end-of-file indicators for the stream are cleared.

Returns

The fogen function returns a pointer to the object controlling the stream. If the-open
operation fails, fopen returns a null pointer.

Forward references: file positioning functions (7.9.9).
7.9.5.4 The¢ freopen function
Synopsis

#include <stdio.h>
FIIE *freopen(const char *filename, const _.¢har *mode,
FILE *stream);

Description

The £reppen function opens the file whose name is the string pointed to by £ilename and

associates the stream pointed to by stream with it. \The mode argument is used just as in the

fopen function.!'®

The freopen function first attempts to clos€ any file that is associated with the specified
stream. Failpre to close the file successfully.is ignored. The error and end-of-file indicators for
the stream are cleared.

Returns

The freopen function returns a null pointer if the open operation fails. Otherwise,
freopen rgturns the value of 'stream.

7.9.5.5 The setbuf function
Synopsis

#injclude <stdio.h>
voild“setbuf (FILE *stream, char *buf);

116 The primary use of the £reopen function is to change the file associated with a standard text stream
(stderr, stdin, or stdout), as those identifiers need not be modifiable lvalues to which the value
returned by the fopen function may be assigned.

130 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Description

Except that it returns no value, the setbuf function is equivalent to the setvbuf function
invoked with the values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer),

with the value _IONBF for mode.
Returns
The setbuf function returns no value.

Forward references: the setvbuf function (795 .6)

7.9.5.6 The setvbuf function
Synopsis

#include <stdio.h>

int setvbuf (FILE *stream, char *buf, int mode, size |

Description

The setvbuf function may be used only after the stfeam pointed to by stre

associated with an open file and before any other operation is performed on the
argument mode determines how stream will b&\ buffered, as follows: _I

input/foutput to be fully buffered; _IOLBF causes input/output to be line buffe

causes input/output to be unbuffered. If buf i§ not a null pointer, the array it poi
used instead of a buffer allocated by the setvbuf function.!'” The argument s
the size of the array. The contents of the arrdy at any time are indeterminate.

Returns

The setvbuf function returns zero on success, or nonzero if an invalid valu
mode or if the request cannot:beshonored.

7.9.6 Formatted input/output functions
7.9.6.1 The fprintf function
Synopsis

#include <stdio.h>

int fprintf (FILE *stream,)

const char *format,
Description

The fprintf function writes output to the stream pointed to by stream, un
the string pointed to by format that specifies how subsequent arguments are
output.

are otherwise ignored. The fprintf function returns when the end of the fo
encountered.

The format shall be a multibyte character sequence, beginning and ending in i

If there are insufficient arguments for the format, the behavior is undg
format is exhausted while arguments remain, the excess arguments are evaluated (3

t size);

am has been
stream. The
DFBF causes
red; _IONBF
hts to may be
ize specifies

b is given for

Her control of
converted for
fined. If the
s always) but
'mat string is

ts initial shift

state. The format is composed of zero or more directives: ordinary multibyte characters (not %),
which are copied unchanged to the output stream; and conversion specifications, each of which

results in fetching zero or more subsequent arguments.
introduced by the character %. After the %, the following appear in sequence:

Each conversion specification is

117 The buffer must have a lifetime at least as great as the open stream, so the stream should be closed

before a buffer that has automatic storage duration is deallocated upon block exit.

Library

131

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

— Zero or more flags (in any order) that modify the meaning of the conversion specification.

— An optional minimum field width. If the converted value has fewer characters than the field

width, it

will be padded with spaces (by default) on the left (or right, if the left adjustment

flag, described later, has been given) to the field width. The field width takes the form of an

asterisk * (described later) or a decimal integer.

118

— An optional precision that gives the minimum number of digits to appear for the d, i, o, u,

x, and X
E, and £

conversions, the number of digits to appear after the decimal-point character for e,
onversions, the maximum number of significant digits for the g and G conversions

or the maximum number of characters to be written from a string in s conversion. The

precision

fakes the form of a period (.) followed either by an asterisk * (described later) or

by an optjonal decimal integer; if only the period is specified, the precision is taken as zero.

If a preci

dion appears with any other conversion specifier, the behavior is undefined.

— An optional h specifying that a following d, i, o, u, %, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will have been promoted
according| to the integral promotions, and its value shall be converted to short int. or
unsignid short int before printing); an optional h specifying that a following n

conversio!

specifier applies to a pointer to a short int argument; an optional-1 (ell)

specifying that a following d, i, o, u, x, or X conversion specifier applies to a 1ong int or
unsigndd long int argument; an optional 1 specifying that a following, n-conversion

specifier

pplies to a pointer to a long int argument; or an optional L{specifying that a

following|e, E, £, g, or G conversion specifier applies to a long doubke argument. If an
h, 1, or If appears with any other conversion specifier, the behavior is undefined.

— A character that specifies the type of conversion to be applied.

As noted

above, a field width, or precision, or both, may be indicated by an asterisk. In this

case, an in% argument supplies the field width or precision(Z;The arguments specifying field
width, or précision, or both, shall appear (in that order) before the argument (if any) to be
converted. A negative field width argument is taken as.a - flag followed by a positive field
width. A negative precision argument is taken as if the precision were omitted.

The flag ¢haracters and their meanings are

- The re¢sult of the conversion will be leftyjustified within the field. (It will be right-justified
if thiq flag is not specified.)

+ The result of a signed converSion will always begin with a plus or minus sign. (It will
begin|with a sign only when-a negative value is converted if this flag is not specified.)

space If the|first character of a-signed conversion is not a sign, or if a signed conversion results
in no| characters, a{space will be prefixed to the result. If the space and + flags both
appear, the space.flag will be ignored.

The result ist0 be converted to an ‘‘alternate form.’

L}

For o conversion, it increases the

precigion”to" force the first digit of the result to be a zero. For x (or X) conversion, a
nonzdroTesult will have 0x (or 0X) prefixed to it. For e, E, £, g, and G conversions, the
result will always contain a decimal-point character, even if no digits follow it
(Normally, a decimal-point character appears in the result of these conversions only if a

digit

follows it.) For g and G conversions, trailing zeros will not be removed from the

result. For other conversions, the behavior is undefined.

118 Note that

132

0 is taken as a flag, not as the beginning of a field width.

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

For 4, i, o, u, %, X, e, E, £, g, and G conversions, leading zeros (following any

indication of sign or base) are used to pad to the field width; no space padding is

performed.

X,

and X conversions,

conversions, the behavior is undefined.

The conversion specifiers and their meanings are

d, i

If the 0 and - flags both appear, the 0 flag will be ignored. For 4, i, o, u,
if a precision is specified, the 0 flag will be ignored. For other

The int argument is converted to signed decimal in the style [—]dddd. The

nrpr-icinn cr\PPiﬁPc the minimum number of diairc to—appear; if the value bcing

o,u,x,X

9,6

nnnnnnn tad ~an ha repres

tad 1n £
convertea can oc represeinea in i ill be expan ed Fa

111 l\/‘V‘V\rl Ulsllb ll. Wil o€ \/I\Palld\/\l Wiul
The default precision is 1. The result of converting a zero value_with
zero is no characters.

The unsigned int argument is converted to unsigned ©ctal (o), uns
(u), or unsigned hexadecimal notation (x or X) in the style dddd; the le]

are used for x conversion and the letters ABCDEF, for) X conversion.

andinog 7ernc
caqging zZeros.

h precision of

gned decimal
tters abcdef
The precision

specifies the minimum number of digits to appear;\ifithe value being conpverted can be

represented in fewer digits
precision is 1.
characters.

, it will be expanded' with leading zeros.
The result of converting a zeré value with a precision

The double argument is converted,to decimal notation in the stylq
where the number of digits after €he“decimal-point character is equal tg
If the precision isimissing, it is taken as 6; if the precisig

specification.
tho # fa
uiv llué

character appears, at least.One digit appears before it.
appropriate number of digits.

specified, 'no’ decimal-point character appears.

If a

i not
15 II\JI.

The value is r

The double argumént is converted in the style [—]d.dddetdd, wher

digit before the-decimal-point character (which is nonzero if the argumej

and the number of digits after it is equal to the precision; if the precisi

it is taken as 6; if the precision is zero and the # flag is not specified
The value is rounded to the appropriate nun

point (character appears.

The default
of zero is no

[—]ddd.ddd,
the precision
n is zero and

decimal-noint
GCClnar-point

bunded to the

there is one
Nt iS NONZero)
bn is missing,
, no decimal-
ber of digits.

The ‘E conversion specifier will produce a number with E instead of e i]:troducing the

éxponent. The exponent always contains at least two digits. If the val

exponent is zero.

The double argument is converted in style £ or e (or in style E in th

e is zero, the

e case of a G

conversion specifier), with the precision specifying the number of sigpificant digits.

If the precision is zero, it is taken as 1. The style used depends

converted; style e (or E) will be used only if the exponent resulting

on the value
from such a

conversion is less than —4 or greater than or equal to the precision. TrZLling Zeros are

removed from the fractional portion of the result; a decimal-point ch
only if it is followed by a digit.

acter appears

The int argument is converted to an unsigned char, and the resu

1S written.

ting character

The argument shall be a pointer to an array of character type.''® Characters from the
array are written up to (but not including) a terminating null character; if the precision

is specified, no more than that many characters are written.

If the precision is not

specified or is greater than the size of the array, the array shall contain a null

character.

119 No special provisions are made for multibyte characters.

Library

133

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

If a convg

If any arg

The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in an implementation-defined manner.

The argument shall be a pointer to an integer into which is written the number of
characters written to the output stream so far by this call to £print£. No argument
is converted.

A % is written. No argument is converted. The complete conversion specification
shall be %%.

rsion specification is invalid, the behavior 1s undefined.”

ument is, or points to, a union or an aggregate (except for an array of character type

using %s corfversion, or a pointer using %p conversion), the behavior is undefined.

In no cas

. conversion is

Returns

The f£pr
output error

Environme

b does a nonexistent or small field width cause truncation of a field; if the result of a
wider than the field width, the field is expanded to contain the conversion result.

int £ function returns the number of characters transmitted, or a negative value if an
ccurred.

al limit

The minimum value for the maximum number of characters producéd)by any single
conversion shall be 509.

