INTERNATIONAL ISO/IEC
STANDARD 24744

First edition
2007-02-15

AMENDMENT 1
2010-02-01

Software Engineering — Metamodel for
Development Methodologies

AMENDMENT 1: Notation

Ingénierie du logiciel — Métamodeéle pour les méthodologies de
développement

AMENDEMENT 1: Notation

Reference number
ISO/IEC 24744:2007/Amd.1:2010(E)

© ISO/IEC 2010

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
darameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

Z ! COPYRIGHT PROTECTED DOCUMENT

© [ISO/IEC 2010

electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11
Fax + 4122749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

Foreword

Commission) form the specialized system for worldwide standardization. National bodies that are membérs
ISO or IEC participate in the development of International Standards through technical committe
established by the respective organization to deal with particular fields of technical activity. ISO and IH
technical committees collaborate in fields of mutual interest. Other international organizations, governmen
and non-governmental, in liaison with 1ISO and IEC, also take part in the work. In the fieldvof informati
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft Internatior
Standards adopted by the joint technical committee are circulated to national badies for voting. Publication

an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this. document may be the subject of pate
rights. ISO and IEC shall not be held responsible for identifying any,et\all such patent rights.

Amendment 1 to ISO/IEC 24744:2007 was prepared by ¢Joint Technical Committee ISO/IEC JTC
Information Technology, Subcommittee SC 7, Software and syStems engineering.

al
bS

—_

© ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

Software Engineering — Metamodel for Development
Methodologies

AMENDMENT 1: Notation

Page iii, Contents
Add the following line after “Annex B (informative) Mappings to Other Metamodelling - Approaches”:

Annex C (informative) Graphical Notation

Page iv, Table of Figures

After the last entry (“Figure 9 — Support classes”) add the following:

Figure C.1 — A lifecycle diagram showing the temporal structure of a complete method

Figure C.2 — A lifecycle diagram showing the content striicture as well as the temporal structure of a method
Figure C.3 — An enactment diagram for the “Construction” phase kind of Figure C.2

Figure C.4 — A dependency diagram based on‘@refinement of Figure C.2

Figure C.5 — A process diagram showing’the details of the “Requirements Engineering” and “Requiremer
Quality Assurance” processes

Figure C.6 — An action diagram showing how requirements-related task kinds interact with requiremen
related work products

Page vi, Introduction
Add the following paragraph at the end of the Introduction:

This International Standard also presents a proposed notation for the ISO/IEC 24744 standard metamod
The notation presented here is mainly graphical and supports most of the classes found in ISO/IEC 24744.

© ISO/IEC 2010 — All rights reserved

w

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

Page 11, Figure 5

Replace the figure with the following:

0.*
ProcessKind
. 0.* 0.* +Context
+Successor 0.. +TemporalContext 0.*
+Predecessor StageKind StageWithDurationKind
N N
“ * *
0. | |
: : PhaseKind
| InstantaneousStageKind | "
| | hd
| . | |
: | MilestoneKind : TimeCycleKind : BuildKind
| | +Description | R | R
I ! * I * I *
I ! I I I I I
I ! I I I I I
I ! I I I] I
I ! I I I I I
I ! I I I | I
I | I | | | |
| | Milestone | TimeCycle [Build
: | : : +Number
: Instantaneous Stage : Phase
| +TimeReached |
o | |
" 1 StageWithDuration
Stage +StartTime q
+Predecessor ~ +EndTime
+Duration
+Successor 0.* .
0. +TemporalContext 0.1
Process 041 +Context
0.*
Page 46, 7.1.46
Reéplace the diagram with the following:
EndeavourElement
Q0.* +Successor
+Predecessor
StageKind | Stage 0.
4 0.*
StageWithDuration +Context
InstantaneousStage StartTime
>
t+TimeReached +EndTime
+Duration 0.1

2 © ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

Page 47, 7.1.46.2

Add the following two new rows to the table:

ISO/IEC 24744:2007/Amd.1:2010(E)

Name Role To class Semantics
OccursAfter Successor Stage A successor stage occurs after some

predecessorstages:
OccursBefore Predecessor Stage A predecessor stage occurs before some

successor stages.
Page 47, 7.1.47
Replace the diagram with the following:

Template
+Name
+Successor 0.*
+Predecessor
0.* StageKind Stage

Page 47, 7.1.47.2

0.*

%

+Context

StageWithDurationKind

0.*

Add the following two new rows to the table:

InstantaneousStageKind

Name Role To class Semantics

OccursAfter Successor StageKind A successor stage kind occurs after some
predecessor stage kinds.

OccursBefere Predecessor StageKind A predecessor stage kind occurs before
some successor stage kinds.

© ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

Page 78, before the Bibliography

Insert the following new annex:

Annex C
(infnrma’rivp)

Graphical Notation

Ci{1 Introduction

TIe metamodel of ISO/IEC 24744 contains classes that represent concepts from thenmethod domain and
classes that represent concepts from the endeavour domain. The notation presented here covers mainly the
former, although some recommendations are given on how to represent the latter. Using this notation,
methodologists or method engineers can represent method fragments and complete methodologies, and
prpject managers can depict endeavours as they progress over time.

This notation has been designed to be easy to draw by hand as well as(using a software tool on a computer.
Special care has been taken in choosing symbols that convey thé: underlying concept, at least in most
sifuations and to readers of most cultures and backgrounds. In addition, the symbols adopted by the notation
exhibit visual resemblance (based on shapes and colours) to eagh, other that mimic the structural relationships
ofl the underlying concepts in the metamodel, establishing_common “visual themes” for closely related
cqncepts. Although colour is extensively used by this notation, since it helps identify symbols and symbol
patterns with ease when displayed on a computer display<or a colour printout, it is important to note that care
hgs been taken to guarantee that greyscale and black @nd white versions of the same symbols are perfectly
repdable and identifiable. In this regard, colour does>enhance diagram readability when it is available but,
cqnversely, it can be avoided without too great atloss. Colour specification is done via RGB values in the
sRGB (IEC 61966-2-1:1999) colour space.

