
Information Technology —
Programming languages, their
environments, and system software
interfaces — Floating-point
extensions for C —
Part 4:
Supplementary functions
Technologies de l’information — Langages de programmation, leurs
environnements et interfaces du logiciel système — Extensions à
virgule flottante pour C —
Partie 4: Fonctions supplémentaires

ISO/IEC TS
18661-4

First edition
2015-10-01

Reference number
ISO/IEC TS 18661-4:2015(E)

TECHNICAL
SPECIFICATION

© ISO/IEC 2015

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ii © ISO/IEC 2015 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2015, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC TS 18661-4:2015(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 iii	

Foreword	
 ...	
 iv	

Introduction	
 ...	
 vi	

1	
 Scope	
 ...	
 1	

2	
 Conformance	
 ..	
 1	

3	
 Normative	
 references	
 ...	
 1	

4	
 Terms	
 and	
 definitions	
 ..	
 2	

5	
 C	
 standard	
 conformance	
 ..	
 2	

5.1	
 Freestanding	
 implementations	
 ..	
 2	

5.2	
 Predefined	
 macros	
 ...	
 2	

5.3	
 Standard	
 headers	
 ..	
 2	

6	
 Operation	
 binding	
 ..	
 5	

7	
 Mathematical	
 functions	
 in	
 <math.h>	
 ...	
 6	

8	
 Reduction	
 functions	
 in	
 <math.h>	
 ..	
 19	

9	
 Future	
 directions	
 for	
 <complex.h>	
 ...	
 26	

10	
 Type-­‐generic	
 macros	
 <tgmath.h>	
 ...	
 27	

11	
 Constant	
 rounding	
 modes	
 <fenv.h>	
 ...	
 27	

Bibliography	
 ..	
 31	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

iv	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

Foreword	

ISO	
 (the	
 International	
 Organization	
 for	
 Standardization)	
 and	
 IEC	
 (the	
 International	
 Electrotechnical	

Commission)	
 form	
 the	
 specialized	
 system	
 for	
 worldwide	
 standardization.	
 National	
 bodies	
 that	
 are	

members	
 of	
 ISO	
 or	
 IEC	
 participate	
 in	
 the	
 development	
 of	
 International	
 Standards	
 through	
 technical	

committees	
 established	
 by	
 the	
 respective	
 organization	
 to	
 deal	
 with	
 particular	
 fields	
 of	
 technical	
 activity.	

ISO	
 and	
 IEC	
 technical	
 committees	
 collaborate	
 in	
 fields	
 of	
 mutual	
 interest.	
 Other	
 international	

organizations,	
 governmental	
 and	
 non-­‐governmental,	
 in	
 liaison	
 with	
 ISO	
 and	
 IEC,	
 also	
 take	
 part	
 in	
 the	

work.	
 In	
 the	
 field	
 of	
 information	
 technology,	
 ISO	
 and	
 IEC	
 have	
 established	
 a	
 joint	
 technical	
 committee,	

ISO/IEC	
 JTC	
 1.	

The	
 procedures	
 used	
 to	
 develop	
 this	
 document	
 and	
 those	
 intended	
 for	
 its	
 further	
 maintenance	
 are	

described	
 in	
 the	
 ISO/IEC	
 Directives,	
 Part	
 1.	
 In	
 particular	
 the	
 different	
 approval	
 criteria	
 needed	
 for	
 the	

different	
 types	
 of	
 document	
 should	
 be	
 noted.	
 This	
 document	
 was	
 drafted	
 in	
 accordance	
 with	
 the	

editorial	
 rules	
 of	
 the	
 ISO/IEC	
 Directives,	
 Part	
 2	
 (see	
 www.iso.org/directives).	

Attention	
 is	
 drawn	
 to	
 the	
 possibility	
 that	
 some	
 of	
 the	
 elements	
 of	
 this	
 document	
 may	
 be	
 the	
 subject	
 of	

patent	
 rights.	
 ISO	
 and	
 IEC	
 shall	
 not	
 be	
 held	
 responsible	
 for	
 identifying	
 any	
 or	
 all	
 such	
 patent	
 rights.	

Details	
 of	
 any	
 patent	
 rights	
 identified	
 during	
 the	
 development	
 of	
 the	
 document	
 will	
 be	
 in	
 the	

Introduction	
 and/or	
 on	
 the	
 ISO	
 list	
 of	
 patent	
 declarations	
 received	
 (see	
 www.iso.org/patents).	

Any	
 trade	
 name	
 used	
 in	
 this	
 document	
 is	
 information	
 given	
 for	
 the	
 convenience	
 of	
 users	
 and	
 does	
 not	

constitute	
 an	
 endorsement.	

For	
 an	
 explanation	
 on	
 the	
 meaning	
 of	
 ISO	
 specific	
 terms	
 and	
 expressions	
 related	
 to	
 conformity	

assessment,	
 as	
 well	
 as	
 information	
 about	
 ISO's	
 adherence	
 to	
 the	
 WTO	
 principles	
 in	
 the	
 Technical	

Barriers	
 to	
 Trade	
 (TBT)	
 see	
 the	
 following	
 URL:	
 Foreword	
 -­‐	
 Supplementary	
 information	

The	
 committee	
 responsible	
 for	
 this	
 document	
 is	
 ISO/IEC	
 JTC	
 1,	
 Information	
 technology,	
 Subcommittee	

SC	
 22,	
 Programming	
 languages,	
 their	
 environments,	
 and	
 system	
 software	
 interfaces.	

ISO/IEC	
 TS	
 18661	
 consists	
 of	
 the	
 following	
 parts,	
 under	
 the	
 general	
 title	
 Information	
 technology	
 —	

Programming	
 languages,	
 their	
 environments,	
 and	
 system	
 software	
 interfaces	
 —	
 Floating-­‐point	
 extensions	

for	
 C:	

⎯ Part	
 1:	
 Binary	
 floating-­‐point	
 arithmetic	

⎯ Part	
 2:	
 Decimal	
 floating-­‐point	
 arithmetic	

⎯ Part	
 3:	
 Interchange	
 and	
 extended	
 types	

⎯ Part	
 4:	
 Supplementary	
 functions	

The	
 following	
 part	
 is	
 under	
 preparation:	

⎯ Part	
 5:	
 Supplementary	
 attributes	

ISO/IEC	
 TS	
 18661-­‐1	
 updates	
 ISO/IEC	
 9899:2011,	
 Information	
 technology	
 —	
 Programming	
 Language	
 C,	

annex	
 F	
 in	
 particular,	
 to	
 support	
 all	
 required	
 features	
 of	
 ISO/IEC/IEEE	
 60559:2011,	
 Information	

technology	
 —	
 Microprocessor	
 Systems	
 —	
 Floating-­‐point	
 arithmetic.	

ISO/IEC	
 TS	
 18661-­‐2	
 supersedes	
 ISO/IEC	
 TR	
 24732:2009,	
 Information	
 technology	
 —	
 Programming	

languages,	
 their	
 environments	
 and	
 system	
 software	
 interfaces	
 —	
 Extension	
 for	
 the	
 programming	
 language	

C	
 to	
 support	
 decimal	
 floating-­‐point	
 arithmetic.	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 v	

ISO/IEC	
 TS	
 18661O-3,	
 ISO/IEC	
 TS	
 18661O-4,	
 and	
 ISO/IEC	
 TS	
 18661O-5	
 specify	
 extensions	
 to	

ISO/IEC	
 9899:2011	
 for	
 features	
 recommended	
 in	
 ISO/IEC/IEEE	
 60559:2011.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

vi	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

Introduction	

Background	

IEC	
 60559	
 floating-­‐point	
 standard	

The	
 IEEE	
 754-­‐1985	
 standard	
 for	
 binary	
 floating-­‐point	
 arithmetic	
 was	
 motivated	
 by	
 an	
 expanding	

diversity	
 in	
 floating-­‐point	
 data	
 representation	
 and	
 arithmetic,	
 which	
 made	
 writing	
 robust	
 programs,	

debugging,	
 and	
 moving	
 programs	
 between	
 systems	
 exceedingly	
 difficult.	
 Now	
 the	
 great	
 majority	
 of	

systems	
 provide	
 data	
 formats	
 and	
 arithmetic	
 operations	
 according	
 to	
 this	
 standard.	
 The	
 IEC	

60559:1989	
 international	
 standard	
 was	
 equivalent	
 to	
 the	
 IEEE	
 754-­‐1985	
 standard.	
 Its	
 stated	
 goals	

were	
 the	
 following:	

1 Facilitate	
 movement	
 of	
 existing	
 programs	
 from	
 diverse	
 computers	
 to	
 those	
 that	
 adhere	
 to	

this	
 standard.	

2 Enhance	
 the	
 capabilities	
 and	
 safety	
 available	
 to	
 programmers	
 who,	
 though	
 not	
 expert	
 in	

numerical	
 methods,	
 may	
 well	
 be	
 attempting	
 to	
 produce	
 numerically	
 sophisticated	

programs.	
 However,	
 we	
 recognize	
 that	
 utility	
 and	
 safety	
 are	
 sometimes	
 antagonists.	
 	