Example
To print p date and time in the form ‘‘Sunday, July 3, 10:02"’ foltowed by m to five decimal
places:
#irfjclude <math.h>
#include <stdio.h>
/*]..%/
chdr *weekday, *month; /* -pointers to strings */
inY day, hour, min;
fpdintf (stdout, "%s, %s %d) %.2d:%.2d\n",
weekday, month, day, hour, min);
fpgintf (stdout, "pi =\%.5f\n", 4 * atan(1.0));
7.9.6.2 The £scanf function
Synopsis
#innclude <stdio.h>
iny fscanf (FILE *stream, const char *format, L)
Description
The £sdan€ function reads input from the stream pointed to by stream, under control of

the string pointed to by format that specifies the admissible input sequénces and how ey are
to be converted for assignment, using subsequent arguments as pointers to the objects to receive
the converted input. If there are insufficient arguments for the format, the behavior is undefined.
If the format is exhausted while arguments remain, the excess arguments are evaluated (as
always) but are otherwise ignored.

120 See ‘‘future library directions’” (7.13.6).

134

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

The format shall be a multibyte character sequence, beginning and ending in its initial shift

state. The format is composed of zero or more directives: one or more white-space

characters; an

ordinary multibyte character (neither % nor a white-space character); or a conversion specification.
Each conversion specification is introduced by the character %. After the %, the following appear

in sequence:
— An optional assignment-suppressing character *.

— An optional nonzero decimal integer that specifies the maximum field width.

— AT optionat It I (et or Limdicating thesize—of theTeceiving—object:
specifiers d, i, and n shall be preceded by h if the corresponding argument

I

1e conversion
s a pointer to

short int rather than a pointer to int, or by 1 if it is a pointer to 16éng int. Similarly,

the conversion specifiers o, u, and x shall be preceded by h if the cerrespondif
a pointer to unsigned short int rather than a pointer to unsigned int,

a pointer to unsigned long int. Finally, the conversion specifiers e, £,
preceded by 1 if the corresponding argument is a pointer to (double rather th:
float, or by L if it is a pointer to long double. If anch, 1, or L appears

conversion specifier, the behavior is undefined.

A character that specifies the type of conversion~to be applied. The va
specifiers are described below.

The f£scanf function executes each directive* of the format in turn. If a dir
detailed below, the £scanf function returns:(Failures are described as input failu
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-spaee character(s) is executed by reading input
non-white-space character (which rémains unread), or until no more characters can |

1g argument is
br by 1 if it is
ind g shall be
In a pointer to
with any other

id conversion

ective fails, as
res (due to the

up to the first
be read.

A directive that is an ordinary multibyte character is executed by reading the next characters

of the stream. If one of the\characters differs from one comprising the directive
fails, and the differing and-subsequent characters remain unread.

A directive that.jsya conversion specification defines a set of matching input
described below forjéach specifier. A conversion specification is executed in the fo

Input white-space characters (as specified by the isspace function) are skipy
specification) includes a [, ¢, or n specifier.'?!

Am, ifiput item is read from the stream, unless the specification includes an n
input-item is defined as the longest matching sequence of input characters, unless
specified field width, in which case it is the initial subsequence of that length in
The first character, if any, after the input item remains unread. If the length of th
zero, the execution of the directive fails: this condition is a matching failure, uj
prevented input from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a $n direc

of input characters) is converted to a type appropriate to the conversion specifier.

, the directive

sequences, as
lowing steps:

ed, unless the

specifier. An
that exceeds a
the sequence.
b input item is
nless an error

tive, the count
If the input

item is not a matching sequence the execution of the directive fails: this condition

is a matching

failure. Unless assignment suppression was indicated by a *, the result of the
placed in the object pointed to by the first argument following the format argume
already received a conversion result. If this object does not have an appropriate

conversion is
nt that has not
type, or if the

result of the conversion cannot be represented in the space provided, the behavior is undefined.

121 These white-space characters are not counted against a specified field width.

Library

135

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

The following conversion specifiers are valid:

Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument.
The corresponding argument shall be a pointer to integer.

Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol function with the value O for the base argument. The
corresponding argument shall be a pointer to integer.

Matthes an optionally signed octal integer, whose format 1s the same as expected for the
subject sequence of the strtoul function with the value 8 for the base argument.
The|corresponding argument shall be a pointer to unsigned integer.

Matthes an optionally signed decimal integer, whose format is the same as expected for
the |subject sequence of the strtoul function with the value 10 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

Matthes an optionally signed hexadecimal integer, whose format is the same as expected
for fhe subject sequence of the strtoul function with the value 16 for the(base
argyment. The corresponding argument shall be a pointer to unsigned integer.

Matfhes an optionally signed floating-point number, whose format is the same as
expgcted for the subject string of the strtod function. The corresponding argument
shal| be a pointer to floating.

Matthes a sequence of non-white-space characters.'”> The corresponding argument shall
be 4 pointer to the initial character of an array large enough to,accept the sequence and a
terminating null character, which will be added automatically.

Matthes a nonempty sequence of characters'?? from a-Set of expected characters (the
scariset). The corresponding argument shall be a pointer to the initial character of an
array large enough to accept the sequence and a,té€rminating null character, which will be
add¢d automatically. The conversion specifier_includes all subsequent characters in the
format string, up to and including the mdtching right bracket (]). The characters
between the brackets (the scanlist) comprise the scanset, unless the character after the
left [bracket is a circumflex (#), in which case the scanset contains all characters that do
not pppear in the scanlist between the circumflex and the right bracket. If the conversion
spedifier begins with [] or [#]y, the right bracket character is in the scanlist and the
nex{ right bracket charactef is' the matching right bracket that ends the specification;
othdrwise the first right.bracket character is the one that ends the specification. If a -
chafacter is in the scanlist and is not the first, nor the second where the first character is
a ~) nor the last character, the behavior is implementation-defined.

Matches a sequence of characters'?? of the number specified by the field width (1 if no
field width.s\present in the directive). The corresponding argument shall be a pointer to
the [initial\¢haracter of an array large enough to accept the sequence. No null character
is alided.

Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the $p conversion of the £print£ function.
The corresponding argument shall be a pointer to a pointer to void. The interpretation
of the input item is implementation-defined. If the input item is a value converted
earlier during the same program execution, the pointer that results shall compare equal to
that value; otherwise the behavior of the $p conversion is undefined.

122 No special provisions are made for multibyte characters.

136

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

n No input is consumed. The corresponding argument shall be a pointer t
which is to be written the number of characters read from the input stream

o integer into
so far by this

call to the £scanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the £scan£ function.

% Matches a single %; no conversion or assignment occurs. The complete conversion

specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.'?

I'ne conversion specihers E, G, and X are also valid and behave the same as, 1€ kpectively, e,

g, and x.

If end-of-file is encountered during input, conversion is terminated. ,'If end-pf-file occurs

before any characters matching the current directive have been read (other than
space, where permitted), execution of the current directive terminafes” with an

eading white
nput failure;

otherwise, unless execution of the current directive is terminated’ with a mat¢hing failure,

execution of the following directive (if any) is terminated with ah ‘input failure.

If conversion terminates on a conflicting input charactef, the offending input chpracter is left

unread in the input stream. Trailing white space (including new-line characters)

s left unread

unless matched by a directive. The success of literal matches and suppressed assighments is not

directly determinable other than via the %n directive.
Returns

The £scanf function returns the value\of the macro EOF if an input failure

bccurs before

any conversion. Otherwise, the £scan$: function returns the number of input itgms assigned,
which can be fewer than provided for;'or even zero, in the event of an early matchinyg failure.

Examples
1. The call:

#include "<stdio.h>

VANV

int n, i; float x; char name[50];

n = fscanf(stdin, "%d%£f%s", &i, &x, name);

with(the input line:
25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, a
contain thompson\0.

2. The call:

#include <stdio.h>
/*...%/

int i; float x; char name[50];

1" "

with input:

56789 0123 56a72

hd name will

name) ;

will assign to i the value 56 and to x the value 789.0, will skip 0123, and name will

contain 56\0. The next character read from the input stream will be a.

123 See *‘future library directions’’ (7.13.6).

Library

137

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

3. To accept repeatedly from stdin a quantity, a unit of measure and an item name:

#include <stdio.h>
/*...%/

int count; float quant; char units[21],
while (!feof (stdin) && !'ferror(stdin)) {
count = fscanf (stdin, "%£%20s of %20s",

. &quant, units, item);
fscanf (stdin, "$*[*\n]");

item[21];

}
If the stdin stream contains the following lines:

2 quarts of oil
-12.8degrees Celsius
lots of luck
10.0LBS of

dirt

100ergs of energy

the exgcution of the above example will be analogous to the following assignments:

count = EOF;

quant = 2; strcpy(units, '"quarts"); strcpy(item,

count = 3;

quant = -12.8; strcpy(units, "degrees");

count = 2; /* "C" fails to match "o" */

count = 0; /* "1" fails to match "$£" */

quant = 10.0; strcpy(units, "LBS"); .strcpy(item,
count = 3;

count = 0; /* "100e" fails to match “"&£&" */

"oiln) ;

"dirt n) ;

Forward rdferences: the strtod function (7.10.4/4), the strtol function (7.10.1.5), the

strtoul finction (7.10.1.6).
7.9.6.3 The printf function

Synopsis

#include <stdio.h>

int printf(const char *format, ...);
Description

The printf function/is equivalent to £printf with the argument stdout interposed

before the ayguments to.print£.

Returns

The printf function returns the number of characters transmitted, or a negative value if an

output error loecurred-

7.9.6.4 The scanf function
Synopsis

#include <stdio.h>
int scanf (const char *format, ...);

Description

The scanf function is equivalent to £scanf with the argument stdin interposed before

the arguments to scanf.

138

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The scanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the scanf function returns the number of input items assigned, which
can be fewer than provided for, or even zero, in the event of an early matching failure.

7.9.6.5 The sprintf function

Synopsis

#inclnde <stdio h>

int sprintf(char *s, const char *format, ...);
Description

The sprint£ function is equivalent to fprint£, except that theyargument 5 specifies an
array into which the generated output is to be written, rather than to-a¢stream. A nyll character is
written at the end of the characters written; it is not counted as part of the retyrned sum. If

copying takes place between objects that overlap, the behaviords undefined.