C{1.1 Abstract Symbols

This notation introduces the concept’ of “abstract symbols”, i.e. symbols that depict instances of abstract
classes. In principle, most notations only include symbols to depict instances of concrete classes, since
al}stract classes do not have-direct instances. However, in some scenarios it is convenient to represent an
enftity in a diagram for which only the abstract type is known. This can be achieved by using so-called abstract
syimbols. For example, consider the case where a work product kind representing a certain system must be
dgpicted in a diagram.~-A"notation with only concrete symbols would force the diagram author to choose a
specific concrete type“of work product kind (such as document kind, model kind, software item kind etc.) in
order to depict it.“This notation includes an “abstract work product kind” symbol that allows the author to depict
the above-mentioned system without specifying whether it is a model kind, a document kind, a software item
kind etc. Abstract symbols usually consist of the simple shape from which all the concrete symbols in the
visual theme“are generated.

C{1:2 Notation Coverage

As a general principle, graphic symbols are given in the notation for every concrete (i.e. directly instantiable)
class in the metamodel for which a graphical representation is considered to be appropriate. In addition,
additional graphic symbols (abstract symbols) are given for every abstract class that is a direct ancestor (i.e.
superclass) of said concrete classes. Abstract classes or higher ranks are considered to be too intangible as
to be worth representing visually. For example, the DocumentKind class is concrete and suitable for visual
representation, so a symbol for it is given in the notation; the WorkProductKind is abstract but a direct
ancestor of DocumentKind, so an abstract symbol is given to it; on the contrary, the Template class,
superclass of WorkProductKind, is too intangible and no graphical representation is given for it.

4 © ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(

Specifically, the proposed notation for ISO/IEC 24744 covers the following classes:

E)

— Stage-related classes, i.e. TimeCycleKind, PhaseKind, BuildKind and MilestoneKind as well as their

direct ancestors StageWithDurationKind and InstantaneousStageKind.

— Work unit-related classes, i.e. ProcessKind, TaskKind and TechniqueKind as well as their direct ancestor

WorkUnitKind. The related class Outcome is also covered.

— Work product-related classes, i.e. DocumentKind, ModelKind, SoftwareltemKind, HardwareltemKind“a
CompositeWorkProductKind, as well as their direct ancestor WorkProductKind.

— Producer-related classes, i.e. TeamKind, RoleKind and ToolKind, as well as their direct ances
ProducerKind. The endeavour-level-only class Person is also covered.

— Constraint classes, i.e. PreCondition and PostCondition.
— “Relationship” classes, i.e. ActionKind, TaskTechniqueMappingKind and WorkRerformanceKind.
— Some support classes, i.e. Conglomerate and Guideline.

Wherever possible, these areas determine a set of “families” of symbols, which roughly correspond
branches in the specialization hierarchy in the metamodel. Within eactisuch family, the shapes and colours

hd

or

to
of

the icons for the subtypes are similar. In addition, notation\is given for generic concepts, usudly

corresponding to relationships and links that may occur in a variety-of situations.

The above bulleted list includes mostly method-domaify classes. The corresponding endeavour-domgin

classes are also addressed by this notation. For the sake of coherence, the convention is adopted that

AN

endeavour-domain class is always represented by ‘the same symbol as used for its method-domain

counterpart but using a dashed line. For example, the symbol for the MilestoneKind class is a small rotat

bd

blue square; this means that the symbol for the-Milestone class is a similarly small rotated blue square in a
dashed line. By using this convention, a typ€“\(method-domain) and its instances (endeavour-domain) gre

always represented by closely enough symbols but with a clear difference that makes them distinguishab

e.

This convention is assumed throughout thé remaining sections of this annex, and therefore explicit notation for

endeavour-domain classes is not given:
The metamodel areas not covered:by this notation include:

— Language-related classes, i.e. Language, Notation and ModelUnitKind. These classes work together
represent formal languages (plus their visual representations), which are better expressed by cla

diagrams, EBNF (or)other formalisms. A graphical representation is therefore considered not appropriatg.

— Reference-related classes, i.e. Reference and Source. These classes are designed to allow meth
engineers 10 provide reference material about the “method chunks” (Section 5.1) that they crea
Structured text is a better representation of this kind of information than graphical diagrams.

The fallowing sections describe the notation in detail, including the symbols used, the syntax for their usa
(derived from the metamodel) and the associated semantics (given by the mapping between the graphig
symbols and the classes in the metamodel).

je
al

© ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.2 Notation Elements

Cc

A
ki

.2.1 Stages

stage is a managed time frame within an endeavour (Section 7.1.46). Stages are partitioned into stage
nds by the StageKind class according to the abstraction level at which they work on the endeavour and the

result that they aim to produce (Section 7.1.47).

Fgur concrete subtypes of StageKind are covered by this notation: TimeCycleKind, PhaseKind, BuildKind and

M

lestoneKind. The former three correspond to stages with duration and are, therefore, represented by broad

symbols that can contain other elements. A rectilinear theme has been chosen to convey the idea. of
temporality. MilestoneKind, on the other hand, corresponds to instantaneous stages, and is consequently
dgpicted by a narrower symbol that cannot contain nested elements. Colours for all these symbols.belong to

th

Cc

A

b blue-purple range. The name of the stage kind is shown inside the symbol.