3 Encourage	
 experts	
 to	
 develop	
 and	
 distribute	
 robust	
 and	
 efficient	
 numerical	
 programs	
 that	

are	
 portable,	
 by	
 way	
 of	
 minor	
 editing	
 and	
 recompilation,	
 onto	
 any	
 computer	
 that	
 conforms	

to	
 this	
 standard	
 and	
 possesses	
 adequate	
 capacity.	
 When	
 restricted	
 to	
 a	
 declared	
 subset	
 of	

the	
 standard,	
 these	
 programs	
 should	
 produce	
 identical	
 results	
 on	
 all	
 conforming	
 systems.	
 	

4 Provide	
 direct	
 support	
 for	
 	

a. Execution-­‐time	
 diagnosis	
 of	
 anomalies	
 	

b. Smoother	
 handling	
 of	
 exceptions	
 	

c. Interval	
 arithmetic	
 at	
 a	
 reasonable	
 cost	
 	

5 Provide	
 for	
 development	
 of	
 	

a. Standard	
 elementary	
 functions	
 such	
 as	
 exp	
 and	
 cos	
 	

b. Very	
 high	
 precision	
 (multiword)	
 arithmetic	
 	

c. Coupling	
 of	
 numerical	
 and	
 symbolic	
 algebraic	
 computation	
 	

6 Enable	
 rather	
 than	
 preclude	
 further	
 refinements	
 and	
 extensions.	
 	

To	
 these	
 ends,	
 the	
 standard	
 specified	
 a	
 floating-­‐point	
 model	
 comprising	
 the	
 following:	

— formats	
 –	
 for	
 binary	
 floating-­‐point	
 data,	
 including	
 representations	
 for	
 Not-­‐a-­‐Number	
 (NaN)	
 and	

signed	
 infinities	
 and	
 zeros	

—	
 operations	
 –	
 basic	
 arithmetic	
 operations	
 (addition,	
 multiplication,	
 etc.)	
 on	
 the	
 format	
 data	
 to	

compose	
 a	
 well-­‐defined,	
 closed	
 arithmetic	
 system;	
 also	
 specified	
 conversions	
 between	
 floating-­‐
point	
 formats	
 and	
 decimal	
 character	
 sequences,	
 and	
 a	
 few	
 auxiliary	
 operations	

—	
 context	
 –	
 status	
 flags	
 for	
 detecting	
 exceptional	
 conditions	
 (invalid	
 operation,	
 division	
 by	
 zero,	

overflow,	
 underflow,	
 and	
 inexact)	
 and	
 controls	
 for	
 choosing	
 different	
 rounding	
 methods	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 vii	

	

The	
 ISO/IEC/IEEE	
 60559:2011	
 international	
 standard	
 is	
 equivalent	
 to	
 the	
 IEEE	
 754-­‐2008	
 standard	
 for	

floating-­‐point	
 arithmetic,	
 which	
 is	
 a	
 major	
 revision	
 to	
 IEEE	
 754-­‐1985.	
 	

The	
 revised	
 standard	
 specifies	
 more	
 formats,	
 including	
 decimal	
 as	
 well	
 as	
 binary.	
 It	
 adds	
 a	
 128-­‐bit	

binary	
 format	
 to	
 its	
 basic	
 formats.	
 It	
 defines	
 extended	
 formats	
 for	
 all	
 of	
 its	
 basic	
 formats.	
 It	
 specifies	

data	
 interchange	
 formats	
 (which	
 may	
 or	
 may	
 not	
 be	
 arithmetic),	
 including	
 a	
 16-­‐bit	
 binary	
 format	
 and	
 an	

unbounded	
 tower	
 of	
 wider	
 formats.	
 To	
 conform	
 to	
 the	
 floating-­‐point	
 standard,	
 an	
 implementation	
 must	

provide	
 at	
 least	
 one	
 of	
 the	
 basic	
 formats,	
 along	
 with	
 the	
 required	
 operations.	

The	
 revised	
 standard	
 specifies	
 more	
 operations.	
 New	
 requirements	
 include	
 –	
 among	
 others	
 –	
 arithmetic	

operations	
 that	
 round	
 their	
 result	
 to	
 a	
 narrower	
 format	
 than	
 the	
 operands	
 (with	
 just	
 one	
 rounding),	

more	
 conversions	
 with	
 integer	
 types,	
 more	
 classifications	
 and	
 comparisons,	
 and	
 more	
 operations	
 for	

managing	
 flags	
 and	
 modes.	
 New	
 recommendations	
 include	
 an	
 extensive	
 set	
 of	
 mathematical	
 functions	

and	
 seven	
 reduction	
 functions	
 for	
 sums	
 and	
 scaled	
 products.	

The	
 revised	
 standard	
 places	
 more	
 emphasis	
 on	
 reproducible	
 results,	
 which	
 is	
 reflected	
 in	
 its	

standardization	
 of	
 more	
 operations.	
 For	
 the	
 most	
 part,	
 behaviors	
 are	
 completely	
 specified.	
 The	
 standard	

requires	
 conversions	
 between	
 floating-­‐point	
 formats	
 and	
 decimal	
 character	
 sequences	
 to	
 be	
 correctly	

rounded	
 for	
 at	
 least	
 three	
 more	
 decimal	
 digits	
 than	
 is	
 required	
 to	
 distinguish	
 all	
 numbers	
 in	
 the	
 widest	

supported	
 binary	
 format;	
 it	
 fully	
 specifies	
 conversions	
 involving	
 any	
 number	
 of	
 decimal	
 digits.	
 It	

recommends	
 that	
 transcendental	
 functions	
 be	
 correctly	
 rounded.	

The	
 revised	
 standard	
 requires	
 a	
 way	
 to	
 specify	
 a	
 constant	
 rounding	
 direction	
 for	
 a	
 static	
 portion	
 of	

code,	
 with	
 details	
 left	
 to	
 programming	
 language	
 standards.	
 This	
 feature	
 potentially	
 allows	
 rounding	

control	
 without	
 incurring	
 the	
 overhead	
 of	
 runtime	
 access	
 to	
 a	
 global	
 (or	
 thread)	
 rounding	
 mode.	

Other	
 features	
 recommended	
 by	
 the	
 revised	
 standard	
 include	
 alternate	
 methods	
 for	
 exception	
 handling,	

controls	
 for	
 expression	
 evaluation	
 (allowing	
 or	
 disallowing	
 various	
 optimizations),	
 support	
 for	
 fully	

reproducible	
 results,	
 and	
 support	
 for	
 program	
 debugging.	

The	
 revised	
 standard,	
 like	
 its	
 predecessor,	
 defines	
 its	
 model	
 of	
 floating-­‐point	
 arithmetic	
 in	
 the	
 abstract.	

It	
 neither	
 defines	
 the	
 way	
 in	
 which	
 operations	
 are	
 expressed	
 (which	
 might	
 vary	
 depending	
 on	
 the	

computer	
 language	
 or	
 other	
 interface	
 being	
 used),	
 nor	
 does	
 it	
 define	
 the	
 concrete	
 representation	

(specific	
 layout	
 in	
 storage,	
 or	
 in	
 a	
 processor's	
 register,	
 for	
 example)	
 of	
 data	
 or	
 context,	
 except	
 that	
 it	

does	
 define	
 specific	
 encodings	
 that	
 are	
 to	
 be	
 used	
 for	
 the	
 exchange	
 of	
 floating-­‐point	
 data	
 between	

different	
 implementations	
 that	
 conform	
 to	
 the	
 specification.	

IEC	
 60559	
 does	
 not	
 include	
 bindings	
 of	
 its	
 floating-­‐point	
 model	
 for	
 particular	
 programming	
 languages.	

However,	
 the	
 revised	
 standard	
 does	
 include	
 guidance	
 for	
 programming	
 language	
 standards,	
 in	

recognition	
 of	
 the	
 fact	
 that	
 features	
 of	
 the	
 floating-­‐point	
 standard,	
 even	
 if	
 well	
 supported	
 in	
 the	

hardware,	
 are	
 not	
 available	
 to	
 users	
 unless	
 the	
 programming	
 language	
 provides	
 a	
 commensurate	
 level	

of	
 support.	
 The	
 implementation’s	
 combination	
 of	
 both	
 hardware	
 and	
 software	
 determines	
 conformance	

to	
 the	
 floating-­‐point	
 standard.	

C	
 support	
 for	
 IEC	
 60559	

The	
 C	
 standard	
 specifies	
 floating-­‐point	
 arithmetic	
 using	
 an	
 abstract	
 model.	
 The	
 representation	
 of	
 a	

floating-­‐point	
 number	
 is	
 specified	
 in	
 an	
 abstract	
 form	
 where	
 the	
 constituent	
 components	
 (sign,	

exponent,	
 significand)	
 of	
 the	
 representation	
 are	
 defined	
 but	
 not	
 the	
 internals	
 of	
 these	
 components.	
 In	

particular,	
 the	
 exponent	
 range,	
 significand	
 size,	
 and	
 the	
 base	
 (or	
 radix)	
 are	
 implementation-­‐defined.	