Returns

The sprint£ function returns the number of characters written in the array, ngt counting the

terminating null character.

7.9.6.6 The sscanf function

Synopsis

#include <stdio.h>

int sscanf (const char *s, const char *format, ...);
Description

The sscanf function is“equivalent to £scang£, except that the argument s spgcifies a string

from which the input is to_be obtained, rather than from a stream. Reaching the en
is equivalent to enceunmtering end-of-file for the f£scanf function. If copyin
between objects that'overlap, the behavior is undefined.

Returns

The sscanf function returns the value of the macro EOF if an input failure
any conversion. Otherwise, the sscanf function returns the number of input it
which_¢an be fewer than provided for, or even zero, in the event of an early matchiy

7:9.6.7 The vEprintf function
Synopsis

#include <stdarg.h>
#include <stdio.h>
int vfprintf (FILE *stream, const char *format, va_ 1li

1 of the string
b takes place

P

occurs before
ems assigned,
g failure.

st arg);

Deseription

The vEprint£ function is equivalent to £print £, with the variable argument list replaced
by arg, which shall have been initialized by the va_start macro (and possibly subsequent

va_arg calls). The vEprintf function does not invoke the va_end macro.'**

124 As the functions vEprint£, vsprint£, and vprintf invoke the va_arg macro, th
after the return is indeterminate.

Library

e value of arg

139

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The vEprint£ function returns the number of characters transmitted, or a negative value if
an output error occurred.

Example

The following shows the use of the vEprint£ function in a general error-reporting routine.

#in
#in,

voi

{

}
7.9.6.8 The
Synopsis

#i

#i

int

Description

The vpr
arg, which

va_arg calls). The vprint£ function does not’invoke the va_end macro.

Returns

The vpr
output error

7.9.6.9 Thq
Synopsis
#in
#in
int

Description

clude <stdarg.h>
clude <stdioc . h>

i error (char *function_name, char *format,

va_list args;

va_start (args, format);

/* print out name of function causing error */

fprintf (stderr, "ERROR in %s: ", function_name);
/* print out remainder of message */

vEprintf (stderr, format, args);

va_end (args) ;

vprintf function

lude <stdarg.h>
lude <stdio.h>
vprintf (const char *format, va_list arg) ;

int £ function is equivalent to print£, with-the variable argument list replaced by

shall have been initialized by the wa start macro (and possibly subsequent
124

int £ function returns the number of characters transmitted, or a negative value if an
ccurred.

t vsprint £ function

clude <stdarg.h>
clude &<stdio.h>
vsprintf (char *s, const char *format, va list argqg);

The vsprint£ function is equivalent to sprint£, with the variable argument list replaced
by arg, which shall have been initialized by the va_start macro (and possibly subsequent
va_arg calls). The vsprintf function does not invoke the va_end macro.'?* If copying

takes place b
Returns

The vsp

etween objects that overlap, the behavior is undefined.

rintf function returns the number of characters written in the array, not counting

the terminating null character.

140

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.9.7 Character input/output functions
7.9.7.1 The f£getc function
Synopsis

#include <stdio.h>
int fgetc(FILE *stream);

Description

The xgmﬁmmmmﬁﬁmmﬁwmd-dgar converted
to an int, from the input stream pointed to by stream, and advances the dssociated file

position indicator for the stream (if defined).
Returns

The £getc function returns the next character from the input stream pointed to
If the stream is at end-of-file, the end-of-file indicator for the stfeam is set and £

by stream.
getc returns

EOF. If a read error occurs, the error indicator for the stream .js/set and £getc returns EOF.'”

7.9.7.2 The f£gets function
Synopsis

#include <stdio.h>
char *fgets(char *s, int ny"\ FILE *stream);

Description

The £gets function reads at mostne less than the number of characters specif]
the stream pointed to by stream‘into the array pointed to by s. No additional

ed by n from

characters are

read after a new-line character (which is retained) or after end-of-file. A null charafter is written

immediately after the last chara¢ter read into the array.
Returns

The £gets function returns s if successful. If end-of-file is encountered and

no characters

have been read into) the array, the contents of the array remain unchanged and a full pointer is
returned. If a réad error occurs during the operation, the array contents are indetefminate and a

null pointerJs-returned.
7.9.7.3The fputc function
Synepsis

#include <stdio.h>
int fputc(int c, FILE *stream);

Description

The £putc function writes the character specified by ¢ (converted to an unsi

gned char)

to the output stream pointed to by stream, at the position indicated by the gssociated file

cannot support positioning requests, or if the stream was opened with append mode,
is appended to the output stream.

position indicator for the stream (if defined). and advances the indicator appropriatgly. If the file

the character

125 An end-of-file and a read error can be distinguished by use of the feof and ferror functions.

Library

141

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The £pu

tc function returns the character written. If a write error occurs, the error indicator

for the stream is set and £putc returns EOF.

7.9.7.4 The fputs function

Synopsis

#include <stdio.h>
int fputs(const char *s, FILE *stream):

Description

The fpu
The terminat|

Returns

ts function writes the string pointed to by s to the stream pointed to by stream.
ng null character is not written.

The f£pults function returns EOF if a write error occurs; otherwise it returns a nonnegatiye

value.
7.9.7.5 Th
Synopsis
#in
ing
Description

The get
may evaluatg
effects.

Returns

The get]

p getc function

clude <stdio.h>
getc (FILE *stream);

c function is equivalent to £getc, except that if it isCimplemented as a macro, it
stream more than once, so the argument should never be an expression with side

c function returns the next character from<the input stream pointed to by stream.

If the stream is at end-of-file, the end-of-file indi¢ator for the stream is set and getc returns

EOF. If arg
7.9.7.6 Th
Synopsis

#in
int

Description
The get]

Returns

ad error occurs, the error indicator forthe stream is set and getc returns EOF.

e getchar function

lclude <stdio.h>
getchar (void)y

char funCtion is equivalent to getc with the argument stdin.

The get

¢har function returns the next character from the input stream pointed to by

stdin. If

getchar returns EOF.

getchar re

the stream 1s at end-of-file, the end-of-file indicator for the stream 1s set and
If a read error occurs, the error indicator for the stream is set and
turns EOF.

7.9.7.7 The gets function

Synopsis

#include <stdio.h>
char *gets (char *s);

142

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Description

The gets function reads characters from the input stream pointed to by stdin, into the
array pointed to by s, until end-of-file is encountered or a new-line character is read. Any new-
line character is discarded, and a null character is written immediately after the last character read
into the array.

Returns

The gets function returns s if successful. If end-of-file is encountered and no characters

have been read inmto the array, the contents of the array remain unchanged and a full pointer is
returned. If a read error occurs during the operation, the array contents are ind¢téfminate and a
null pointer is returned.

7.9.7.8 The putc function
Synopsis

#include <stdio.h>
int putc(int ¢, FILE *stream);

Description

The putc function is equivalent to £putc, except that if it is implemented 4s a macro, it
may evaluate stream more than once, so the argdment should never be an expresgion with side
effects.

Returns

The putc function returns the chdracter written. If a write error occurs, the grror indicator
for the stream is set and putc return$ EOF.

7.9.7.9 The putchar function
Synopsis

#include <stdio.h>
int putchar (int c);

Description
The putchar function is equivalent to putc with the second argument stdout.
Returns

Fhe putchar function returns the character written. If a write error occyirs, the error
indicator for the stream is set and putchar returns EOF.

7.9.7.10 The puts function
Synopsis

#include <stdio.h>
int puts(const char *s);

Description

The puts function writes the string pointed to by s to the stream pointed to by stdout,
and appends a new-line character to the output. The terminating null character is not written.

Returns

The puts function returns EOF if a write error occurs; otherwise it returns a nonnegative
value.

Library 143

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 989

9:1990 (E)

7.9.7.11 The ungetc function

Synopsis
Mo YA P o h A kL
fFLOCLUQGE SOSLULO.LL”
int ungetc(int c, FILE *stream);

The ungetc function pushes the character specified by c (converted to an unsigned

char) back
returned by

Onto input stream pointed 10 by Stk : -back characers withbe
ubsequent reads on that stream in the reverse order of their pushing. A successful

intervening dall (with the stream pointed to by stream) to a file positioning function (£seek,

fsetpos, 0
correspondin

One char
on the same

I rewind) discards any pushed-back characters for the stream. The external storage
b to the stream is unchanged.

heter of pushback is guaranteed. If the ungetc function is called too many times
strearn without an intervening read or file positioning operation on that stream, the

operation maly fail.

If the va
unchanged.

A succes
value of the]
characters sh|

the value of

unspecified U
position indi
was zero bef

Returns

The ung
operation fai

Forward reJe

7.9.8 Dir
7.9.8.1 Th
Synopsis

#in

ue of ¢ equals that of the macro EOF, the operation fails and the input stfeam is

ful call to the ungetec function clears the end-of-file indicator for-the stream. The
file position indicator for the stream after reading or discardingall pushed-back
hll be the same as it was before the characters were pushed back." For a text stream,
sition indicator
ntil all pushed-back characters are read or discarded. For a binary stream, its file
Cator is decremented by each successful call to the ungetc function; if its value

bre a call, it is indeterminate after the call.

its file po
r

etc function returns the character pusheéd back after conversion, or EOF if the
.

rences: file positioning functions+(7.9.9).
ct input/output functions

b fread function

clude <stdio)yh>

size t fread{void *ptr, size_t size, size_t nmemb,

Description

The £r

FILE~*stream) ;

d-function reads, into the array pointed to by ptr, up to nmemb elements whose
size is specj’i‘d‘by’stmﬁom‘ﬂmn‘ptﬁmed‘m‘by‘sttm. TFhefitepositiomimdicatorfor

the stream (

if defined) is advanced by the number of characters successfully read. If an error

occurs, the resulting value of the file position indicator for the stream is indeterminate. If a
partial element is read, its value is indeterminate.

Returns

The £read function returns the number of elements successfully read, which may be less

than nmemb
returns zero

144

if a read error or end-of-file is encountered. If size or nmemb is zero, fread
and the contents of the array and the state of the stream remain unchanged.