2.1.1 StageWithDurationKind

stage with duration is a managed interval of time within an endeavour (Section 7.1.48)."Stages with duration

arg partitioned into stage with duration kinds by the StageWithDurationKind class aceording to its abstraction

le

el and the result it aims to produce (Section 7.1.49).

This is an abstract class, depicted by an abstract symbol, a horizontally oriented rectangle. This symbol tries
to]convey the idea of an empty container, inside which other elements can-bé shown. Line colour is navy blue
(RGB 0, 0, 128) and fill colour is light blue-grey (RGB 225, 225, 255). The name of the stage with duration

ki

nd is shown inside the rectangle, in the top left corner, where the)“<Name>" placeholder appears in the

following figure.

4Name>

Cc

A

cl

2.1.2 TimeCycleKind

time cycle is a managed interval of-timme within an endeavour for which the objective is the delivery of a final

prpduct or service (Section 7.1.59)."Fime cycles are partitioned into time cycle kinds by the TimeCycleKind

ass according to the type of outeomes that they aim to produce (Section 7.1.60).

The symbol used to depict(a time cycle kind is composed of two horizontal brackets with their right-hand side
end bent outwards, sinfulating a truncated arrow head. These brackets delimit a rectangle within which
symbols for other stage-Kinds can be shown. This symbol tries to convey the meaning that a time cycle kind
cqgmprises a collection of other stage kinds, hence the bracket analogy. Line colour is navy blue (RGB 0, 0,

138). The name-of the time cycle kind is shown inside the symbol, in the top left corner, where the “<Name>"

placeholder appears in the following figure.

I 4Name> \

© ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.2.1.3 PhaseKind

A phase is a managed interval of time within an endeavour for which the objective is the transition between
cognitive frameworks (Section 7.1.31). Phases are partitioned into phase kinds by the PhaseKind class

according to the abstraction level and formality of the result that they aim to produce (Section 7.1.32).

The symbol used to depict a phase kind is a pointed rectangle with the point facing to the right. Line colour

is

Tavy biue (RGB 6;6; 128) and-fittcotouris iigili 'uiuc-glt:y (RGB 225225, 255). This bylllbui triestoconv
the idea of temporality — hence the point, reminiscent of an arrow head. The name of the phase kind is sho
inside the symbol, in the top left corner, where the “<Name>" placeholder appears in the following figufé;

<Name>

C.21.4 BuildKind

A build is a managed interval of time within an endeavour for which thesmajor objective is the delivery of
incremented version of an already existing set of work products (Section 7.1.3). Builds are partitioned in
build kinds by the BuildKind class according to the type of result thatthey aim to produce (Section 7.1.4).

The symbol used to depict a build kind is a double-pointed rectangle with the points facing to the right and I
This symbol tries to convey the idea of sequence, hence the double point, resembling dual arrow heads. Li
colour is lilac (RGB 128, 0, 128) and fill colour is light purpleé (RGB 234, 213, 255). The name of the build ki
is shown inside the symbol, on the top left corner, where.the “<Name>" placeholder appears in the followi
figure.

<Name>

C.2.1.5 InstantaneousStageKind

An instantaneous stage‘is ‘a managed point in time within an endeavour (Section 7.1.16). Instantaneo
stages are partitioned’into instantaneous stage kinds by the InstantaneousStageKind class according to t
kind of event that it Signifies (Section 7.1.17).

This is an abstract class, depicted by an abstract symbol, a square. This symbol tries to convey the idea o
point in timé;hence the similarity with other stage-related symbols (overall rectangular shape) but a smal
area. Since/instantaneous stages are points in time rather than time spans, no other symbols can be sho
inside:this one. Line colour is bright blue (RGB 0, 0, 255) and fill colour is light blue (RGB 213, 213, 255). T
name)of the instantaneous stage kind is shown inside the square, centred, where the “<Name>" placehold
appears in the following figure.

2
VN

4l
to

ft.
he
hd

K

<Name>

© ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.

A

2.1.6 MilestoneKind

milestone is a managed point in time within an endeavour that marks some significant event in the

endeavour (Section 7.1.20). Milestones are partitioned into milestone kinds by the MilestoneKind class
according to their specific purpose and kind of event that they signify (Section 7.1.21).

The symbol used to depict a milestone kind is a small square rotated 45 degrees, resembling a diamond

st
st
m
fil
(ol

<

Cc

A
ar
(g

dpt. T;Iib bylllll)Ui il ib‘b iU CUTNvVeYy ti Ic iulb'd Uf dall be‘IIi'IIIaI Ir\illy pUiIIi ill ﬁlllb, ill:lll.ab' ﬁ 1< billliidliiy Wliil U“IUI
pge-related symbols (points facing left and right) but a smaller area. It also resembles the symbol used by
ANy project management software tools to depict milestones. Line colour is bright blue (RGB 0, 0, 255) and
colour is light blue (RGB 213, 213, 255). The name of the milestone kind is shown inside the square;
ntred, where the “<Name>" placeholder appears in the following figure.

KName>

2.2 Work Units

work unit is a job performed, or intended to be performed, within an endeavgur<(Section 7.1.67). Work units
e partitioned into work unit kinds by the WorkUnitKind class according to their‘purpose within the endeavour
ection 7.1.68).

T

ree concrete subtypes of WorkUnitKind are covered by this(motation: ProcessKind, TaskKind and

TechniqueKind. None of these concepts are involved in whole/part relationships that may need nesting of
symbols, so the symbols chosen to depict them are basic shapes and easily resizable to accommodate long
ngmes or abbreviations. All shapes are curvilinear. Colours-for all these symbols belong to the green range.

T
7.