This	
 allows	
 flexibility	
 for	
 an	
 implementation	
 to	
 take	
 advantage	
 of	
 its	
 underlying	
 hardware	
 architecture.	

Furthermore,	
 certain	
 behaviors	
 of	
 operations	
 are	
 also	
 implementation-­‐defined,	
 for	
 example	
 in	
 the	
 area	

of	
 handling	
 of	
 special	
 numbers	
 and	
 in	
 exceptions.	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

viii	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

The	
 reason	
 for	
 this	
 approach	
 is	
 historical.	
 At	
 the	
 time	
 when	
 C	
 was	
 first	
 standardized,	
 before	
 the	
 floating-­‐
point	
 standard	
 was	
 established,	
 there	
 were	
 various	
 hardware	
 implementations	
 of	
 floating-­‐point	

arithmetic	
 in	
 common	
 use.	
 Specifying	
 the	
 exact	
 details	
 of	
 a	
 representation	
 would	
 have	
 made	
 most	
 of	
 the	

existing	
 implementations	
 at	
 the	
 time	
 not	
 conforming.	

Beginning	
 with	
 ISO/IEC	
 9899:1999	
 (C99),	
 C	
 has	
 included	
 an	
 optional	
 second	
 level	
 of	
 specification	
 for	

implementations	
 supporting	
 the	
 floating-­‐point	
 standard.	
 C99,	
 in	
 conditionally	
 normative	
 annex	
 F,	

introduced	
 nearly	
 complete	
 support	
 for	
 the	
 IEC	
 60559:1989	
 standard	
 for	
 binary	
 floating-­‐point	

arithmetic.	
 Also,	
 C99’s	
 informative	
 annex	
 G	
 offered	
 a	
 specification	
 of	
 complex	
 arithmetic	
 that	
 is	

compatible	
 with	
 IEC	
 60559:1989.	

ISO/IEC	
 9899:2011	
 (C11)	
 includes	
 refinements	
 to	
 the	
 C99	
 floating-­‐point	
 specification,	
 though	
 it	
 is	
 still	

based	
 on	
 IEC	
 60559:1989.	
 C11	
 upgraded	
 annex	
 G	
 from	
 “informative”	
 to	
 “conditionally	
 normative”.	

ISO/IEC	
 TR	
 24732:2009	
 introduced	
 partial	
 C	
 support	
 for	
 the	
 decimal	
 floating-­‐point	
 arithmetic	
 in	

ISO/IEC/IEEE	
 60559:2011.	
 ISO/IEC	
 TR	
 24732,	
 for	
 which	
 technical	
 content	
 was	
 completed	
 while	
 IEEE	

754-­‐2008	
 was	
 still	
 in	
 the	
 later	
 stages	
 of	
 development,	
 specifies	
 decimal	
 types	
 based	
 on	
 ISO/IEC/IEEE	

60559:2011	
 decimal	
 formats,	
 though	
 it	
 does	
 not	
 include	
 all	
 of	
 the	
 operations	
 required	
 by	
 ISO/IEC/IEEE	

60559:2011.	

Purpose	

The	
 purpose	
 of	
 ISO/IEC	
 TS	
 18661	
 is	
 to	
 provide	
 a	
 C	
 language	
 binding	
 for	
 ISO/IEC/IEEE	
 60559:2011,	

based	
 on	
 the	
 C11	
 standard,	
 that	
 delivers	
 the	
 goals	
 of	
 ISO/IEC/IEEE	
 60559	
 to	
 users	
 and	
 is	
 feasible	
 to	

implement.	
 It	
 is	
 organized	
 into	
 five	
 parts.	

ISO/IEC	
 TS	
 18661-1	
 provides	
 changes	
 to	
 C11	
 that	
 cover	
 all	
 the	
 requirements,	
 plus	
 some	
 basic	

recommendations,	
 of	
 ISO/IEC/IEEE	
 60559:2011	
 for	
 binary	
 floating-­‐point	
 arithmetic.	
 C	

implementations	
 intending	
 to	
 support	
 ISO/IEC/IEEE	
 60559:2011	
 are	
 expected	
 to	
 conform	
 to	

conditionally	
 normative	
 annex	
 F	
 as	
 enhanced	
 by	
 the	
 changes	
 in	
 ISO/IEC	
 TS	
 18661-1.	

ISO/IEC	
 TS	
 18661-2	
 enhances	
 ISO/IEC	
 TR	
 24732	
 to	
 cover	
 all	
 the	
 requirements,	
 plus	
 some	
 basic	

recommendations,	
 of	
 ISO/IEC/IEEE	
 60559:2011	
 for	
 decimal	
 floating-­‐point	
 arithmetic.	
 C	

implementations	
 intending	
 to	
 provide	
 an	
 extension	
 for	
 decimal	
 floating-­‐point	
 arithmetic	
 supporting	

ISO/IEC/IEEE	
 60559:2011	
 are	
 expected	
 to	
 conform	
 to	
 ISO/IEC	
 TS	
 18661-2.	

ISO/IEC	
 TS	
 18661-3	
 (Interchange	
 and	
 extended	
 types),	
 ISO/IEC	
 TS	
 18661-4	
 (Supplementary	
 functions),	

and	
 ISO/IEC	
 TS	
 18661-5	
 (Supplementary	
 attributes)	
 cover	
 recommended	
 features	
 of	
 ISO/IEC/IEEE	

60559:2011.	
 C	
 implementations	
 intending	
 to	
 provide	
 extensions	
 for	
 these	
 features	
 are	
 expected	
 to	

conform	
 to	
 the	
 corresponding	
 parts.	

Additional	
 background	
 on	
 supplementary	
 functions	

This	
 document	
 uses	
 the	
 term	
 supplementary	
 functions	
 to	
 refer	
 to	
 functions	
 that	
 provide	
 operations	

recommended,	
 but	
 not	
 required,	
 by	
 IEC	
 60559.	

ISO/IEC/IEEE	
 60559:2011	
 specifies	
 and	
 recommends	
 a	
 more	
 extensive	
 set	
 of	
 mathematical	
 operations	

than	
 C11	
 provides.	
 The	
 IEC	
 60559	
 specification	
 is	
 generally	
 consistent	
 with	
 C11,	
 though	
 it	
 adds	

requirements	
 for	
 symmetry	
 and	
 antisymmetry.	
 This	
 part	
 of	
 ISO/IEC	
 TS	
 18661	
 extends	
 the	
 specification	

in	
 Library	
 subclause	
 7.12	
 Mathematics	
 to	
 include	
 the	
 complete	
 set	
 of	
 IEC	
 60559	
 mathematical	

operations.	
 For	
 implementations	
 conforming	
 to	
 annex	
 F,	
 it	
 also	
 requires	
 full	
 IEC	
 60559	
 semantics,	

including	
 symmetry	
 and	
 antisymmetry	
 properties.	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 ix	

	
 	

IEC	
 60559	
 requires	
 correct	
 rounding	
 for	
 its	
 required	
 operations	
 (squareRoot,	
 fusedMultiplyAdd,	
 etc.),	

and	
 recommends	
 correct	
 rounding	
 for	
 its	
 recommended	
 mathematical	
 operations.	
 This	
 part	
 of	
 ISO/IEC	

TS	
 18661	
 reserves	
 identifiers,	
 with	
 cr	
 prefixes,	
 for	
 C	
 functions	
 corresponding	
 to	
 correctly	
 rounded	

versions	
 of	
 the	
 IEC	
 60559	
 mathematical	
 operations,	
 which	
 may	
 be	
 provided	
 at	
 the	
 option	
 of	
 the	

implementation.	
 For	
 example,	
 the	
 identifier	
 crexp	
 is	
 reserved	
 for	
 a	
 correctly	
 rounded	
 version	
 of	
 the	

exp	
 function.	

IEC	
 60559	
 also	
 specifies	
 and	
 recommends	
 reduction	
 operations,	
 which	
 operate	
 on	
 vector	
 operands.	

These	
 operations,	
 which	
 compute	
 sums	
 and	
 products,	
 may	
 associate	
 in	
 any	
 order	
 and	
 may	
 evaluate	
 in	

any	
 wider	
 format.	
 Hence,	
 unlike	
 other	
 IEC	
 60559	
 operations,	
 they	
 do	
 not	
 have	
 unique	
 specified	
 results.	

This	
 part	
 of	
 ISO/IEC	
 TS	
 18661	
 extends	
 the	
 specification	
 in	
 Library	
 subclause	
 7.12	
 Mathematics	
 to	

include	
 functions	
 corresponding	
 to	
 the	
 IEC	
 60559	
 reduction	
 operations.	
 For	
 implementations	

conforming	
 to	
 annex	
 F,	
 it	
 also	
 requires	
 the	
 IEC	
 60559	
 specified	
 behavior	
 for	
 floating-­‐point	
 exceptions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

TECHNICAL	
 SPECIFICATION	
 ISO/IEC/TS	
 18661-­‐4:2015(E)	

	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 1	

	

Information	
 technology	
 —	
 Programming	
 languages,	
 their	

environments,	
 and	
 system	
 software	
 interfaces	
 —	
 Floating-­‐point	

extensions	
 for	
 C	
 —	

	

Part	
 4:	
 	

Supplementary	
 functions	

1	
 Scope	

This	
 part	
 of	
 ISO/IEC	
 TS	
 18661	
 extends	
 programming	
 language	
 C	
 to	
 include	
 functions	
 specified	
 and	

recommended	
 in	
 ISO/IEC/IEEE	
 60559:2011.	