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.9.8.2 The fwrite function
Synopsis

#include <stdio.h>
size_t fwrite(const void *ptr, size t size, size t nmemb,
FILE *stream);

Description

The—Ewritefunction—writes—from—the—array—pointed—to—by—ptr—up—to—nmemb eclements
whose size is specified by size, to the stream pointed to by stream. Thg file position
indicator for the stream (if defined) is advanced by the number of characters(Suecegsfully written.
If an error occurs, the resulting value of the file position indicator for the stream is {ndeterminate.

Returns

The fwrite function returns the number of elements successfully written, whi¢h will be less
than nmemb only if a write error is encountered.

7.9.9 File positioning functions
7.9.9.1 The fgetpos function
Synopsis

#include <stdio.h>
int fgetpos (FILE *stream, fpos_t *pos);

Description

The fgetpos function stores the current value of the file position indicator for the stream
pointed to by stream in the @bject pointed to by pos. The value stored contaips unspecified
information usable by the £setpos function for repositioning the stream to its pt’osition at the
time of the call to the £gétpos function.

Returns

If successful, the £getpos function returns zero; on failure, the £getpos fynction returns
nonzero and Storés an implementation-defined positive value in errno.

Forward references: the £setpos function (7.9.9.3).
7.9.9.2 - The £seek function
Synopsis

#include <stdio.h>
int fseek (FILE *stream, long int offset, int whence);

Description

The £seek function sets the file position indicator for the stream pointed to by|stream.

Forabimary strearn;the Trew—positiom, Teasured T characters—fronrthe-beginning of the file,
is obtained by adding offset to the position specified by whence. The specified position is

the beginning of the file if whence is SEEK_SET, the current value of the file position indicator
if SEEK_CUR, or end-of-file if SEEK_END. A binary stream need not meaningfully support
fseek calls with a whence value of SEEK_END.

For a text stream, either of £set shall be zero, or of£set shall be a value returned by an
earlier call to the £tell function on the same stream and whence shall be SEEK_SET.

A successful call to the £seek function clears the end-of-file indicator for the stream and
undoes any effects of the ungetec function on the same stream. After an £seek call, the next
operation on an update stream may be either input or output.

Library 145

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The £see

k function returns nonzero only for a request that cannot be satisfied.

Forward references: the £tell function (7.9.9.4).

7.9.9.3 The £setpos function

Synopsis

#include <stdio.h>

int

Description

The f£se
according to
earlier call td

A succes
undoes any
next operatio

Returns

If succes
nonzero and

7994 Th

Synopsis
#in
lon

Description

fsetpos (FILE *stream, const fpos_t *pos);

Lpos function sets the file position indicator for the stream pointed to by stream
the value of the object pointed to by pos, which shall be a value obtained from an
the £getpos function on the same stream.

sful call to the £setpos function clears the end-of-file indicator for the stream dnd
ffects of the ungetc function on the same stream. After an £setpos call) the
n on an update stream may be either input or output.

bful, the £setpos function returns zero; on failure, the £setpos-function returns
stores an implementation-defined positive value in errno.

b ftell function

clude <stdio.h>
g int ftell (FILE *stream);

The £tell function obtains the current value. of;'the file position indicator for the stream

pointed to b
beginning o
information,
to its positio
necessarily a

Returns

If succes
the stream.
positive valu

7.9.9.5 Th
Synopsis

y stream. For a binary stream, the,walue is the number of characters from the
f the file. For a text stream, ‘its file position indicator contains unspecified
usable by the £seek functionfor returning the file position indicator for the stream
h at the time of the £tell call; the difference between two such return values is not
meaningful measure of the'aumber of characters written or read.

sful, the £telX furction returns the current value of the file position indicator for
On failure, the*ftell function returns —IL and stores an implementation-defined
e in errno,

e rewind function

#include <stdio.h>
void rewind (FILE *stream);

Description

The rew

ind function sets the file position indicator for the stream pointed to by stream to

the beginning of the file. It is equivalent to

(void) fseek (stream, OL, SEEK_SET)

except that the error indicator for the stream is also cleared.

146

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The rewind function returns no value.
7.9.10 Error-handling functions
7.9.10.1 The clearerr function
Synopsis

#include <stdio.h>

void clearerr (FILE *stream);
Description

The clearerr function clears the end-of-file and error indicators for, the strepm pointed to
by stream.

Returns

The clearerr function returns no value.
7.9.10.2 The feof function
Synopsis

#include <stdio.h>
int feof (FILE *stream);

Description
The £eof function tests the end-ofile indicator for the stream pointed to by sream.
Returns
The feof function return$ nonzero if and only if the end-of-file indicator is set for stream.
7.9.10.3 The ferror‘function
Synopsis

#include <stdio.h>
int.-ferror (FILE *stream);

Description
The' ferror function tests the error indicator for the stream pointed to by stream.
Returns
The ferror function returns nonzero if and only if the error indicator is set fol stream.
7.9.10.4 The perror function
Synopsis

#include <stdio.h>

void perror(const char *s);
Description

The perror function maps the error number in the integer expression errno to an error
message. It writes a sequence of characters to the standard error stream thus: first (if s is not a
null pointer and the character pointed to by s is not the null character), the string pointed to by s
followed by a colon (:) and a space; then an appropriate error message string followed by a
new-line character. The contents of the error message strings are the same as those returned by
the strerror function with argument errno, which are implementation-defined.

Library 147

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns
The perror function returns no value.

Forward references: the strerror function (7.11.6.2).

148 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.10 General utilities <stdlib.h>

The header <stdlib.h> declares four types and several functions of general utility, and
defines several macros.'?

The types declared are size_t and wchar_t (both described in 7.1.6),
div_t

which is a structure type that is the type of the value returned by the div function, and

tdiv—t
which is a structure type that is the type of the value returned by the 1div function
The macros defined are NULL (described in 7.1.6);
EXIT_FAILURE
and
EXIT_SUCCESS

which expand to integral expressions that may be used ds-the argument to the exit function to
return unsuccessful or successful termination status, reSpectively, to the host environment;

RAND MAX

which expands to an integral constant expréssion, the value of which is the maximum value
returned by the rand function; and

MB_CUR_MAX

which expands to a positive integer, expression whose value is the maximum numbey of bytes in a
multibyte character for the exténded character set specified by the current lodale (category
LC_CTYPE), and whose value\is never greater than MB_LEN_ MAX.

7.10.1 String conyersion functions

The functions .atof, atoi, and atol need not affect the value of the integer expression
errno on an error If the value of the result cannot be represented, the behavior is|undefined.

7.10.1.1 The atof function
Synopsis

#include <stdlib.h>
double atof(const char *nptr);

Description

The atof function converts the initial portion of the string pointed to by nptr to double
representation. Except for the behavior on error, it is equivalent to

strtod (nptr, (char **)NULL)

Returns
The atof function returns the converted value.

Forward references: the strtod function (7.10.1.4).

126 See ‘‘future library directions’’ (7.13.7).

Library 149

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.10.1.2 The atoi function
Synopsis

#include <stdlib.h>
int atoi(const char *nptr);

Description

The atoi function converts the initial portion of the string pointed to by nptr to int

representatio xceptfor the behavior on error, it is equivalent to
(irr)itrtol (nptr, (char **)NULL, 10)
Returns
The atoj function returns the converted value.
Forward refprences: the strtol function (7.10.1.5).
7.10.1.3 The atol function
Synopsis

#include <stdlib.h>
long int atol (const char *nptr);

Description

The atdl function converts the initial portion of the string pointed\te' by nptr to long
int represeptation. Except for the behavior on error, it is equivalent to

stgtol (nptr, (char **)NULL, 10)
Returns
The atofl function returns the converted value.
Forward references: the strtol function (7.10.1.5).

7.10.1.4 The strtod function
Synopsis

#include <stdlib.h>
doyble strtod(const/ char *nptr, char **endptr);

Description

The stxtod function~converts the initial portion of the string pointed to by nptr to
double reffresentation. tFirst, it decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by the isspace function), a subject
sequence regembling.a floating-point constant; and a final string of one or more unrecognized
characters, incldding the terminating null character of the input string. Then, it attempts to
convert the J:lbject sequence to a floating-point number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then a nonempty
sequence of digits optionally containing a decimal-point character, then an optional exponent part
as defined in 6.1.3.1, but no floating suffix. The subject sequence is defined as the longest initial
subsequence of the input string, starting with the first non-white-space character, that is of the
expected form. The subject sequence contains no characters if the input string is empty or
consists entirely of white space, or if the first non-white-space character is other than a sign, a
digit, or a decimal-point character.

If the subject sequence has the expected form, the sequence of characters starting with the
first digit or the decimal-point character (whichever occurs first) is interpreted as a floating
constant according to the rules of 6.1.3.1, except that the decimal-point character is used in place

150 » Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

of a period, and that if neither an exponent part nor a decimal-point character appears, a decimal
point is assumed to follow the last digit in the string. If the subject sequence begins with a
minus sign, the value resulting from the conversion is negated. A pointer to the final string is
stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the "C" locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that

endptr is not a null pointer.
Returns

on could be
e values, plus
of the macro
returned and

The strtod function returns the converted value, if any. If noyconvers
performed, zero is returned. If the correct value is outside the range of representabl
or minus HUGE_VAL is returned (according to the sign of the value),)and the value
ERANGE is stored in errno. If the correct value would cause (underflow, zero is
the value of the macro ERANGE is stored in errno.

7.10.1.5 The strtol function
Synopsis

#include <stdlib.h>

long int strtol(const chax)*nptr, char **endptr, int] base);
Description

The strtol function converts theldnitial portion of the string pointed to by nj
int representation. First, it decomposes the input string into three parts: an in

btr to long
tial, possibly

empty, sequence of white-space;characters (as specified by the isspace functi
sequence resembling an integérrepresented in some radix determined by the value

n), a subject
bf base, and

a final string of one or mofé unrecognized characters, including the terminating null character of

the input string. Theny/it attempts to convert the subject sequence to an integer, a

nd returns the

result.