In

N

Cc

A
(S
of]

e name of the work unit kind is shown inside the symbol, centred. The minimum capability level (Section
1.68.1) of the work unit kind can be optionally shown inscribed in a small circle, inside the symbol.

addition, the Outcome class is also covered.

b abstract symbol is provided for WorkUnitKind because no abstract usage of work unit kinds is expected.
2.2.1 ProcessKind
process is a large-grained wark unit that operates within a given area of expertise within the endeavour

ection 7.1.35). Processes aré:partitioned into process kinds by the ProcessKind class according to the area
expertise in which they oecur/(Section 7.1.36).

The symbol used to depict a process kind is a rounded rectangle or “roundangle”. Line colour is olive green

(R
sh
m
i

>

GB 102, 153, 0) andfill colour is light olive green (RGB 234, 255, 213). The name of the process kind is
own inside the~symbol, centred, where the “<Name>" placeholder appears in the following figure. The
nimum capability level of the process kind is optionally shown in the top left corner inside the rectangle (“n”
the figure).

n))

<Name>

J

© ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.2.2.2 TaskKind

A task is a small-grained work unit that focuses on what must be done in order to achieve a given purpose
within the endeavour (Section 7.1.50). Tasks are partitioned into task kinds by the TaskKind class according
to their purpose within the endeavour (Section 7.1.51).

The symbol used to depict a task kind is an ellipse. Line colour is green (RGB 0, 128, 0) and fill colour is light

ylrccrhi (RGB 213, 255, 213) T;Ib‘ 'dairie Uf ﬁlc 1Ldblr\ Ir\illuI ib biIUWII illbiulb “Ib byIIIIUUi, bcllilclj, WiIUIU tle
“<Name>" placeholder appears in the following figure. The minimum capability level of the task kind|is
optionally shown towards the left edge inside the ellipse (“n” in the figure).

@ <Name>

C.2.2.3 TechniqueKind

A technique is a small-grained work unit that focuses on how the given~purpose may be achieved (Sectipn
7.1.57). Techniques are partitioned into technique kinds by the TechniqueKind class according to their
purpose within the endeavour (Section 7.1.58).

The symbol used to depict a technique kind is a circle. Line colour is green (RGB 0, 128, 0) and fill colour]is
light olive green (RGB 234, 255, 213). The name of the technique kind is shown inside the symbol, centrgd,
where the “<Name>" placeholder appears in the following figure. The minimum capability level of the
technique kind is optionally shown towards the upper edge’inside the symbol (“n” in the figure).

®

<Name>

C.2.2.4 Outcome

An outcome is an observable result of the successful performance of any work unit of a given kind (Sectipn
7.1.29).

The symbol used to'depict an outcome is a rectangle. Line colour is dark grey (RGB 51, 51, 51) and fill coldur
is light grey (RGB 221, 221, 221). The description of the outcome is shown inside the rectangle, flush lgft,
where the-!<Description>" placeholder appears in the following figure. The minimum capability level of the
outcome)is/optionally shown towards the top left corner inside the rectangle (“n” in the figure). Outcome
symboels:are linked to the WorkUnitKind symbols to which they relate via generic links (Section C.2.8.3).

{n) <Description>

C.2.3 Work Products

A work product is an artefact of interest for the endeavour (Section 7.1.65). Work products are partitioned into
work product kinds by the WorkProductKind class according to the nature of their contents and the intention
behind their usage (Section 7.1.66).

Five subtypes of WorkProductKind are covered by this notation: DocumentKind, ModelKind, SoftwareltemKind,
HardwareltemKind and CompositeWorkProductKind. All of them are represented by vertically-oriented

© ISO/IEC 2010 — All rights reserved 9

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

symbols. Colours for all these symbols belong to the red-pink range. The name of the work product kind is
shown inside the symbol, centred.

C.2.3.1 WorkProductKind

This is an abstract class, depicted by an abstract symbol, a vertically oriented rectangle. Line colour is red
(RGB 213, 0, 0) and fill colour is light pink (RGB 255, 213, 213). The name of the work product kind is shown

ingide the rectangle, centred, where the "<Name>" placeholder appears in the following figure.

<Name>

CJ2.3.2 DocumentKind

Aldocument is a durable depiction of a fragment of reality (Section 7.1.9). Documents are partitioned into
dqcument kinds by the DocumentKind class according to their structure, type of content and purpose (Section
7.0.10).

The symbol used to depict a document kind is a vertical rectangle with”a dog-eared top right corner. This
syimbol depicts a sheet of paper. Line colour is red (RGB 213, 0, 0) and fill colour is light pink (RGB 255, 213,
213). The name of the document kind is shown inside the symbol; centred, where the “<Name>" placeholder
appears in the following figure.

<Name>

CJj2.3.3 ModelKind

Almodel is an abstract representation of some subject that acts as the subject’'s surrogate for some well-
ddfined purpose (Section 7.1.22);*Models are partitioned into model kinds by the ModelKind class according to
their focus, purpose and leyel ef abstraction (Section 7.1.23).

The symbol used to depict a model kind consists of a vertical rectangle divided in two compartments by a
hgrizontal line closer.to the top. This symbol resembles the symbol used by ISO/IEC 19501 to represent a
class. Line colouf isred (RGB 213, 0, 0) and fill colour is light pink (RGB 255, 213, 213). The name of the
mpdel kind is_shown inside the symbol, centred, where the “<Name>" placeholder appears in the following
figure.

<Name>

10 © ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.2.3.4 SoftwareltemKind

A software item is a piece of software of interest to the endeavour (Section 7.1.43). Software items are
partitioned into software item kinds by the SoftwareltemKind class according to their scope, requirements and

features (Section 7.1.44).

The symbol used to depict a software item kind is a vertical rectangle with an inscribed circle in the middle.