2	
 Conformance	

An	
 implementation	
 conforms	
 to	
 this	
 part	
 of	
 ISO/IEC	
 TS	
 18661	
 if	

a) it	
 meets	
 the	
 requirements	
 for	
 a	
 conforming	
 implementation	
 of	
 C11	
 with	
 all	
 the	
 changes	
 to	
 C11	
 as	

specified	
 in	
 parts	
 1-­‐4	
 of	
 ISO/IEC	
 TS	
 18661;	

	

b) it	
 conforms	
 to	
 ISO/IEC	
 TS	
 18661-­‐1	
 or	
 ISO/IEC	
 TS	
 18661-­‐2	
 (or	
 both);	
 and	

	

c) it	
 defines	
 __STDC_IEC_60559_FUNCS__	
 to	
 201506L.	

3	
 Normative	
 references	

The	
 following	
 documents,	
 in	
 whole	
 or	
 in	
 part,	
 are	
 normatively	
 referenced	
 in	
 this	
 document	
 and	
 are	

indispensable	
 for	
 its	
 application.	
 For	
 dated	
 references,	
 only	
 the	
 edition	
 cited	
 applies.	
 For	
 undated	

references,	
 the	
 latest	
 edition	
 of	
 the	
 referenced	
 document	
 (including	
 any	
 amendments)	
 applies.	

ISO/IEC	
 9899:2011,	
 Information	
 technology	
 —	
 Programming	
 languages	
 —	
 C	

ISO/IEC/IEEE	
 60559:2011,	
 Information	
 technology	
 —	
 Microprocessor	
 Systems	
 —	
 Floating-­‐point	

arithmetic	

ISO/IEC	
 TS	
 18661-­‐1:2014,	
 Information	
 technology	
 —	
 Programming	
 languages,	
 their	
 environments	
 and	

system	
 software	
 interfaces	
 —	
 Floating-­‐point	
 extensions	
 for	
 C	
 —	
 Part	
 1:	
 Binary	
 floating-­‐point	
 arithmetic	

ISO/IEC	
 TS	
 18661-­‐2:2015,	
 Information	
 technology	
 —	
 Programming	
 languages,	
 their	
 environments	
 and	

system	
 software	
 interfaces	
 —	
 Floating-­‐point	
 extensions	
 for	
 C	
 —	
 Part	
 2:	
 Decimal	
 floating-­‐point	
 arithmetic	

ISO/IEC	
 TS	
 18661-­‐3:2015,	
 Information	
 technology	
 —	
 Programming	
 languages,	
 their	
 environments	
 and	

system	
 software	
 interfaces	
 —	
 Floating-­‐point	
 extensions	
 for	
 C	
 —	
 Part	
 3:	
 Interchange	
 and	
 extended	
 types	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

2	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

4	
 Terms	
 and	
 definitions	

For	
 the	
 purposes	
 of	
 this	
 document,	
 the	
 terms	
 and	
 definitions	
 given	
 in	
 ISO/IEC	
 9899:2011,	

ISO/IEC/IEEE	
 60559:2011,	
 ISO/IEC	
 TS	
 18661-­‐1:2014,	
 ISO/IEC	
 TS	
 18661-­‐2:2015,	
 ISO/IEC	

TS	
 18661-­‐3:2015,	
 and	
 the	
 following	
 apply.	

4.1	

C11	

standard	
 ISO/IEC	
 9899:2011,	
 Information	
 technology	
 —	
 Programming	
 languages	
 C,	
 including	
 Technical	

Corrigendum	
 1	
 (ISO/IEC	
 9899:2011/Cor.	
 1:2012)	

5	
 C	
 standard	
 conformance	

5.1	
 Freestanding	
 implementations	

The	
 specification	
 in	
 C11	
 +	
 TS18661-­‐1	
 +	
 TS18661-­‐2	
 allows	
 freestanding	
 implementations	
 to	
 conform	
 to	

this	
 part	
 of	
 ISO/IEC	
 TS	
 18661.	

5.2	
 Predefined	
 macros	

Change	
 to	
 C11	
 +	
 TS18661-­‐1	
 +	
 TS18661-­‐2	
 +	
 TS18661-­‐3:	
 	

In	
 6.10.8.3#1,	
 add:	

__STDC_IEC_60559_FUNCS__	
 The	
 integer	
 constant	
 201506L,	
 intended	
 to	
 indicate	

support	
 of	
 functions	
 specified	
 and	
 recommended	
 in	
 IEC	
 60559.	

5.3	
 Standard	
 headers	

The	
 new	
 identifiers	
 added	
 to	
 C11	
 library	
 headers	
 by	
 this	
 Part	
 of	
 Technical	
 Specification	
 18661	
 are	

defined	
 or	
 declared	
 by	
 their	
 respective	
 headers	
 only	
 if	
 __STDC_WANT_IEC_60559_FUNCS_EXT__ is	
 defined	

as	
 a	
 macro	
 at	
 the	
 point	
 in	
 the	
 source	
 file	
 where	
 the	
 appropriate	
 header	
 is	
 first	
 included.	
 The	
 following	

changes	
 to	
 C11	
 +	
 TS18661-­‐1	
 +	
 TS18661-­‐2	
 +	
 TS18661-­‐3	
 list	
 these	
 identifiers	
 in	
 each	
 applicable	
 library	

subclause.	

Changes	
 to	
 C11	
 +	
 TS18661-­‐1	
 +	
 TS18661-­‐2	
 +	
 TS18661-­‐3:	
 	

In	
 7.12,	
 renumber	
 paragraph	
 1e	
 to	
 1h,	
 and	
 after	
 paragraph	
 1d	
 insert	
 the	
 paragraphs:	

[1e]	
 The	
 following	
 identifiers	
 are	
 declared	
 only	
 if	
 __STDC_WANT_IEC_60559_FUNCS_EXT__	
 is	

defined	
 as	
 a	
 macro	
 at	
 the	
 point	
 in	
 the	
 source	
 file	
 where	
 <math.h>	
 is	
 first	
 included:	

exp2m1 rootnf sinpil
exp2m1f rootnl tanpi
exp2m1l pown tanpif
exp10 pownf tanpil
exp10f pownl reduc_sum
exp10l powr reduc_sumf
exp10m1 powrf reduc_suml
exp10m1f powrl reduc_sumabs
exp10m1l acospi reduc_sumabsf
logp1 acospif reduc_sumabsl
logp1f acospil reduc_sumsq

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 3	

	

logp1l asinpi reduc_sumsqf
log2p1 asinpif reduc_sumsql
log2p1f asinpil reduc_sumprod
log2p1l atanpi reduc_sumprodf
log10p1 atanpif reduc_sumprodl
log10p1f atanpil scaled_prod
log10p1l atan2pi scaled_prodf
rsqrt atan2pif scaled_prodl
rsqrtf atan2pil scaled_prodsum
rsqrtl cospi scaled_prodsumf
compoundn cospif scaled_prodsuml
compoundnf cospil scaled_proddiff
compoundnl sinpi scaled_proddifff
rootn sinpif scaled_proddiffl

	

[1f]	
 The	
 following	
 identifiers	
 are	
 declared	
 only	
 if	
 __STDC_WANT_IEC_60559_DFP_EXT__	
 and	

__STDC_WANT_IEC_60559_FUNCS_EXT__	
 are	
 defined	
 as	
 macros	
 at	
 the	
 point	
 in	
 the	
 source	
 file	

where	
 <math.h>	
 is	
 first	
 included:	

for	
 supported	
 types	
 _DecimalN,	
 where	
 N	
 =	
 32,	
 64,	
 and	
 128:	

exp2m1dN powndN tanpidN
exp10dN powrdN reduc_sumdN
exp10m1dN acospidN reduc_sumabsdN
logp1dN asinpidN reduc_sumsqdN
log2p1dN atanpidN reduc_sumproddN
log10p1dN atan2pidN scaled_proddN
rsqrtdN cospidN scaled_prodsumdN
compoundndN sinpidN scaled_proddiffdN
rootndN

	
 [1g]	
 The	
 following	
 identifiers	
 are	
 declared	
 only	
 if	
 __STDC_WANT_IEC_60559_TYPES_EXT__	
 and	

__STDC_WANT_IEC_60559_FUNCS_EXT__	
 are	
 defined	
 as	
 macros	
 at	
 the	
 point	
 in	
 the	
 source	
 file	

where	
 <math.h>	
 is	
 first	
 included:	

for	
 supported	
 types	
 _FloatN:	