If the value of base is zero, the expected form of the subject sequence is that
constant as_described in 6.1.3.2, optionally preceded by a plus or minus sign, but noj
integer suffiX. If the value of base is between 2 and 36, the expected form
sequence~is a sequence of letters and digits representing an integer with the radis
base,-optionally preceded by a plus or minus sign, but not including an integef suffix. The
letters from a (or A) through z (or 2) are ascribed the values 10 to 35; only [letters whose
ascribed values are less than that of base are permitted. If the value of bage is 16, the
characters 0x or 0X may optionally precede the sequence of letters and digits, follqwing the sign
if present.

of an integer
f including an
f the subject
specified by

The subject sequence is defined as the longest initial subsequence of the input
with the first non-white-space character, that is of the expected form. The sub
contains no characters if the input string is empty or consists entirely of white sp

tring, starting
ject sequence
ace, or if the

first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to the rules of
6.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and
36, it is used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is negated. A
pointer to the final string is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

Library 151

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

In other than the "C" locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns

The strtol function returns the converted value, if any. If no conversion could be
performed, i ; i i "
LONG_MAX ¢r LONG_MIN is returned (according to the sign of the value), and the value of the
macro ERANGE is stored in errno.

7.10.1.6 T
Synopsis

e strtoul function

#i:EIude <stdlib.h>
unsliigned long int strtoul (const char *nptr, char **endptr,
int base);

Description

The strxtoul function converts the initial portion of the string pointed 6 by nptr to
unsigned long int representation. First, it decomposes the input string-into three parts: an
initial, possiply empty, sequence of white-space characters (as specified by the isspace
function), a| subject sequence resembling an unsigned integer reptesented in some radix
determined Hy the value of base, and a final string of one or morg,unrecognized characters,
including thg terminating null character of the input string. Then; it attempts to convert the
subject sequence to an unsigned integer, and returns the result.

If the val
constant as

e of base is zero, the expected form of the subject sequence is that of an integer
scribed in 6.1.3.2, optionally preceded by axplus or minus sign, but not including an
integer suffiy. If the value of base is between 2 -and 36, the expected form of the subject
sequence is § sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer suffix. The
letters from [a (or A) through z (or Z) are\ascribed the values 10 to 35; only letters whose
ascribed valges are less than that of base' are permitted. If the value of base is 16, the
characters 0% or 0X may optionally precede the sequence of letters and digits, following the sign
if present.

The subjgct sequence is defined as the longest initial subsequence of the input string, starting
with the firgt non-white-spaée)character, that is of the expected form. The subject sequence
contains no ¢haracters if.the input string is empty or consists entirely of white space, or if the
first non-whife-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting\with the first digit is interpreted as an integer constant according to the rules of
6.1.32. Ift } is between 2 and

36, it is used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is negated. A
pointer to the final string is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

In other than the "C" locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

152 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The strtoul function returns the converted value, if any. If no convers

ion could be

performed, zero is returned. If the correct value is outside the range of representable values,

ULONG_MAX is returned, and the vaiue of the macro ERANGE is stored in errno.
7.10.2 Pseudo-random sequence generation functions
7.10.2.1 The rand function

Qyngpsie

#include <stdlib.h>
int rand(void);

Description

The rand function computes a sequence of pseudo-random‘.integers in th
RAND MAX.

The implementation shall behave as if no library function.calls the rand functiop.

Returns

The rand function returns a pseudo-random integer.
Environmental limit

The value of the RAND MAX macro shdll\be at least 32767.
7.10.2.2 The srand function
Synopsis

#include <stdlibih>
void srand(unsigned int seed);

Description

The srand function uses the argument as a seed for a new sequence of p.
numbers to be returned by subsequent calls to rand. If srand is then called ¥
seed value, the sequence of pseudo-random numbers shall be repeated. If rand is
any calls-to/srand have been made, the same sequence shall be generated as wh
first called with a seed value of 1.

The implementation shall behave as if no library function calls the srand funct
Returns

The srand function returns no value.
Example

The following functions define a portable implementation of rand and srand.

b range O to

feudo-random
vith the same
called before
en srand is

Library

153

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 989

static unsigned long int next

int rand(void)

9:1990 (E)

1;

/* RAND MAX assumed to be 32767 */

{
next = next * 1103515245 + 12345;
return (unsigned int) (next/65536) % 32768;

}

void-srand{(unsigned—int seed)

{
next = seed;

}

7.10.3 Mdmory management functions
The ordef and contiguity of storage allocated by successive calls to the calloc, malloc;

and reallo

aligned so th
an object or
reallocated).
object. The
the space ca
zero, the beh
unique point

lc functions is unspecified. The pointer returned if the allocation succeeds is suitably
ht it may be assigned to a pointer to any type of object and then used to access.such
an array of such objects in the space allocated (until the space is explicitly freed or
Each such allocation shall yield a pointer to an object disjoint from any other
pointer returned points to the start (lowest byte address) of the allocated space. If
hnot be allocated, a null pointer is returned. If the size of the space requested is
avior is implementation-defined; the value returned shall be eith€p avnull pointer or a
r. The value of a pointer that refers to freed space is indeterminate.

7.10.3.1 The calloc function

Synopsis
#in
voi

Description

The cal
size. The

Returns
The cal
71032 T
Synopsis
#ir
voi

Description

clude <stdlib.h>
d *calloc(size_t nmemb, size_t size);

1oc function allocates space for an(array of nmemb objects, each of whose size is
Kpace is initialized to all bits zerq.'?’

1 oc function returns either @ null pointer or a pointer to the allocated space.

he free function

clude <stdlib.h>
d free(void *ptr);

The frde -function causes the space pointed to by ptr to be deallocated. that is, made |

available for further allocation. If ptr is a null pointer, no action occurs. Otherwise, if the
argument does not match a pointer earlier returned by the calloc, malloc, or realloc
function, or if the space has been deallocated by a call to free or realloc, the behavior is
undefined.

127 Note that this need not be the same as the representation of floating-point zero or a null pointer
constant.

154 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The f£ree function returns no value.
7.10.3.3 The malloc function
Synopsis

#include <stdlib.h>
void *malloc(size t size);

Description

The malloc function allocates space for an object whose size is speeified
whose value is indeterminate.

Returns

by size and

The malloc function returns either a null pointer or a pointer to the allocated space.

7.10.3.4 The realloc function
Synopsis

#include <stdlib.h>
void *realloc(void *ptr, size t size);

Description

The realloc function changes the size of the object pointed to by ptr to the
by size. The contents of the object’shall be unchanged up to the lesser of thg
sizes. If the new size is larger,“the value of the newly allocated portion of
indeterminate. If ptr is a null® pointer, the realloc function behaves like
function for the specified size€~~Otherwise, if ptr does not match a pointer earli
the calloc, malloc, or-realloc function, or if the space has been deallocatg
the £ree or reallog function, the behavior is undefined. If the space cannot b

size specified
new and old
the object is
the malloc
br returned by
d by a call to
allocated, the

object pointed to byptr is unchanged. If size is zero and ptr is not a null poirter, the object

it points to is freed.
Returns

The(realloc function returns either a null pointer or a pointer to the p
allocated space.

7.10.4 Communication with the environment
7.10.4.1 The abort function
Synopsis

#include <stdlib.h>
void abort (void) ;

ssibly moved

Description

The abort function causes abnormal program termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return. Whether open output streams
are flushed or open streams closed or temporary files removed is implementation-defined. An
implementation-defined form of the status wunsuccessful termination is returned to the host

environment by means of the function call raise (SIGABRT).
Returns

The abort function cannot return to its caller.

Library

155

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.10.4.2 The atexit function

Synopsis

#include <stdlib.h>

int

Description

atexit (void (*func) (void));

The atexit function registers the function pointed to by func, to be called without

arguments a

Implementat[

The implg
Returns
The ates
Forward refg
7.10.4.3 Th
Synopsis
#in
voi
Description

The exit
exit functig

First, all
registration.

Next, all
and all files d

Finally, d

1

N . .
t groTTat PIUgalll 1At IUlL.

on limits

mentation shall support the registration of at least 32 functions.

kit function returns zero if the registration succeeds, nonzero if it fails.
brences: the exit function (7.10.4.3).

e exit function

clude <stdlib.h>
H exit (int status);

E function causes normal program termination to occursIf“more than one call to the
n is executed by a program, the behavior is undefined.

functions registered by the atexit function are called, in the reverse order of their

3

open streams with unwritten buffered data-are flushed, all open streams are closed,
reated by the tmp£file function arefemoved.

ontrol is returned to the host environment. If the value of status is zero or

EXIT_SUCCESS, an implementation-defiied form of the status successful termination is

returned. If
status unsuc
defined.

Returns

The exit

the value of status is EXIT_FAILURE, an implementation-defined form of the
essful termination is retured. Otherwise the status returned is implementation-

E function cannof return to its caller.

7.10.4.4 The getenv function

Synopsis

#inlclvde <stdlib h>

cha

Description

r *getenv(const char *name);

The getenv function searches an environment list, provided by the host environment, for a
string that matches the string pointed to by name. The set of environment names and the
method for altering the environment list are implementation-defined.

128 Each function is called as many times as it was registered.

156

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

The implementation shall behave as if no library function calls the getenv function.
Returns

The getenv function returns a pointer to a string associated with the matched list member.
The string pointed to shall not be modified by the program, but may be overwritten by a
subsequent call to the getenv function. If the specified name cannot be found, a null pointer is
returned.

7.10.4.5 The system function

Synopsis

#include <stdlib.h>
int system(const char *string);

Description

The system function passes the string pointed to by string to the host envifonment to be
executed by a command processor in an implementation-defined/manner. A null ppinter may be
used for string to inquire whether a command processor (exists.

Returns

If the argument is a null pointer, the systefy function returns nonzero only if a command
processor is available. If the argument is not\a)null pointer, the system functipn returns an
implementation-defined value.

7.10.5 Searching and sorting utilities
7.10.5.1 The bsearch function
Synopsis

#include <stdlib.h>

void *bsearch{const void *key, const void *base,
sizé),t nmemb, size_t size,
int (*compar) (const void *, const void *));

Description

The bsearch function searches an array of nmemb objects, the initial element of which is
pointed to’by base, for an element that matches the object pointed to by key. The size of each
element of the array is specified by size.

The comparison function pointed to by compar is called with two argumentq that point to
the key object and to an array element, in that order. The function shall return gn integer less
than, equal to, or greater than zero if the key object is considered, respectively, tq be less than,
to match, or to be greater than the array element. The array shall consist of: all the| elements that
compare less than, all the elements that compare equal to, and all the elements|that compare
greater than the key object, in that order.'%

Returns

The bsearch function returns a pointer to a matching element of the array, or a null pointer
if no match is found. If two elements compare as equal, which element is matched is
unspecified.