This—symbotdepicts a DVBor €B-inside-its caseandtencesoftware—timecotouris Ted(RGB243,0; 0=
fill colour is light pink (RGB 255, 213, 213). The name of the software item kind is shown inside the symb
centred, where the “<Name>" placeholder appears in the following figure.

C.2.3.5 HardwareltemKind

A hardware item is a piece of hardware of interest to the endeavour(Section 7.1.14). Hardware items g
partitioned into hardware item kinds by the HardwareltemKind class according to their mechanical a
electronic characteristics, requirements and features (Section 7.1(15):

The symbol used to depict a hardware item kind is a vertical rectangle with a small rectangle nested in
upper half. This symbol depicts an integrated computer.plus display assembly and hence hardware. Li
colour is red (RGB 213, 0, 0) and fill colour is light pink)(RGB 255, 213, 213). The name of the hardware ite
kind is shown inside the inner rectangle, centred actess its top, where the “<Name>" placeholder appears
the following figure.

<Name>

C.2.3.6 CompositeWorkProductKind

A composite work product is a work product composed of other work products (Section 7.1.5). Compos
work productsare’ partitioned into composite work product kinds by the CompositeWorkProductKind cla
according to-their composition, i.e. the kinds of work products that are part of them (Section 7.1.6).

The symbol used to depict a composite work product kind is a pair of vertical rectangles “stacked” along the
axis,.simulating perspective. This symbol tries to convey the idea of composition, i.e. a work product made
multiple components. Line colour is red (RGB 213, 0, 0) and fill colour is light pink (RGB 255, 213, 213). T
name of the composite work product kind is shown inside the symbol, centred, where the “<Name
placeholder appears in the following figure.

d
DI,

re
hd

<Name>

© ISO/IEC 2010 — All rights reserved 1

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.2.4 Producers

A producer is an agent that has the responsibility for executing work units (Section 7.1.37). Producers are
partitioned into producer kinds by the ProducerKind class according to their area of expertise (Section 7.1.38).

Three subtypes of ProducerKind are covered by this notation: TeamKind, RoleKind and ToolKind. Also, the
endeavour-domain class Person is covered. All of these classes are represented by symbols resembling half

ar enpse as wide as 1all. UOoIouUrs TOr all tnese SymDbOoIS DeIoNg 10 the Orange-yeliow range. The name or (ne
prpducer kind is shown inside the symbol, centred.

Cj2.41 ProducerKind
This is an abstract class, depicted by an abstract symbol. The symbol used to depict a work produetkind is
half an ellipse standing on its flat side. This symbol depicts a schematic human torso. Line colour'is orange

(RGB 255, 153, 0) and fill colour is light yellow (RGB 255, 255, 204). The name of the producerkind is shown
ingide the symbol, centred, where the “<Name>" placeholder appears in the following figure.

<Name>

Cl2.4.2 TeamKind

Alteam is an organized set of producers that collectively focus on~Common work units (Section 7.1.54). Teams
arg partitioned into team kinds by the TeamKind class according to their responsibilities (Section 7.1.55).

The symbol used to depict a team kind is a pair of half ellipses standing on their flat side and “stacked” along
the z-axis, simulating perspective. This symbol depicts) multiple human torsos, and hence the team. Line

cqlour is orange (RGB 255, 153, 0) and fill colour is light yellow (RGB 255, 255, 204). The name of the team
kind is shown inside the symbol, centred, where the:*<Name>" placeholder appears in the following figure.

<Name>

Cj2.4.3 RoleKind

Afrole is a collection~of responsibilities that a producer can take (Section 7.1.41). Roles are partitioned into
role kinds by the.RoleKind class according to the involved responsibilities (Section 7.1.42).

The symbolused to depict a role kind is half an ellipse standing on its round tip. This symbol depicts a face
mpsk, and-therefore a role that a producer may play. Line colour is orange (RGB 255, 153, 0) and fill colour is
light yellow (RGB 255, 255, 204). The name of the role kind is shown inside the symbol, centred, where the
“<Name>" placeholder appears in the following figure.

<Name>

12 © ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.24.4 ToolKind

A tool is an instrument that helps another producer to execute its responsibilities in an automated way
(Section 7.1.61). Tools are partitioned into tool kinds by the ToolKind class according to their features (Section

7.1.62).

The symbol used to depict a tool kind is a vertical half ellipse with its round tip pointing leftwards and a squa
indentation in the centre of its flat side This symbol depicts the head of an open-end wrench or spanner

prototypical tool. Line colour is orange (RGB 255, 153, 0) and fill colour is light yellow (RGB 255, 255, 204
The name of the tool kind is shown inside the symbol, centred, where the “<Name>" placeholder appears
the following figure.

<Name>

C.2.4.5 Person
A person is an individual human being involved in a development effort (Section 7.1.30).

The symbol used to depict a person is a vertical half ellipse standing on its flat side and a small cirg
superimposed on the ellipse tip. This symbol depicts a torso andchéead of a real person. Line colour is oran
(RGB 255, 153, 0) and fill colour is light yellow (RGB 255, 255; 204). The name of the person is shown insi
the symbol, centred, where the “<Name>" placeholder appears)in the following figure.

Since the Person class belongs to the endeavour domaifyline style is dashed.

<Name>

C.2.5 Constraints
A constraint is a condition.that holds or must hold at certain point in time (Section 7.1.8).

The two subtypes of Constraint are covered by this notation: PreCondition and PostCondition. Both of the
are represented by long horizontal rectangular shapes. Colours for all these symbols belong to the grey rang
Constraint symbols are linked to the ActionKind symbols they relate to via generic links (Section C.2.8.3).

No abstractisymbol is provided for Constraint because no abstract usage of constraints is expected.