	

exp2m1fN pownfN tanpifN
exp10fN powrfN reduc_sumfN
exp10m1fN acospifN reduc_sumabsfN
logp1fN asinpifN reduc_sumsqfN
log2p1fN atanpifN reduc_sumprodfN
log10p1fN atan2pifN scaled_prodfN
rsqrtfN cospifN scaled_prodsumfN
compoundnfN sinpifN scaled_proddifffN
rootnfN

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

4	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

for	
 supported	
 types	
 _FloatNx:	

exp2m1fNx pownfNx tanpifNx
exp10fNx powrfNx reduc_sumfNx
exp10m1fNx acospifNx reduc_sumabsfNx
logp1fNx asinpifNx reduc_sumsqfNx
log2p1fNx atanpifNx reduc_sumprodfNx
log10p1fNx atan2pifNx scaled_prodfNx
rsqrtfNx cospifNx scaled_prodsumfNx
compoundnfNx sinpifNx scaled_proddifffNx
rootnfNx

for	
 supported	
 types	
 _DecimalN,	
 where	
 N	
 ≠	
 32,	
 64,	
 and	
 128:	

exp2m1dN powndN tanpidN
exp10dN powrdN reduc_sumdN
exp10m1dN acospidN reduc_sumabsdN
logp1dN asinpidN reduc_sumsqdN
log2p1dN atanpidN reduc_sumproddN
log10p1dN atan2pidN scaled_proddN
rsqrtdN cospidN scaled_prodsumdN
compoundndN sinpidN scaled_proddiffdN
rootndN

for	
 supported	
 types	
 _DecimalNx:	

exp2m1dNx powndNx tanpidNx
exp10dNx powrdNx reduc_sumdNx
exp10m1dNx acospidNx reduc_sumabsdNx
logp1dNx asinpidNx reduc_sumsqdNx
log2p1dNx atanpidNx reduc_sumproddNx
log10p1dNx atan2pidNx scaled_proddNx
rsqrtdNx cospidNx scaled_prodsumdNx
compoundndNx sinpidNx scaled_proddiffdNx
rootndNx

After	
 7.25#1c,	
 insert	
 the	
 paragraph:	

[1d]	
 The	
 following	
 identifiers	
 are	
 defined	
 as	
 type-­‐generic	
 macros	
 only	
 if	

__STDC_WANT_IEC_60559_FUNCS_EXT__	
 is	
 defined	
 as	
 a	
 macro	
 at	
 the	
 point	
 in	
 the	
 source	

file	
 where	
 <tgmath.h>	
 is	
 first	
 included:	

exp2m1 rsqrt asinpi
exp10 compoundn atanpi
exp10m1 rootn atan2pi
logp1 pown cospi
log2p1 powr sinpi
log10p1 acospi tanpi

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 5	

	

6	
 Operation	
 binding	

The	
 following	
 change	
 to	
 C11	
 +	
 TS18661-­‐1	
 +	
 TS18661-­‐2	
 +	
 TS18661-­‐3	
 shows	
 how	
 functions	
 in	
 C11	
 and	

in	
 this	
 Part	
 of	
 Technical	
 Specification	
 18661	
 provide	
 operations	
 recommended	
 in	
 IEC	
 60559.	

Change	
 to	
 C11	
 +	
 TS18661-­‐1	
 +	
 TS18661-­‐2	
 +	
 TS18661-­‐3:	

After	
 F.3#22,	
 add:	

[23]	
 The	
 C	
 functions	
 in	
 the	
 following	
 table	
 provide	
 operations	
 recommended	
 by	
 IEC	
 60559	
 and	

similar	
 operations.	
 Correct	
 rounding,	
 which	
 IEC	
 60559	
 specifies	
 for	
 its	
 operations	
 (except	
 for	

the	
 reduction	
 operations),	
 is	
 not	
 required	
 for	
 the	
 C	
 functions	
 in	
 the	
 table.	
 See	
 also	
 7.31.6a.	

IEC	
 60559	
 operation	
 C	
 function	
 Clauses	
 -­‐	
 C11	

exp	
 exp 7.12.6.1,	
 F.10.3.1	

expm1	
 expm1 7.12.6.3,	
 F.10.3.3	

exp2	
 exp2 7.12.6.2,	
 F.10.3.2	

exp2m1	
 exp2m1 7.12.6.14,	
 F.10.3.14	

exp10	
 exp10 7.12.6.15,	
 F.10.3.15	

exp10m1	
 exp10m1 7.12.6.16,	
 F.10.3.16	

log	
 log 7.12.6.7,	
 F.10.3.7	

log2	
 log2 7.12.6.10,	
 F.10.3.10	

log10	
 log10	
 7.12.6.8,	
 F.10.3.8	

logp1	
 log1p,	
 logp1 7.12.6.9,	
 F.10.3.9	

log2p1	
 log2p1 7.12.6.17,	
 F.10.3.17	

log10p1	
 log10p1 7.12.6.18,	
 F.10.3.18	

hypot	
 hypot 7.12.7.3,	
 F.10.4.3	

rSqrt	
 rsqrt	
 7.12.7.6,	
 F.10.4.6	

compound	
 compoundn	
 7.12.7.7,	
 F.10.4.7	

rootn	
 rootn 7.12.7.8,	
 F.10.4.8	

pown	
 pown 7.12.7.9,	
 F.10.4.9	

pow	
 pow 7.12.7.4,	
 F.10.4.4	

powr	
 powr 7.12.7.10,	
 F.10.4.10	

sin	
 sin 7.12.4.6,	
 F.10.1.6	

cos	
 cos 7.12.4.5,	
 F.10.1.5	

tan	
 tan	
 7.12.4.7,	
 F.10.1.7	

sinPi	
 sinpi	
 7.12.4.13,	
 F.10.1.13	

cosPi	
 cospi	
 7.12.4.12,	
 F.10.1.12	

	
 tanpi	
 7.12.4.14,	
 F.10.1.14	

	
 asinpi	
 7.12.4.9,	
 F.10.1.9	

	
 acospi	
 7.12.4.8,	
 F.10.1.8	

atanPi	
 atanpi	
 7.12.4.10,	
 F.10.1.10	

atan2Pi	
 atan2pi	
 7.12.4.11,	
 F.10.1.11	

asin	
 asin	
 7.12.4.2,	
 F.10.1.2	

acos	
 acos	
 7.12.4.1,	
 F.10.1.1	

atan	
 atan 7.12.4.3,	
 F.10.1.3	

atan2	
 atan2	
 7.12.4.4,	
 F.10.1.4	

sinh	
 sinh	
 7.12.5.5,	
 F.10.2.5	

cosh	
 cosh	
 7.12.5.4,	
 F.10.2.4	

tanh	
 tanh	
 7.12.5.6,	
 F.10.2.6	

asinh	
 asinh	
 7.12.5.2,	
 F.10.2.2	

acosh	
 acosh 7.12.5.1,	
 F.10.2.1	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

6	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

atanh	
 atanh 7.12.5.3,	
 F.10.2.3	

sum	
 reduc_sum 7.12.13b.1,	
 F.10.10b.1	

dot	
 reduc_sumprod 7.12.13b.4,	
 F.10.10b.4	

sumSquare	
 reduc_sumsq 7.12.13b.3,	
 F.10.10b.3	

sumAbs	
 reduc_sumabs 7.12.13b.2,	
 F.10.13b.2	

scaledProd	
 scaled_prod 7.12.13b.5,	
 F.10.10b.5	

scaledProdSum	
 scaled_prodsum 7.12.13b.6,	
 F.10.10b.6	

scaledProdDiff	
 scaled_proddiff 7.12.13b.7,	
 F.10.10b.7	

	

7	
 Mathematical	
 functions	
 in	
 <math.h>	

This	
 clause	
 specifies	
 changes	
 to	
 C11	
 +	
 TS18661-­‐1	
 +	
 TS18661-­‐2	
 +	
 TS18661-­‐3	
 to	
 include	
 functions	
 that	

support	
 mathematical	
 operations	
 recommended	
 by	
 IEC	
 60559.	
 The	
 changes	
 reserve	
 names	
 for	

correctly	
 rounded	
 versions	
 of	
 the	
 functions.	
 IEC	
 60559	
 recommends	
 support	
 for	
 the	
 correctly	
 rounded	

functions.	
 The	
 changes	
 also	
 support	
 the	
 symmetry	
 and	
 antisymmetry	
 properties	
 that	
 IEC	
 60559	

specifies	
 for	
 mathematical	
 functions.	

After	
 7.12.4.7,	
 insert	
 the	
 following:	

7.12.4.8	
 The	
 acospi	
 functions	

Synopsis	

[1]	
 #include <math.h>
double acospi(double x);
float acospif(float x);
long double acospil(long double x);
_FloatN acospifN(_FloatN x);
_FloatNx acospifNx(_FloatNx x);
_DecimalN acospidN(_DecimalN x);
_DecimalNx acospidNx(_DecimalNx x);

Description	

[2]	
 The	
 acospi	
 functions	
 compute	
 the	
 principal	
 value	
 of	
 the	
 arc	
 cosine	
 of	
 x,	
 divided	
 by	
 π,	
 thus	

measuring	
 the	
 angle	
 in	
 half-­‐revolutions.	
 A	
 domain	
 error	
 occurs	
 for	
 arguments	
 not	
 in	
 the	

interval	
 [−1,	
 +1].	
 	