129 In practice, the entire array is sorted according to the comparison function.

Library 157

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.10.5.2 The gsort function

Synopsis

#include <stdlib.h>
void gsort (void *base, size t nmemb, size_t size,

Description

int (*compar) (const vgid *, const void *));

The gsofrt function sorts an array of nmemb objects, the initial element of which is pointed

to by base.

The cont]
pointed to §
compared.]
argument is

If two el

Returns

The size of each object is specified by size.

ents of the array are sorted into ascending order according to a comparison function
y compar, which is called with two arguments that point to the objects being
'he function shall return an integer less than, equal to, or greater than zero if the first
bonsidered to be respectively less than, equal to, or greater than the second.

ements compare as equal, their order in the sorted array is unspecified.

The gsofrt function returns no value.

7.10.6 Int

7.10.6.1 T

Synopsis
#ix

int

Description

eger arithmetic functions

he abs function

lclude <stdlib.h>
abs (int j);

The abg function computes the absolute value of“an integer j. If the result cannot be

represented,

Returns

the behavior is undefined.'3°

The abs| function returns the absolute value.

7.10.6.2 T
Synopsis

he div function

#i

clude <stdlib~7h>

diy t div(int,numer, int denom);

Description

The di

function” computes the quotient and remainder of the division of the numerator

numer by fthe/denominator denom. If the division is inexact, the resulting quotient is the
integer of ldss€p magnitude that is the nearest to the algebraic quotient. If the result cannot be

represented,

Returns

the behavior is undefined; otherwise, quot * denom + rem shall equal numer.

The div function returns a structure of type div_t, comprising both the quotient and the
remainder. The structure shall contain the following members, in either order:

130 The absol

158

ute value of the most negative number cannot be represented in two’s complement.

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

int quot; /* quotient */
int rem; /* remainder */

7.10.6.3 The labs function
Synopsis

#include <stdlib.h>
long int labs(long int j);

Description

The labs function is similar to the abs function, except that the argument.an|
value each have type long int.

7.10.6.4 The 1div function
Synopsis

#include <stdlib.h>
ldiv_t 1ldiv(long int numer, long int\denom);

Description

d the returned

The 1div function is similar to the diwv fufiction, except that the arguments and the

members of the returned structure (which has typedddiv_t) all have type long if
7.10.7 Multibyte character functions

The behavior of the multibyte charagter functions is affected by the LC_CTYH
the current locale. For a state-dependént encoding, each function is placed into its
a call for which its character pointécrargument, s, is a null pointer. Subsequent ¢
other than a null pointer cause the internal state of the function to be altered as nec
with s as a null pointer causes. these functions to return a nonzero value if encodi
dependency, and zero otheryise.'?! Changing the LC_CTYPE category causes thg
these functions to be indetérminate.

7.10.7.1 The mblen function
Synopsis

#include <stdlib.h>
int mblen(const char *s, size t n);

Déseription

If s is not a null pointer, the mblen function determines the number of byte
the multibyte character pointed to by s. Except that the shift state of the mbtowc
affected, it is equivalent to

mbtowc ((wchar t *)0, s, n);

1t.

E category of
nitial state by
alls with s as
essary. A call
ngs have state
shift state of

5 contained in
unction is not

The implementation shall behave as if no library function calls the mblen func1ion.

Returns

If s is a null pointer, the mblen function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null

pointer, the mblen function either returns O (if s points to the null character),

or returns the

131 If the implementation employs special bytes to change the shift state, these bytes do not produce

separate wide character codes, but are grouped with an adjacent multibyte character.

Library

159

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

number of bytes that are contained in the multibyte character (if the next n or fewer bytes form a
valid multibyte character), or returns —1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (7.10.7.2).

7.10.7.2 The mbtowc function

Synopsis

#include <stdlib.h>

int,

Description

If s is n

contained in
type
correspondin
null pointer,
bytes of the

The impl

Returns

If s is a
character end

wcharn

ot a null pointer, the mbtowc function determines the number of bytes that are
the multibyte character pointed to by s. It then determines the code for the value of
't that corresponds to that multibyte character. (The value of the code
b to the null character is zero.) If the multibyte character is valid and pwc is not a
the mbtowc function stores the code in the object pointed to by pwe. At most,n
irray pointed to by s will be examined.

d

ementation shall behave as if no library function calls the mbtowc function,

null pointer, the mbtowc function returns a nonzero or zero,.yalue, if multibyte
bdings, respectively, do or do not have state-dependent encodings. If s is not a null

pointer, the jbtowc function either returns O (if s points to the null character), or returns the

number of b

bytes form 4

character).

In no cas

btes that are contained in the converted multibyte character ‘(if the next n or fewer
valid multibyte character), or returns —1 (if they do{not form a valid multibyte

e will the value returned be greater than n or the\value of the MB_CUR_MAX macro.

7.10.7.3 The wctomb function

Synopsis

#in
int

Description

The wet

clude <stdlib.h>
wctomb (char *s, wchar.t wchar);

omb function determines’ the number of bytes needed to represent the multibyte

character cofresponding to the codé”whose value is wehar (including any change in shift state).

It stores the
null pointer)

wctomb fun

The impl

Returns

multibyte characier fepresentation in the array object pointed to by s (if s is not a
At most MBCUR_MAX characters are stored. If the value of wchar is zero, the
ction is leftnin the initial shift state.

ementation shall behave as if no library function calls the wetomb function.

If s is a null pointer, the wetomb function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the wetomb function returns —1 if the value of wchar does not correspond to a valid

multibyte ch

aracter, or returns the number of bytes that are contained in the multibyte character

corresponding to the value of wchar.

In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

160

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.10.8 Multibyte string functions

The behavior of the multibyte string functions is affected by the LC_CTYPE category of the

current locale.

7.10.8.1 The mbstowcs function

Synopsis

#include <stdlib.h>

size t mbstowcs(wchar t+ *pwcs, const char *s, size £ n);
Description

The mbstowces function converts a sequence of multibyte characters that*begin
shift state from the array pointed to by s into a sequence of corresponding codes
more than n codes into the array pointed to by pwes. No multibyte-characters that

character (which is converted into a code with value zero) will be-examined or con

multibyte character is converted as if by a call to the mbtowc function, except that
of the mbtowce function is not affected.

No more than n elements will be modified in the array_pointed to by pwes. If
place between objects that overlap, the behavior is undéfined.

Returns
If an invalid multibyte character is ‘encountered, the mbstowcs fung
(size t)-1. Otherwise, the mbstowes function returns the number of ar

modified, not including a terminating zero code, if any.'??

7.10.8.2 The wecstombs function
Synopsis
#include <stdlib.h>

size_t wcstombs (char *s, const wchar_t *pwcs, size t

Description

The westombBs function converts a sequence of codes that correspond to multib
from the afray pointed to by pwcs into a sequence of multibyte characters that

initial shiftystate and stores these multibyte characters into the array pointed to by s,

multibyte character would exceed the limit of n total bytes or if a null character is

cod®)is converted as if by a call to the wetomb function, except that the shiff

wctomb function is not affected.

No more than n bytes will be modified in the array pointed to by s. If copyin

between objects that overlap, the behavior is undefined.

Returns

If a code is encountered that does not correspond to a valid multibyte ¢

wcstombs function returns (size_t) -1. ;
number of bytes modified, not including a terminating null character, if any.'¥

132 The array will not be null- or zero-terminated if the value returned is n.

Library

in the initial
d stores not
follow a null
perted. Each
he shift state

¢opying takes

tion returns
ray elements

n);

te characters
begins in the
stopping if a
stored. Each
state of the

g takes place

haracter, the
h returns the

161

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.11 String handling <string.h>
7.11.1 String function conventions

The header <string.h> declares one type and several functions, and defines one macro
useful for manipulating arrays of character type and other objects treated as arrays of character
type.!*® The type is size_t and the macro is NULL (both described in 7.1.6). Various methods
are used for determining the lengths of the arrays, but in all cases a char * or void *
argument points to the initial (lowest addressed) character of the array. If an array is accessed

beyond the Jnfl of an nhjppt7 the behavior-is undefined

711.2 C
7.11.2.1 The memcpy function

pying functions

Synopsis

#include <string.h>
void *memcpy(void *sl, const void *s2, size_t n);

Description

The menjcpy function copies n characters from the object pointed to by s2 into the object
pointed to by s1. If copying takes place between objects that overlap, the behavior i) undefined.

Returns
The memcpy function returns the value of s1.

7.11.2.2 The memmove function

Synopsis

#include <string.h>
vold *memmove (void *sl, const void *s2, size t n);

Description

The memmove function copies n characters from' the object pointed to by s2 into the object
pointed to s1l. Copying takes place as if the n characters from the object pointed to by s2
are first copjed into a temporary array of n<haracters that does not overlap the objects pointed to
by sl and |2, and then the n characters from the temporary array are copied into the object
pointed to by s1.

Returns
The memmove function r€turns the value of s1.

7.11.2.3 The strcpy-function

Synopsis

#include <string.h>
char_*strcpy(char *sl, const char *s2);

Description

The strcpy function copies the string pointed to by s2 (including the terminating null
character) into the array pointed to by s1. If copying takes place between objects that overlap,
the behavior is undefined.

133 See ‘‘future library directions’’ (7.13.8).

162 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The strcpy function returns the value of s1.
7.11.2.4 The strncpy function
Synopsis

#include <string.h>
char *strncpy(char *sl, const char *s2, size_t n);

D ..
Descripton

The strncpy function copies not more than n characters (characters-that [follow a null
character are not copied) from the array pointed to by s2 to the array pointed tof by s1.'** If
copying takes place between objects that overlap, the behavior is undefinéd)

If the array pointed to by s2 is a string that is shorter than n characters, null |characters are
appended to the copy in the array pointed to by s1, until n characters in all have bgen written.

Returns
The strncpy function returns the value of s1.
7.11.3 Concatenation functions
7.11.3.1 The strcat function
Synopsis

#include <string.h>
char *strcat (char *sl5 const char *s2);

Description

The strcat function -appends a copy of the string pointed to by s2 (including the
terminating null character).to the end of the string pointed to by s1. The initial character of s2
overwrites the null character at the end of s1. If copying takes place betweep objects that
overlap, the behavior)is undefined.