C.25:1 PreCondition

A-precondition is a constraint that must be satisfied before an action of the associated kind can be perform

1).

re
a

in

je
e

bd

(Section 7.1.34).

The symbol used to depict a precondition is a long horizontal rectangle with an arrow going out of a small
square on the right-hand side. This symbol depicts a condition that must be met before control can flow into
the associated action. Line colour is dark grey (RGB 51, 51, 51) and fill colour is light grey (RGB 221, 221,
221). The precondition expression appears inside the long rectangle, flush left, where the “<Expression>”

placeholder appears in the following figure.

| <Expression> | —|—)

© ISO/IEC 2010 — All rights reserved 13

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.2.5.2 PostCondition

A postcondition is a constraint that is guaranteed to be satisfied after an action of the associated kind is
performed (Section 7.1.33).

The symbol used to depict a postcondition is a long horizontal rectangle with an arrow going into a small
square on the left-hand side. This symbol depicts a condition that is met once control flows out of the
associated action. Line colour is dark grey (RGB 51, 51, 51) and fill colour is light grey (RGB 221, 221, 221).

The postcondition expression appears inside the long rectangle, flush left, where the “<Expression>”
placeholder appears in the following figure.

= | <Expression> |

C|2.6 Relationship Concepts

Some concepts in the metamodel embody relationships between pairs of entities rather than.demoting stand-
alpne entities themselves. These “relationship” concepts are represented in the notationcby’arcs between
other symbols rather than by node-style symbols.

CJ2.6.1 ActionKind

An action is a usage event performed by a task upon a work product (Section Z.1.1). Actions are partitioned
info action kinds by the ActionKind class according to their cause (the specifie’task kind), their subject (the
specific work product kind) and their type of usage (such as creation, modification etc.) (Section 7.1.2).

The symbol used to depict an action kind is an arc that goes from thé& symbol for the associated task kind to
the symbol for the associated work product kind. The arc is a plain line with a small circle on the end of the
work product kind. Line colour is black (RGB 0, 0, 0).

<Role>

work
tagk 1
ehd l d [@ Z;oddUCt

The type of usage is specified inside the small cirele using an abbreviation (“t” in the figure), corresponding to
the enumerators of enumerated type ActionType“(Section 7.2.1). See Section C.4.1 for possible values. The
role of the work product kind for this particular,action kind, if any, can be shown close to the work product end.
The optionality of the action kind can be shown using a deontic marker (“d” in the figure; see Section 0).

C|2.7 Support Concepts

he following support concepts«from the metamodel are also covered by the notation.

conglomerate is a collection of related methodology elements that can be reused in different methodological
gntexts (Section 7¢157). Conglomerates are not partitioned since they belong to the method rather than to the
EIdeavour domain.

T
Cj2.7.1 Conglomerate
A
c

The symbolused to depict a conglomerate is a large rectangle, inside which other symbols can be nested,
plls a smallér rectangle stacked on top of the top-left corner of the former. This symbol depicts a folder
cqntaining other elements. Line colour is black (RGB 0, 0, 0) and no fill colour is used. The name of the
cgnglomerate is shown inside the small rectangle, flush left, where the “<Name>" placeholder appears in the

fC loviana fiien
TOWIgTgore:

<Name>

14 © ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.2.7.2 Guideline

A guideline is an indication of how a set of methodology elements can be used during enactment (Section
7.1.13). Guidelines are not partitioned since they belong to the method rather than to the endeavour domain.

The symbol used to depict a guideline is a rectangular shape with a pointed side to the left and a small circle
next to this point, inside the shape. This symbol depicts a cardboard tag with a hole. Line colour is black (RGB

G, G, G) dlld LILL®J fl“ bUiUUI ib u::t:u'. Ti 1< dcbuipiiun Uf ﬁ Ic guiu'ciillc ib b;IUWII illbiulb ﬁ 1< IUbtdllgiC, ﬂubil itﬁ.,
where the “<Description>" placeholder appears in the following figure.

<Description>

O

C.2.8 Links and Relationships

The notation incorporates some symbols for the various types of links and relationships that can appear in the
diagrams.

C.2.8.1 Specialization Relationship

Conventional object-oriented specialization relationships afe contemplated by this International Standard ag a
means to extend the metamodel and also as a mechanism to refine method-domain classes. Specialization|is
a relationship that occurs between types (rather than.instances) and therefore it can only be applied to classes
and class facets of clabjects.

The symbol used to depict a specialization relationship is an arc that goes from the symbol for the subtype|to
the symbol for the supertype. The arc is a\plain line with a white triangular arrow head on the end of the
supertype. Line colour is black (RGB 0, 0¢0).

subtype D supertype
end end
This symbol’'s appearance is‘identical to the specialization symbol used by ISO/IEC 19501.

C.2.8.2 Whole/Part Link

The metamodel ‘contains a number of whole/part relationships, some of which, when instantiated, must uge
this symbol.\f-must be emphasized that this symbol represents links between instances (rather than
relationships-between types), and therefore can only be applied to objects and object facets of clabjects.

The symbol used to depict a whole/part link is an arc that goes from the symbol for the whole to the symbol {for
the part. The arc is a plain line with a white diamond-shaped arrow head on the end of the whole. Line colqur
is-black (RGB 0, 0, 0).

part _~___Whole

end ~~ end

This symbol is identical to the “white-diamond shared aggregation” symbol used by ISO/IEC 19501.

© ISO/IEC 2010 — All rights reserved 15

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.2.8.3 Generic Link

Any link between objects or object facets of clabjects that does not correspond to a whole/part relationship
(but to a plain association) must be depicted using this symbol.

The symbol used to depict a generic link is an arc that goes between the symbols for the elements to be
linked. The arc is a plain line with no adornments. Line colour is black (RGB 0, 0, 0).