Returns	

[3]	
 The	
 acospi	
 functions	
 return	
 arccos(x)/π,	
 in	
 the	
 interval	
 [0,	
 1].	
 	
 IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 7	

	

7.12.4.9	
 The	
 asinpi	
 functions	

Synopsis	

[1]	
 #include <math.h>
double asinpi(double x);
float asinpif(float x);
long double asinpil(long double x);
_FloatN asinpifN(_FloatN x);
_FloatNx asinpifNx(_FloatNx x);
_DecimalN asinpidN(_DecimalN x);
_DecimalNx asinpidNx(_DecimalNx x);

Description	

[2]	
 The	
 asinpi	
 functions	
 compute	
 the	
 principal	
 value	
 of	
 the	
 arc	
 sine	
 of	
 x,	
 divided	
 by	
 π,	
 thus	

measuring	
 the	
 angle	
 in	
 half-­‐revolutions.	
 A	
 domain	
 error	
 occurs	
 for	
 arguments	
 not	
 in	
 the	

interval	
 [−1,	
 +1].	
 A	
 range	
 error	
 occurs	
 if	
 the	
 magnitude	
 of	
 nonzero	
 x	
 is	
 too	
 small.	

Returns	

[3]	
 The	
 asinpi	
 functions	
 return	
 arcsin(x)	
 /	
 π,	
 in	
 the	
 interval	
 [−1/2,	
 +1/2].	
 	

7.12.4.10	
 The	
 atanpi	
 functions	

Synopsis	

[1]	
 #include <math.h>
double atanpi(double x);
float atanpif(float x);
long double atanpil(long double x);
_FloatN atanpifN(_FloatN x);
_FloatNx atanpifNx(_FloatNx x);
_DecimalN atanpidN(_DecimalN x);
_DecimalNx atanpidNx(_DecimalNx x);

Description	

[2]	
 The	
 atanpi	
 functions	
 compute	
 the	
 principal	
 value	
 of	
 the	
 arc	
 tangent	
 of	
 x,	
 divided	
 by	
 π,	

thus	
 measuring	
 the	
 angle	
 in	
 half-­‐revolutions.	
 A	
 range	
 error	
 occurs	
 if	
 the	
 magnitude	
 of	
 nonzero	

x	
 is	
 too	
 small.	

Returns	

[3]	
 The	
 atanpi	
 functions	
 return	
 arctan(x)	
 /	
 π,	
 in	
 the	
 interval	
 [−1/2,	
 +1/2].	
 	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

8	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

7.12.4.11	
 The	
 atan2pi	
 functions	

Synopsis	

[1]	
 #include <math.h>
double atan2pi(double y, double x);
float atan2pif(float y, float x);
long double atan2pil(long double y, long double x);
_FloatN atan2pifN(_FloatN y, _FloatN x);
_FloatNx atan2pifNx(_FloatNx y, _FloatNx x);
_DecimalN atan2pidN(_DecimalN y, _DecimalN x);
_DecimalNx atan2pidNx(_DecimalNx y, _DecimalNx x);

Description	

[2]	
 The	
 atan2pi	
 functions	
 compute	
 the	
 angle,	
 measured	
 in	
 half-­‐revolutions,	
 subtended	
 at	
 the	

origin	
 by	
 the	
 point	
 (x,	
 y)	
 and	
 the	
 positive	
 x-­‐axis.	
 Thus,	
 atan2pi	
 computes	
 arctan(y/x)	
 /	
 π,	
 in	

the	
 range	
 [−1,	
 +1].	
 A	
 domain	
 error	
 may	
 occur	
 if	
 both	
 arguments	
 are	
 zero.	
 A	
 range	
 error	
 occurs	

if	
 x	
 is	
 positive	
 and	
 the	
 magnitude	
 of	
 nonzero	
 y/x	
 is	
 too	
 small.	

Returns	

[3]	
 The	
 atan2pi	
 functions	
 return	
 the	
 computed	
 angle,	
 in	
 the	
 interval	
 [−1,	
 +1].	
 	

7.12.4.12	
 The	
 cospi	
 functions	

Synopsis	

[1]	
 #include <math.h>
double cospi(double x);
float cospif(float x);
long double cospil(long double x);
_FloatN cospifN(_FloatN x);
_FloatNx cospifNx(_FloatNx x);
_DecimalN cospidN(_DecimalN x);
_DecimalNx cospidNx(_DecimalNx x);

Description	

[2]	
 The	
 cospi	
 functions	
 compute	
 the	
 cosine	
 of	
 π	
 ×	
 x,	
 thus	
 regarding	
 x	
 as	
 a	
 measurement	
 in	

half-­‐revolutions.	

Returns	

[3]	
 The	
 cospi	
 functions	
 return	
 cos(π	
 ×	
 x).	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 9	

	

7.12.4.13	
 The	
 sinpi	
 functions	

Synopsis	

[1]	
 #include <math.h>
double sinpi(double x);
float sinpif(float x);
long double sinpil(long double x);
_FloatN sinpifN(_FloatN x);
_FloatNx sinpifNx(_FloatNx x);
_DecimalN sinpidN(_DecimalN x);
_DecimalNx sinpidNx(_DecimalNx x);

Description	

[2]	
 The	
 sinpi	
 functions	
 compute	
 the	
 sine	
 of	
 π	
 ×	
 x,	
 thus	
 regarding	
 x	
 as	
 a	
 measurement	
 in	
 half-­‐
revolutions.	

Returns	

[3]	
 The	
 sinpi	
 functions	
 return	
 sin(π	
 ×	
 x).	

7.12.4.14	
 The	
 tanpi	
 functions	

Synopsis	

[1]	
 #include <math.h>
double tanpi(double x);
float tanpif(float x);
long double tanpil(long double x);
_FloatN tanpifN(_FloatN x);
_FloatNx tanpifNx(_FloatNx x);
_DecimalN tanpidN(_DecimalN x);
_DecimalNx tanpidNx(_DecimalNx x);

Description	

[2]	
 The	
 tanpi	
 functions	
 compute	
 the	
 tangent	
 of	
 π	
 ×	
 x,	
 thus	
 regarding	
 x	
 as	
 a	
 measurement	
 in	

half-­‐revolutions.	
 A	
 pole	
 error	
 may	
 occur	
 for	
 arguments	
 n	
 +	
 1/2,	
 for	
 integers	
 n.	
 	

Returns	

[3]	
 The	
 tanpi	
 functions	
 return	
 tan(π	
 ×	
 x).	

In	
 7.12.6.9,	
 replace	
 the	
 subclause	
 title:	

7.12.6.9	
 The	
 log1p	
 functions	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

10	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

with:	

7.12.6.9	
 The	
 log1p	
 and	
 logp1	
 functions	

In	
 7.12.6.9#1,	
 append	
 to	
 the	
 Synopsis:

double logp1(double x);
float logp1f(float x);
long double logp1l(long double x);
_FloatN logp1fN(_FloatN x);
_FloatNx logp1fNx(_FloatNx x);
_DecimalN logp1dN(_DecimalN x);
_DecimalNx logp1dNx(_DecimalNx x);

In	
 7.12.6.9#2,	
 replace	
 the	
 first	
 sentence:	

The	
 log1p	
 functions	
 compute	
 the	
 base-­‐e	
 (natural)	
 logarithm	
 of	
 1	
 plus	
 the	
 argument.	
 	

with:	

The	
 log1p	
 functions	
 are	
 equivalent	
 to	
 the	
 logp1	
 functions.	
 These	
 functions	
 compute	
 the	

base-­‐e	
 (natural)	
 logarithm	
 of	
 1	
 plus	
 the	
 argument.	
 	

Replace	
 7.12.6.9#3:	

[3]	
 The	
 log1p	
 functions	
 return	
 loge	
 (1	
 +	
 x).	
 	
 	

with:	

[3]	
 These	
 functions	
 return	
 loge	
 (1	
 +	
 x).	
 	

In	
 F.10.3.9,	
 replace	
 the	
 subclause	
 title:	

F.10.3.9	
 The	
 log1p	
 functions	

with:	

F.10.3.9	
 The	
 log1p	
 and	
 logp1	
 functions	

After	
 7.12.6.13,	
 insert	
 the	
 following:	

7.12.6.14	
 The	
 exp2m1	
 functions	

Synopsis	

[1]	
 #include <math.h>
double exp2m1(double x);
float exp2m1f(float x);
long double exp2m1l(long double x);
_FloatN exp2m1fN(_FloatN x);
_FloatNx exp2m1fNx(_FloatNx x);
_DecimalN exp2m1dN(_DecimalN x);
_DecimalNx exp2m1dNx(_DecimalNx x);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 11	

	

Description	

[2]	
 The	
 exp2m1	
 functions	
 compute	
 the	
 base-­‐2	
 exponential	
 of	
 the	
 argument,	
 minus	
 1.	
 A	
 range	

error	
 occurs	
 if	
 finite	
 x	
 is	
 too	
 large	
 or	
 if	
 the	
 magnitude	
 of	
 nonzero	
 x	
 is	
 too	
 small.	