Returns

The strcat function returns the value of s1.
7.11,3.2-The strncat function
Synopsis

#include <string.h>
char *strncat (char *sl, const char *s2, size t n);

Description

The strncat function appends not more than n characters (a null character and characters
that follow it are not appended) from the array pointed to by s2 to the end of the [string pointed

To by sl. The initial character ol s2 overwrites the null character at the end of sl. A
terminating null character is always appended to the result.'*® If copying takes place between
objects that overlap, the behavior is undefined.

134 Thus, if there is no null character in the first n characters of the array pointed to by s2, the result will
not be null-terminated.

135 Thus, the maximum number of characters that can end up in the array pointed to by sl is
strlen(sl) +n+l.

Library 163

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The strncat function returns the value of s1.

7.11.4 Comparison functions

The sign of a nonzero value returned by the comparison functions memcmp, strcmp, and
strncmp is determined by the sign of the difference between the values of the first pair of

characters (bW
7.11.4.1 The memcmp function

Synopsis

#inkclude <string.h>
int| memcmp (const void *sl, const void *s2, size t n);

.
Description

Th ovnan 1 1

The memmp function compares the first n characters of the object pointed to by sl\t0 the

1!
first n charadters of the object pointed
Returns

The mememp function returns an integer greater than, equal to, or less thanzero, accordingly
as the object |pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.
7.11.4.2 The strcmp function
Synopsis

#include <string.h>
int| strcmp (const char *sl, const char *s2);

Description
The stremp function compares the string pojnted to by s1 to the string pointed to by s2.
Returns

The strpmp function returns an integer greater than, equal to, or less than zero, accordingly
as the string [pointed to by s1 is greater'than, equal to, or less than the string pointed to by s2.

7.11.4.3 The strcoll function
Synopsis

#finclude <string.h>
inY strcoll)(const char *sl, const char *s2);

Description

The stricol function compares the string pointed to by s1 to the string pointed to by s2,

both interpreted as appropriate to the LC_COLLATE category of the current locale.

136 The contents of ‘‘holes’> used as padding for purposes of alignment within structure objects are
indeterminate. Strings shorter than their allocated space and unions may also cause problems in
comparison.

164 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Returns

The strcoll function returns an integer greater than, equal to, or less than zero, accordingly
as the string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2

when both are interpreted as appropriate to the current locale.
7.11.4.4 The strncmp function

Synopsis

#include <string h>

int strncmp(const char *sl, const char *s2, size t'n
Description

The strnemp function compares not more than n characters (characters that
character are not compared) from the array pointed to by s1 to the array pointed to

Returns

The strnemp function returns an integer greater than, equalto, or less than zer
as the possibly null-terminated array pointed to by sl is greater than, equal to, of
possibly null-terminated array pointed to by s2.

7.11.4.5 The strxfrm function
Synopsis

#include <string.h>
size_t strxfrm(char *sl, const char *s2, size_t n);

Description

The strxfrm function transforms the string pointed to by s2 and places the r

)

follow a null
by s2.

b, accordingly
less than the

psulting string

into the array pointed to by“sl. The transformation is such that if the strcmp function is

applied to two transformied” strings, it returns a value greater than, equal to, or |

ess than zero,

corresponding to the @esult of the strcoll function applied to the same two ofiginal strings.

No more than n characters are placed into the resulting array pointed to by sl,
terminating null- character. If n is zero, s1 is permitted to be a null pointer. If
place between\objects that overlap, the behavior is undefined.

Returns

The strxfrm function returns the length of the transformed string (not
terminating null character). If the value returned is n or more, the contents of the]
to' by s1 are indeterminate.

Example

The value of the following expression is the size of the array needed
transformation of the string pointed to by s.

including the
copying takes

including the
array pointed

to hold the

1 + strxfrm(NULL, s, 0)

7.11.5 Search functions
7.11.5.1 The memchr function
Synopsis

#include <string.h>

void *memchr (const void *s, int c, size_t n);

Library

165

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Description

The memchr function locates the first occurrence of ¢ (converted to an unsigned char) in
the initial n characters (each interpreted as unsigned char) of the object pointed to by s.

Returns

The memchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the object.

7.11.5.2 The-strchz function

Synopsis

#include <string.h>
char *strchr (const char *s, int c);

Description

The strichr function locates the first occurrence of ¢ (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

Returns

The stychr function returns a pointer to the located character, or a null pointer if the
character dogs not occur in the string.
7.11.5.3 The strcspn function
S-,..n“n:n

ynopsi

#ifclude <string.h>
side_t strcspn(const char *sl, const char *s2);

Description

The strxespn function computes the length of the ‘maximum initial segment of the string
pointed to by s1 which consists entirely of characters_#ot from the string pointed to by s2.

Returns
The striespn function returns the length-of the segment.

7.11.5.4 The strpbrk function

Synopsis

#include <string.h>
char *strpbrk(const char *sl, const char *s2);

Description

The stygpbrk: function locates the first occurrence in the string pointed to by sl of any
character from-the. string pointed to by s2.

Returns

The strpbrk function returns a pointer to the character, or a null pointer if no character
from s2 occurs in sl.

7.11.5.5 The strrchr function
Synopsis

#include <string.h>
char *strrchr(const char *s, int c);

166 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

Description

The strrchr function locates the last occurrence of ¢ (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

Returns

The strrchr function returns a pointer to the character, or a null pointer if ¢ does not occur
in the string.

7.11.5.6 The strspn function

Synopsis

#include <string.h>
size t strspn(const char *sl, const char *s2);

Description

The strspn function computes the length of the maximum’ initial segment| of the string
pointed to by s1 which consists entirely of characters from.the\string pointed to by|s2.

Returns

The strspn function returns the length of the ségment.
7.11.5.7 The strstr function
Synopsis

#include <string.h>
char *strstr(const.char *sl, const char *s2);

Description

The strstr function locates the first occurrence in the string pointed to py sl of the
sequence of characters (excluding the terminating null character) in the string pointdd to by s2

Returns

The strstr function returns a pointer to the located string, or a null pointer |f the string is
not found. If 2 points to a string with zero length, the function returns s1.

7.11.5.8 ;The strtok function
Synopsis
#include <string.h>
char *strtok(char *sl, const char *s2);

Description

A sequence of calls to the strtok function breaks the string pointed to |py sl into a
sequence of tokens, each of which is delimited by a character from the string poipted to by s2.
The first call in the sequence has s1 as its first argument, and is followed by caTls with a null

pointer as their first argument. The separator string pointed to by s2 may be different from call
to call.

The first call in the sequence searches the string pointed to by s1 for the first character that is
not contained in the current separator string pointed to by s2. If no such character is found, then
there are no tokens in the string pointed to by s1 and the strtok function returns a null
pointer. If such a character is found, it is the start of the first token.

The strtok function then searches from there for a character that is contained in the current
separator string. If no such character is found, the current token extends to the end of the string
pointed to by s1, and subsequent searches for a token will return a null pointer. If such a
character is found, it is overwritten by a null character, which terminates the current token. The

Library 167

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

strtok function saves a pointer to the following character, from which the next search for a
token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described above.

The implementation shall behave as if no library function calls the strtok function.

Returns

The st:j;a.l;ﬁuncﬂm.ﬂms_a_pamm;m_ﬂr_ﬁ.&ahmm_mken or a null pointer if
there is no token.
Example

#include <string.h>

stiic char str[] = "?a??7?b,,, #c";

ch *t;

t 5 strtok(str, "?"); /* t points to the token "a" */

t 5 strtok (NULL, ","); /* t points to the token "?2?b" */
t o strtok(NULL, "#,"); /* t points to the token "c" */

t 5 strtok (NULL, "?"); /* t isa null pointer */

7.11.6 Miscellaneous functions
7.11.6.1 The memset function
Synopsis

#include <string.h>
void *memset (void *s, int ¢, size_t n);

Description

The memget function copies the value of ¢ (converted to an unsigned char) into each of
the first n chpracters of the object pointed to by s.

Returns
The memget function returns the value-of's.

7.11.6.2 Tfe strerror function

Synopsis

#include <string+h>
char *strerrér(int errnum);

Description

The str[rror function maps the error number in errnum to an error message string.

The implgmeéntation shall behave as if no library function calls the strerror function.

Returns

The strerror function returns a pointer to the string, the contents of which are
implementation-defined. The array pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to the strerror function.

168 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.11.6.3 The strlen function
Synopsis

#include <string.h>
size t strlen(const char *s);

Description

The strlen function computes the length of the string pointed to by s.

Returms
The strlen function returns the number of characters that precede the tenjminating null
character.

Library 169

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.12 Date and time <time.h>
7.12.1 Components of time

The header <time .h> defines two macros, and declares four types and several functions for
manipulating time. Many functions deal with a calendar time that represents the current date
(according to the Gregorian calendar) and time. Some functions deal with local time, which is
the calendar time expressed for some specific time zone, and with Daylight Saving Time, which
is a temporary change in the algorithm for determining local time. The local time zone and

Daylight Sarg%*»»pbm-éeﬁaéé.—
The mactos defined are NULL (described in 7.1.6); and

CLJCKS_PER_SEC
which is the pumber per second of the value returned by the clock function.
The typeg declared are size_t (described in 7.1.6);
clqgck_t
and

time t

which are arfthmetic types capable of representing times; and
styuct tm

which holds the components of a calendar time, called the broken-down time. The structure shall
contain at lepst the following members, in any order. The semantics<of the members and their
normal rangds are expressed in the comments.'*’

in{ tm_sec; /* seconds after the minute — [061] */
in{ tm min; /* minutes after the hour —_[0,59] */
in{ tm_hour; /* hours since midnight —\0, 23] */
in{ tm _mday; /* day of the month —(} 31] */

iny tm _mon; /* months since Japuary — [0, 11] */
in tm_year; /* years since [900 */

in{ tm_wday; /* days sinceSSunday — [0, 6] */

in{ tm_yday; /* days sinceJanuary 1 — [0, 365] */
in{ tm_isdst; /* Daylight Saving Time flag */

The value off tm_isdst is positive)if Daylight Saving Time is in effect, zero if Daylight Saving
Time is not in effect, and negative if the information is not available.