This symbol is identical to the basic association symbol used by ISO/IEC 19501.

C{2.8.4 Dependency Links

Aldependency link shows that an entity abstractly depends on another entity. This relationship. is‘the inverse
of{support; i.e. saying that entity A depends on entity B is equivalent to say that B supports A:

Dépendency links are used when working at a high abstraction level and the specific.type of dependency (or
sypport) cannot be stated. For example, a dependency link can be used to express that a particular work
prpduct kind depends on a particular process kind without specifying which task ikind in the process kind
agtually alters the work product kind, or how it does it.

The symbol used to depict a dependency link is a directed arc that goes from/the depender (or supported) into
the dependee (or supporter). The arc is a plain line with a simple arrow head on the end of the depender. Line
cqlour is black (RGB 0, 0, 0).

dgpendee ¢ depender
end end

CJ2.8.5 Deontic Marker

Deontic values are used by the metamodel to indicate optionality or degrees of recommendation in various
sifjuations. Deontic relationships are often depicted by this notation as arcs. A deontic marker can be
ermbedded in an arc (such as a generic link ora support link) when necessary.

The symbol used to depict a deontic:value in an arc is a small square embedded in the arc containing an
aljbreviation of the appropriate deontic value (“d” in the figure), corresponding to the enumerators of
enjumerated type DeonticValue (Section 7.2.2). See Section 0 for possible values. Line colour is black (RGB 0,
0,{0).

Lol

If the deontic valuei®’Mandatory, the deontic marker can be omitted. In other words, Mandatory is the default
dgontic value assumed when no value is explicitly expressed.

Cj2.8.6 _Topological Containment

e-metamodel contalns a number of whole/part relationships, some of which, when |nstant|ated must be

contamment of symbols represents links between mstances (rather than reIat|onsh|ps between types) Itcan
therefore only be applied to objects and object facets of clabjects.

Topological containment is made possible by showing the symbols for the part elements within the visual
boundaries of the symbol for the whole element.

16 © ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

C.2.9 Diagramming Support

The following symbols are designed to support in laying out diagrams and organising diagram element on the

page. They do not possess metamodel-related semantics.

C.2.9.1 Node Grouping

Sometimes, multiple nodes in a diagram show similar arcs connecting them to other nodes, resulting |i

confusion and low readability due to the overabundance of arcs. In these cases, the nodes in question_c¢an

grouped into a node group and the arcs drawn only once, which reduces confusion and enhances readability.

The symbol used to depict a node group is a dashed rectangle with no filling. Line colour is black (RGB 0,
0). The rectangle must surround the nodes that are meant to be grouped; any arcs connected<to the rectang
are interpreted as arcs connected to each of the contained nodes.

grouped ;
1 nodes ‘

C.2.9.2 Callouts

Sometimes, arcs in a diagram can get very convoluted and hard to follow. In these cases, an arc can
broken into short segments attached to the respective nedes, and a callout symbol attached to each of the
segments to “virtually” link them together. A callout label (usually a single letter or number) is placed inside t
callout symbol so that both halves of the arc are easily matched by the reader when scanning a page.

The symbol to depict a callout is a small isos¢eles triangle pointing into the interrupted arc. The callout lak

(“A” in the figure) is shown inside the triangle. Line colour is black (RGB 0, 0, 0) and fill colour is bright yellg
(RGB 255, 255, 79).

node i
end
> node
end

C.3 Diagram .Types

C.3.1 Introduction

Several types of diagrams can be created using this notation. In order of decreasing level of abstraction, th
are:

el
w

W
<

— Lifecycle diagrams, which represent the overall structure of a method (or part of it).

— Enactment diagrams, which represent a specific endeavour (or part of it) and its relationship to the

corresponding method.

— Dependency diagrams, which represent the abstract support/dependency relationships among the major

components (i.e. producer kinds, work unit kinds and work product kinds) of a methodology.

— Process diagrams, which describe the details of the process kinds used in a method.

— Action diagrams, which show the detailed usage interactions between task kinds and work product kinds.

© ISO/IEC 2010 — All rights reserved 17

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

As in other engineering disciplines, a collection of different diagrams can be used to show different views of
the same underlying method or endeavour. Therefore, no single diagram should be expected to depict every
single detail of the underlying method or endeavour.

The following sections describe each of the above listed diagram types in detail.

C.3.2 Lifecycle Diagrams

Lifecycle diagrams represent the overall structure of a method or a portion of a method. This structure has two
agpects:

—t A temporal aspect, corresponding to the configuration of stage kinds to compose a complete methed.
—t A content aspect, corresponding to the process kinds that may be executed within each stage kind.
The temporal aspect can be informally described as the “when”, whereas the content aspectcan be described

ag the “what’. A lifecycle diagram always shows the temporal aspect of a method; the content aspect can be
optionally shown as well.

CJ|3.2.1 Elements

The elements that appear inside a lifecycle diagram are stage kinds—and process kinds. Topological
cgntainment is extensively used to depict temporal framing, such as_a-process being performed within a
phase or a phase occurring within a time cycle.

Generic links are used to join stage kinds inside a common container. These links depict the OccursAfter and
Oc¢cursBefore relationships between stage-related classes in thie ' metamodel.

3.2.2 Examples

hich contains a sequence of phase kinds: “Determination of Needs”, “Definition”, “Construction”, etc. Some
lestone kinds mark transitions between phasg kinds, such as “M0”. Some phase kinds are iterative, shown
by nested build kinds such as “Construction. Build”. Build kinds, in turn, may contain nested stages as well.