Returns	

[3]	
 The	
 exp2m1	
 functions	
 return	
 2x	
 −	
 1.	
 	

7.12.6.15	
 The	
 exp10	
 functions	

Synopsis	

[1]	
 #include <math.h>
double exp10(double x);
float exp10f(float x);
long double exp10l(long double x);
_FloatN exp10fN(_FloatN x);
_FloatNx exp10fNx(_FloatNx x);
_DecimalN exp10dN(_DecimalN x);
_DecimalNx exp10dNx(_DecimalNx x);

Description	

[2]	
 The	
 exp10	
 functions	
 compute	
 the	
 base-­‐10	
 exponential	
 of	
 the	
 argument.	
 A	
 range	
 error	

occurs	
 if	
 the	
 magnitude	
 of	
 finite	
 x	
 is	
 too	
 large.	
 	

Returns	

[3]	
 The	
 exp10	
 functions	
 return	
 10x.	
 	

7.12.6.16	
 The	
 exp10m1	
 functions	

Synopsis	

[1]	
 #include <math.h>
double exp10m1(double x);
float exp10m1f(float x);
long double exp10m1l(long double x);
_FloatN exp10m1fN(_FloatN x);
_FloatNx exp10m1fNx(_FloatNx x);
_DecimalN exp10m1dN(_DecimalN x);
_DecimalNx exp10m1dNx(_DecimalNx x);

Description	

[2]	
 The	
 exp10m1	
 functions	
 compute	
 the	
 base-­‐10	
 exponential	
 of	
 the	
 argument,	
 minus	
 1.	
 A	

range	
 error	
 occurs	
 if	
 finite	
 x	
 is	
 too	
 large.	
 	

Returns	

[3]	
 The	
 exp10m1	
 functions	
 return	
 10x	
 −	
 1.	
 	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

12	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

7.12.6.17	
 The	
 log2p1	
 functions	

Synopsis	

[1]	
 #include <math.h>
double log2p1(double x);
float log2p1f(float x);
long double log2p1l(long double x);
_FloatN log2p1fN(_FloatN x);
_FloatNx log2p1fNx(_FloatNx x);
_DecimalN log2p1dN(_DecimalN x);
_DecimalNx log2p1dNx(_DecimalNx x);

Description	

[2]	
 The	
 log2p1	
 functions	
 compute	
 the	
 base-­‐2	
 logarithm	
 of	
 1	
 plus	
 the	
 argument.	
 A	
 domain	

error	
 occurs	
 if	
 the	
 argument	
 is	
 less	
 than	
 −1.	
 A	
 pole	
 error	
 may	
 occur	
 if	
 the	
 argument	
 equals	
 −1.	
 	
 	

Returns	

[3]	
 The	
 log2p1	
 functions	
 return	
 log2(1	
 +	
 x).	
 	

7.12.6.18	
 The	
 log10p1	
 functions	

Synopsis	

[1]	
 #include <math.h>
double log10p1(double x);
float log10p1f(float x);
long double log10p1l(long double x);
_FloatN log10p1fN(_FloatN x);
_FloatNx log10p1fNx(_FloatNx x);
_DecimalN log10p1dN(_DecimalN x);
_DecimalNx log10p1dNx(_DecimalNx x);

Description	

[2]	
 The	
 log10p1	
 functions	
 compute	
 the	
 base-­‐10	
 logarithm	
 of	
 1	
 plus	
 the	
 argument.	
 A	
 domain	

error	
 occurs	
 if	
 the	
 argument	
 is	
 less	
 than	
 −1.	
 A	
 pole	
 error	
 may	
 occur	
 if	
 the	
 argument	
 equals	
 −1.	

A	
 range	
 error	
 occurs	
 if	
 the	
 magnitude	
 of	
 nonzero	
 x	
 is	
 too	
 small.	
 	

Returns	

[3]	
 The	
 log10p1	
 functions	
 return	
 log10(1	
 +	
 x).	
 	

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C TS 18

66
1-4

:20
15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 13	

	

After	
 7.12.7.5,	
 insert	
 the	
 following:	

7.12.7.6	
 The	
 rsqrt	
 functions	

Synopsis	

[1]	
 #include <math.h>
double rsqrt(double x);
float rsqrtf(float x);
long double rsqrtl(long double x);
_FloatN rsqrtfN(_FloatN x);
_FloatNx rsqrtfNx(_FloatNx x);
_DecimalN rsqrtdN(_DecimalN x);
_DecimalNx rsqrtdNx(_DecimalNx x);

Description	

[2]	
 The	
 rsqrt	
 functions	
 compute	
 the	
 reciprocal	
 of	
 the	
 square	
 root	
 of	
 the	
 argument.	
 A	
 domain	

error	
 occurs	
 if	
 the	
 argument	
 is	
 less	
 than	
 zero.	
 A	
 pole	
 error	
 may	
 occur	
 if	
 the	
 argument	
 equals	

zero.	
 	

Returns	

[3]	
 The	
 rsqrt	
 functions	
 return	
 1	
 /	
 √x.	

7.12.7.7	
 The	
 compoundn	
 functions	

Synopsis	

[1]	
 #include <math.h>
#include <stdint.h>
double compoundn(double x, intmax_t n);
float compoundnf(float x, intmax_t n);
long double compoundnl(long double x, intmax_t n);
_FloatN compoundnfN(_FloatN x, intmax_t n);
_FloatNx compoundnfNx(_FloatNx x, intmax_t n);
_DecimalN compoundndN(_DecimalN x, intmax_t n);
_DecimalNx compoundndNx(_DecimalNx x, intmax_t n);

Description	

[2]	
 The	
 compoundn	
 functions	
 compute	
 1	
 plus	
 x,	
 raised	
 to	
 the	
 power	
 n.	
 A	
 domain	
 error	
 occurs	

if	
 x	
 <	
 −1.	
 A	
 range	
 error	
 may	
 occur	
 if	
 n	
 is	
 too	
 large,	
 depending	
 on	
 x.	
 A	
 pole	
 error	
 may	
 occur	
 if	
 x	

equals	
 −1	
 and	
 n	
 <	
 0.	
 	

Returns	

[3]	
 The	
 functions	
 return	
 (1	
 +	
 x)n.	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

14	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

7.12.7.8	
 The	
 rootn	
 functions	

Synopsis	

[1]	
 #include <math.h>
#include <stdint.h>
double rootn(double x, intmax_t n);
float rootnf(float x, intmax_t n);
long double rootnl(long double x, intmax_t n);
_FloatN rootnfN(_FloatN x, intmax_t n);
_FloatNx rootnfNx(_FloatNx x, intmax_t n);
_DecimalN rootndN(_DecimalN x, intmax_t n);
_DecimalNx rootndNx(_DecimalNx x, intmax_t n);

Description	

[2]	
 The	
 rootn	
 functions	
 compute	
 the	
 principal	
 nth	
 root	
 of	
 x.	
 A	
 domain	
 error	
 occurs	
 if	
 n	
 is	
 0	
 or	

if	
 x	
 <	
 0	
 and	
 n	
 is	
 even.	
 A	
 range	
 error	
 may	
 occur	
 if	
 n	
 is	
 −1.	
 A	
 pole	
 error	
 may	
 occur	
 if	
 x	
 equals	
 zero	

and	
 n	
 <	
 0.	
 	

Returns	

[3]	
 The	
 rootn	
 functions	
 return	
 x1/n.	

7.12.7.9	
 The	
 pown	
 functions	

Synopsis	

[1]	
 #include <math.h>
#include <stdint.h>
double pown(double x, intmax_t n);
float pownf(float x, intmax_t n);
long double pownl(long double x, intmax_t n);
_FloatN pownfN(_FloatN x, intmax_t n);
_FloatNx pownfNx(_FloatNx x, intmax_t n);
_DecimalN powndN(_DecimalN x, intmax_t n);
_DecimalNx powndNx(_DecimalNx x, intmax_t n);

Description	

[2]	
 The	
 pown	
 functions	
 compute	
 x	
 raised	
 to	
 the	
 nth	
 power.	
 A	
 range	
 error	
 may	
 occur.	
 A	
 pole	

error	
 may	
 occur	
 if	
 x	
 equals	
 zero	
 and	
 n	
 <	
 0.	
 	

Returns	

[3]	
 The	
 pown	
 functions	
 return	
 xn.	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 15	

	

7.12.7.10	
 The	
 powr	
 functions	

Synopsis	

[1]	
 #include <math.h>
double powr(double x, double y);
float powrf(float x, float y);
long double powrl(long double x, long double y);
_FloatN powrfN(_FloatN x, _FloatN y);
_FloatNx powrfNx(_FloatNx x, _FloatNx y);
_DecimalN powrdN(_DecimalN x, _DecimalN y);
_DecimalNx powrdNx(_DecimalNx x, _DecimalNx y);

Description	

[2]	
 The	
 powr	
 functions	
 compute	
 x	
 raised	
 to	
 the	
 power	
 y	
 as	
 exp(y	
 ×	
 log(x)).	
 A	
 domain	
 error	

occurs	
 if	
 x	
 <	
 0	
 or	
 if	
 x	
 and	
 y	
 are	
 both	
 zero.	
 A	
 range	
 error	
 may	
 occur.	
 A	
 pole	
 error	
 may	
 occur	
 if	
 x	

equals	
 zero	
 and	
 finite	
 y	
 <	
 0.	
 	