7.12.2 Time manipulation functions
7.12.2.1 The clock function
Synopsis

#inqclude <time.h>
clock_t clock(void);

Description

The clock function determines the processor time used.

137 The range [0, 61] for tm_sec allows for as many as two leap seconds.

170 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

———— 71222 The difftimefunction

ISO/IEC 9899:1990 (E)

Returns

The clock function returns the implementation’s best approximation to the processor time
used by the program since the beginning of an implementation-defined era related only to the
program invocation. To determine the time in seconds, the value returned by the clock
function should be divided by the value of the macro CLOCKS_PER_SEC. If the processor time
used is not available or its value cannot be represented, the function returns the value
(clock_t)-1."%

Synopsis

#include <time.h>
double difftime(time_t timel, time_t time0)g

Description

The difftime function computes the difference between two calendar tinjes: timel -
timeO.

Returns

The difftime function returns the difference expressed in seconds as a double.
7.12.2.3 The mktime function
Synopsis

#include <time.h>
time_t mktime (struct'tm *timeptr) ;

Description

The mktime function converts the broken-down time, expressed as local time, in the
structure pointed to by, timeptr into a calendar time value with the same encogling as that of
the values returned.by,the time function. The original values of the tm_wday pnd tm_yday
components of the structure are ignored, and the original values of the other components are not
restricted to, the ranges indicated above.'® On successful completion, the palues of the
tm wday and tm_yday components of the structure are set appropriately, fand the other
components’are set to represent the specified calendar time, but with their valueq forced to the
ranges_indicated above; the final value of tm_mday is not set until tm_mon and|tm_year are
determined.

Returns

The mktime function returns the specified calendar time encoded as a [value of type
time t. If the calendar time cannot be represented, the function retuins the value
(time_t)-1.

Example

L eT] 1 P T 4NN 10
wildt ddy OI UIC WCCK IS JUuly 4, cUUT!

138 In order to measure the time spent in a program, the clock function should be called at the start of the
program and its return value subtracted from the value returned by subsequent calls.

139 Thus, a positive or zero value for tm_isdst causes the mktime function to presume initially that
Daylight Saving Time, respectively, is or is not in effect for the specified time. A negative value causes
it to attempt to determine whether Daylight Saving Time is in effect for the specified time.

Library 171

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

#include <stdio.h>
#include <time.h>

static const char *const wdayl[] = {
*Sunday”, "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"
};
struct tm time_str;
/*...%/
timg str.tm year = 2001 - 1900;
time str.tm mon =7 -1;
time str.tm mday = 4;
time str.tm hour = 0;
time str.tm min = 0;
timg str.tm sec =1;
timg str.tm isdst = -1;
if |(mktime (&time_str) == -1)
time_str.tm _wday = 7;

priptf("$s\n", wday[time_str.tm wday]);
7.12.2.4 The time function
Synopsis

#include <time.h>
timg t time(time_t *timer);

Description

The timg function determines the current calendar time! The encoding of the value is
unspecified.

Returns

The timI function returns the implementation’ s best approximation to the current calendar
time. The value (time_t) -1 is returned if the calendar time is not available. If timer is not
a null pointer), the return value is also assignedito the object it points to.

7.12.3 Time conversion functions

Except fof the strftime funetion; these functions return values in one of two static objects:
a broken-dowyn time structure andvan array of char. Execution of any of the functions may
overwrite the| information retdrnéd in either of these objects by any of the other functions. The
implementatipn shall behave{as if no other library functions call these functions.

7.12.3.1 The asctime function

Synopsis

#include <time.h>

char *asctime (const struct tm *timeptr);
Description

The asctime function converts the broken-down time in the structure pointed to by
timeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm.

172 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

char *asctime (const struct tm *timeptr)

{
static const char wday name[7][3] =
"gSun" , "Mon" , "Maat , "Wad" , "rha" , n"Eri" , "ga
};
static const char mon name[12] [3] = {
" Jan" , "Feb " , HMar" , "Apr " , "May " , n Jun " ,
n Jul " , llAug" , " Sep!l , " oct " , "Novll , llDec "
1
static char result[26];
sprintf (result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday name[timeptr->tm wday],
mon_name [timeptr->tm mon],
timeptr->tm mday, timeptr->tm hour,
timeptr->tm min, timeptr->tm_ sec,
1900 + timeptr->tm year);
return result;
}
Returns

The asctime function returns a pointer toythe string.
7.12.3.2 The ctime function
Synopsis

#include <time.h>
char *ctime(const time_t *timer);

Description

The ctime function converts the calendar time pointed to by timer to locg
form of a string. [t js*equivalent to

asctime (localtime (timer))

Returns

I time in the

The, et ime function returns the pointer returned by the asctime function with that broken-

doWn time as argument.

Forward references: the localtime function (7.12.3.4).
7.12.3.3 The gmtime function

Synopsis

#include <time.h>

struct tm *gmtime (const time t *timer);

Description

The gmtime function converts the calendar time pointed to by timer into a
time, expressed as Coordinated Universal Time (UTC).

Returns

The gmtime function returns a pointer to that object, or a null pointer if
available.

Library

broken-down

UTC is not

173

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

7.12.3.4 The localtime function

Synopsis

#include <time.h>
struct tm *localtime(const time_t *timer);

Description

The localtime function converts the calendar time pointed to by timer into a broken-

down time, e

Returns

1 1 1 o
PICBDCU ad ITvlarl tIrce.,

The localtime function returns a pointer to that object.

7.12.3.5 Th
Synopsis

#in

e strftime function

~rlude <time.h>

sizp t strftime(char *s, size_t maxsize,

Description

The str}
string pointeq
ending in its
and ordinary
character thd
characters (i1
copying take
maxsize C
appropriate
determined b

const char *format, const struct tm *timeptr);

Ftime function places characters into the array pointed to by s a$.controlled by the
to by format. The format shall be a multibyte character sequénce, beginning and
initial shift state. The format string consists of zero or more'conversion specifiers
multibyte characters. A conversion specifier consists of a-% character followed by a
t determines the behavior of the conversion specifier: All ordinary multibyte
cluding the terminating null character) are copied-unchanged into the array. If

s place between objects that overlap, the behavior is undefined. No more than
haracters are placed into the array. Each-conversion specifier is replaced by

haracters as described in the following Mist. The appropriate characters are

y the LC_TIME category of the curren(Jocale and by the values contained in the

structure poi
is r
isT
1S 1
is 1

$a
$A
$b
%$B
$c
$d
$H
$I
%3
$m
$M

p

ted to by timeptr.

laced by the locale’s abbreviatedweekday name.
laced by the locale’s full weekday name.

laced by the locale’s abbrevjated month name.
laced by the locale’s fGll)rhonth name.

is refplaced by the locale’s-appropriate date and time representation.

is replaced by the day-of’the month as a decimal number (01-31).

is rdplaced by the diour (24-hour clock) as a decimal number (00-23).

is rdplaced by thehour (12-hour clock) as a decimal number (01-12).

is rdplaced by the day of the year as a decimal number (001-366).

is rdplaced-by the month as a decimal number (01-12).

is rgplaced by the minute as a decimal number (00-59).

is replaced by the locale’s equivalent of the AM/PM designations associated with a 12-

hour
%S
$U

as a
W
W

as a
$x
$X
'
$Y

174

clock.

is replaced by the second as a decimal number (00-61).
is replaced by the week number of the year (the first Sunday as the first day of week 1)

decimal number (00-53).

is replaced by the weekday as a decimal number (0-6), where Sunday is 0.
is replaced by the week number of the year (the first Monday as the first day of week 1)

decimal number (00-53).

is replaced by the locale’s appropriate date representation.
is replaced by the locale’s appropriate time representation.
is replaced by the year without century as a decimal number (00-99).
is replaced by the year with century as a decimal number.

Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 9899:1990 (E)

%$Z is replaced by the time zone name or abbreviation, or by no characters if no time zone is
determinable.
%% is replaced by %.

If a conversion specifier is not one of the above, the behavior is undefined.
Returns

If the total number of resulting characters including the terminating null character is not more
than maxsize, the strftime function returns the number of characters placed into the array

pointed to by s not including the terminating null character. Otherwise, zero is_refurned and the
contents of the array are indeterminate.

Library 175

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

ISO/IEC 989

9:1990 (E)

7.13 Future library directions

The following names are grouped under individual headers for convenience. All external

names descri

bed below are reserved no matter what headers are included by the program.

7.13.1 Errors <errno.h>

Macros that begin with E and a digit or E and an uppercase letter (followed by any

combination

of digits, letters, and underscore) may be added to the declarations in the

<errno.h> header.

7.13.2 Ch

Function
combination

<ctype.h>
7.13.3 Log

Macros tH

letters, and u

7134 M

The name

are reserved

and return va
7.13.5 Sig

Macros th

(followed by

in the <sigr
7.13.6 Inp

Lowercas
Other charact

aracter handling <ctype.h>

hames that begin with either is or to, and a lowercase letter (followed by any
of digits, letters, and underscore) may be added to the declarations in the
header.

alization <locale.h>

at begin with LC_ and an uppercase letter (followed by any combination of digitss
derscore) may be added to the definitions in the <locale.h> header.

hematics <math.h>

s of all existing functions declared in the <math.h> header, suffix¢d with £ or 1,
fespectively for corresponding functions with £loat and long double arguments
ues.

nal handling <signal.h>

at begin with either SIG and an uppercase letter or SIG_ and an uppercase letter
any combination of digits, letters, and underscore) may be added to the definitions
al.h> header.

ut/output <stdio.h>

b letters may be added to the conversion specifiers in fprintf and fscanf.
ers may be used in extensions.

7.13.7 General utilities <stdlib.h>

Function phames that begin with str-and a lowercase letter (followed by any combination of
digits, letters] and underscore) may be-added to the declarations in the <stdlib.h> header.
7.13.8 String handling <stfing.h>

Function [names that begifi With str, mem, or wes and a lowercase letter (followed by any
combination |of digits, letters, and underscore) may be added to the declarations in the
<string.hp header.
176 Library

https://standardsiso.com/api/?name=d9de05c120bca5aaa9013e43bad94a32