Cc
Consider the example shown in Figure C.1. A time ‘eycle kind named “OPEN/Metis Project” is introduced,
wi
m

OPEN/Metis Project

Construction

Determination of Needs Definition
0 Construction Build E

Change

Retirement
Change Build ﬂ

/

Figure C.1 — A lifecycle diagram showing the temporal structure of a complete method.

Figure C.1 depicts the temporal structure of a method. As we have said, it is possible to show the content
structure as well. This is accomplished by including process kind symbols inside the appropriate stage kind
symbols. Figure C.2 shows an example.

18 © ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

OPEN/Metis Project

Construction

Definition

[@ User Documentation Authoring

[@ Requirements Specification]

Determination of Needs Construction Build
[@ High-Level Modelling]
[Needs Formalisation] [Low-Level Modelling
[Technological Design]
[@ Needs Documentation] w [@ Coding] [@ Generanon
l @ Deployment Planning '
Packaging

<
'@ Construction Planning l/ \[/
@ Synchronisation]

Change

Change Build

[@ Change Management
[@ High-Level Modelling

)
)
%n% (O rowieveimoseing) @ szmenme)
)
)
)

Retirement

[@ Coding] [@ Generation
[@ Packaging
[@ Synchronisation

Figure C.2 — A lifecycle diagram showing the content structure as well as
the temporal structure of a method.

Notice how stage kinds can contain both~nésted stage kinds (such as “Construction Build” insifle
“Construction”) and process kinds (“User Documentation Authoring”).

C.3.3 Enactment Diagrams

Enactment diagrams are a variation of lifecycle diagrams that include a Gantt chart linked to the symbols|of
the lifecycle diagram. Thus, enactment diagrams show a specific enactment of a particular method or methpd
subset. For each stage kind“and process kind in the lifecycle diagram, zero or more bars in the Gantt chart
may appear, representingrendeavour-domain occurrences of the method-domain specification.

C.3.3.1 Elements

The elements\that appear inside an enactment diagram are the same that appear inside a lifecycle diagram,
plus a Gant{.ehart. This notation does not specify any particular representation for Gantt charts.

C.33.2 Examples

Consider the “Construction” phase kind in Figure C.2, which contains a process kind plus a collection |of
process kinds and a milestone kind within a build kind. Figure C.3 shows a sample enactment diagram for tll\is

L phase kind-

© ISO/IEC 2010 — Al rights reserved 19

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

ISO/IEC 24744:2007/Amd.1:2010(E)

[Week 1 | Week2 [Week3 | Week4 | Week5 | Week6 [Week7 | Week8 | Week9 [Week10 [Week11 | Week 12 |

Construction Construction

(User Documentation Authoring) [UDA j

Construction Build Construction Build 1 Construction Build 2

(@ Low-Level Modelling) LLM.A LLM.2

(D Coding) Cod 11 Cod2

(@ Packaging) O
(@ Synchronisation) Syn.1

& © S

Figure C.3 — An enactment diagram for the “Construction” phase kind-of Figure C.2.

O
o

(@ Generation) O

e left-hand side of the enactment diagram represents the method-domain/specification and is virtually
identical to a lifecycle diagram, the only difference being that, in this caSe) 'symbols are laid out in a strict
vdrtical fashion in order to leave the horizontal axis to represent time.”A timeline can be optionally shown
ruhning along the horizontal axis if necessary. The right-hand side of the enactment diagram contains a Gantt
chart in which bars corresponding to processes in the method are vertically aligned with the corresponding
syimbol in the lifecycle diagram to its left. For example, the baf labelled “UDA” in Figure C.3 represents the
enactment of the “User Document Authoring” process kind in the method. Similarly, bars labelled “LLM.1” and
“LLM.2” in the Gantt chart represent enactments of the ‘Low-Level Modelling” process kind in the method.
Notice that bars labelled “Cod.1.1” and “Cod.1.2” represent time-overlapping enactments of the “Coding”
prpcess kind, and therefore a gap must be left in the left<hand side of the diagram for them to fit. Enactments
offmilestone kinds can be shown in a similar fashion. Also, the time span covered by stage kinds with duration
(shich as phase kinds or build kinds) are shown.insthe Gantt chart by surrounding the appropriate process bars
with a boundary that reproduces the appearance of the associated method element. From a formal
parspective, it can be said that the symbols.in the Gantt chart represent instances of the elements depicted in
lifecycle diagram. The number of instances for each method element will depend on the semantics of the
element; for example, Figure C.3 shaows.two instances of the “Construction Build” build kind.

It lis worth noting that the bars,tsymbols and boundaries in the Gantt chart (i.e. the right-hand side of the
enactment diagram) correspond to endeavour-domain entities. For example, the bar labelled “UDA”
represents an instance of ¢the“Process class in the metamodel, and the boundaries labelled “Construction
Bdiild 17 and “Construction, Build 2” represent instances of the Build class in the metamodel. However, Gantt-
cHart notation rather thafn-éndeavour-domain notation (Section C.1.2) is used to maintain the look and feel of a
Gantt chart.

It Js also important to stress that enactment diagrams are meant to provide an intuitive way to depict a high-
leyel view of\Subsets of a methodology as being enacted over time, and are not supposed to serve as an
enjactmeni=nvanagement tool capable of showing implementation details.

C{3:4 Dependency Diagrams

Dependency diagrams represent the abstract dependency/support relationships between the major elements
of a methodology, involving producer kinds, work unit kinds and work product kinds.

Dependency diagrams are useful to depict abstract relationships between method elements, without the need
to determine how these dependencies are to be implemented. This is especially useful during method
development. Dependency diagrams can be fleshed out into process diagrams and action diagrams when
more detail is needed.

20 © ISO/IEC 2010 — All rights reserved

https://standardsiso.com/api/?name=2378e7b23dd71d21991e43354871c903