Returns	

[3]	
 The	
 powr	
 functions	
 return	
 xy.	

After	
 7.31.6,	
 insert:	

7.31.6a	
 Mathematics	
 <math.h>

With	
 the	
 condition	
 that	
 the	
 macro	
 __STDC_IEC_60559_FUNCS__	
 is	
 defined,	
 the	
 function	

names	

crexp crrsqrt cracospi
crexpm1 crcompoundn cratanpi
crexp2 crrootn cratan2pi
crexp2m1 crpown crasin
crexp10 crpow cracos
crexp10m1 crpowr cratan
crlog crsin cratan2
crlog2 crcos crsinh
crlog10 crtan crcosh
crlog1p crsinpi crtanh
crlogp1 crcospi crasinh
crlog2p1 crtanpi cracosh
crlog10p1 crasinpi cratanh
crhypot

and	
 the	
 same	
 names	
 suffixed	
 with	
 f, l, fN,	
 fNx,	
 dN,	
 or	
 dNx	
 may	
 be	
 added	
 to	
 the	
 <math.h>	

header.	

In	
 7.31.6a,	
 attach	
 a	
 footnote	
 to	
 the	
 wording:	

With	
 the	
 condition	
 that	
 the	
 macro	
 __STDC_IEC_60559_FUNCS__	
 is	
 defined,	
 the	
 function	

names	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

16	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

where	
 the	
 footnote	
 is:	

*)	
 The	
 cr	
 prefix	
 is	
 intended	
 to	
 indicate	
 a	
 correctly	
 rounded	
 version	
 of	
 the	
 function.	

After	
 F.10#2,	
 insert:	

[2a]	
 For	
 each	
 single-­‐argument	
 function	
 f	
 in	
 <math.h>	
 whose	
 mathematical	
 counterpart	
 is	

symmetric	
 (even),	
 f(x)	
 is	
 f(−x)	
 for	
 all	
 rounding	
 modes	
 and	
 for	
 all	
 x	
 in	
 the	
 (valid)	
 domain	
 of	
 the	

function.	
 For	
 each	
 single-­‐argument	
 function	
 f	
 in	
 <math.h>	
 whose	
 mathematical	
 counterpart	
 is	

antisymmetric	
 (odd),	
 f(−x)	
 is	
 –f(x)	
 for	
 the	
 IEC	
 60559	
 rounding	
 modes	
 roundTiesToEven,	

roundTiesToAway,	
 and	
 roundTowardZero,	
 and	
 for	
 all	
 x	
 in	
 the	
 (valid)	
 domain	
 of	
 the	
 function.	

The	
 atan2	
 and	
 atan2pi	
 functions	
 are	
 odd	
 in	
 their	
 first	
 argument.	
 	

After	
 F.10.1.7,	
 insert	
 the	
 following:	

F.10.1.8	
 The	
 acospi	
 functions	

—	
 acospi(+1)	
 returns	
 +0.	
 	
 	

—	
 acospi(x)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception	
 for	
 |x|	
 >	
 1.	
 	

	

F.10.1.9	
 The	
 asinpi	
 functions	

—	
 asinpi(±0)	
 returns	
 ±0.	
 	
 	

—	
 asinpi(x)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception	
 for	
 |x|	
 >	
 1.	
 	

	

F.10.1.10	
 The	
 atanpi	
 functions	

—	
 atanpi(±0)	
 returns	
 ±0.	
 	
 	

—	
 atanpi(±∞)	
 returns	
 ±1/2.	
 	

	

F.10.1.11	
 The	
 atan2pi	
 functions	

—	
 atan2pi(±0,	
 −0)	
 returns	
 ±1.	
 	
 	

—	
 atan2pi(±0,	
 +0)	
 returns	
 ±0.	
 	
 	

—	
 atan2pi(±0,	
 x)	
 returns	
 ±1	
 for	
 x	
 <	
 0.	
 	
 	

—	
 atan2pi(±0,	
 x)	
 returns	
 ±0	
 for	
 x	
 >	
 0.	
 	
 	

—	
 atan2pi(y, ±0)	
 returns	
 −1/2	
 for	
 y	
 <	
 0.	
 	
 	

—	
 atan2pi(y, ±0)	
 returns	
 +1/2	
 for	
 y	
 >	
 0.	
 	
 	

—	
 atan2pi(±y, −∞)	
 returns	
 ±1	
 for	
 finite	
 y	
 >	
 0.	
 	
 	

—	
 atan2pi(±y, +∞)	
 returns	
 ±0	
 for	
 finite	
 y	
 >	
 0.	
 	
 	

—	
 atan2pi(±∞,	
 x)	
 returns	
 ±1/2	
 for	
 finite	
 x.	
 	
 	

—	
 atan2pi(±∞,	
 −∞)	
 returns	
 ±3/4	
 for	
 finite	
 x.	
 	
 	

—	
 atan2pi(±∞,	
 +∞)	
 returns	
 ±1/4	
 for	
 finite	
 x.	
 	
 	

	

F.10.1.12	
 The	
 cospi	
 functions	

—	
 cospi(±0)	
 returns	
 1.	

—	
 cospi(n	
 +	
 1/2)	
 returns	
 +0,	
 for	
 integers	
 n.	

—	
 cospi(±∞)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception.	
 	

	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 17	

	

F.10.1.13	
 The	
 sinpi	
 functions	

—	
 sinpi(±0)	
 returns	
 ±0.	
 	
 	

—	
 sinpi(±n)	
 returns	
 ±0,	
 for	
 positive	
 integers	
 n.	
 	
 	

—	
 sinpi(±∞)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception.	
 	

	

F.10.1.14	
 The	
 tanpi	
 functions	

—	
 tanpi(±0)	
 returns	
 ±0.	
 	
 	

—	
 tanpi(n)	
 returns	
 +0,	
 for	
 positive	
 even	
 and	
 negative	
 odd	
 integers	
 n.	
 	
 	

—	
 tanpi(n)	
 returns	
 −0,	
 for	
 positive	
 odd	
 and	
 negative	
 even	
 integers	
 n.	
 	
 	

—	
 tanpi(n	
 +	
 1/2)	
 returns	
 +∞	
 and	
 raises	
 the	
 “divide-­‐by-­‐zero”	
 floating-­‐point	
 exception,	
 for	

even	
 integers	
 n.	
 	
 	

—	
 tanpi(n	
 +	
 1/2)	
 returns	
 −∞	
 and	
 raises	
 the	
 “divide-­‐by-­‐zero”	
 floating-­‐point	
 exception,	
 for	

odd	
 integers	
 n.	
 	
 	

—	
 tanpi(±∞)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception.	
 	

	

After	
 F.10.3.13,	
 insert	
 the	
 following:	

F.10.3.14	
 The	
 exp2m1	
 functions	

—	
 exp2m1(±0)	
 returns	
 ±0.	
 	
 	

—	
 exp2m1(−∞)	
 returns	
 −1.	
 	

—	
 exp2m1(+∞)	
 returns	
 +∞.	
 	

	

F.10.3.15	
 The	
 exp10	
 functions	

—	
 exp10(±0)	
 returns	
 1.	
 	
 	

—	
 exp10(−∞)	
 returns	
 +0.	
 	

—	
 exp10(+∞)	
 returns	
 +∞.	
 	

	

F.10.3.16	
 The	
 exp10m1	
 functions	

—	
 exp10m1(±0)	
 returns	
 ±0.	
 	
 	

—	
 exp10m1(−∞)	
 returns	
 −1.	
 	

—	
 exp10m1(+∞)	
 returns	
 +∞.	
 	

	

F.10.3.17	
 The	
 log2p1	
 functions	

—	
 log2p1(±0)	
 returns	
 ±0.	
 	
 	

—	
 log2p1(−1)	
 returns	
 −∞	
 and	
 raises	
 the	
 “divide-­‐by-­‐zero”	
 floating-­‐point	
 exception.	
 	

—	
 log2p1(x)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception	
 for	
 x	
 <	
 −1.	
 	

—	
 log2p1(+∞)	
 returns	
 +∞.	
 	

	

F.10.3.18	
 The	
 log10p1	
 functions	

—	
 log10p1(±0)	
 returns	
 ±0.	
 	
 	

—	
 log10p1(−1)	
 returns	
 −∞	
 and	
 raises	
 the	
 “divide-­‐by-­‐zero”	
 floating-­‐point	
 exception.	
 	

—	
 log10p1(x)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception	
 for	
 x	
 <	
 −1.	
 	

—	
 log10p1(+∞)	
 returns	
 +∞.	
 	

	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

18	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

After	
 F.10.4.5,	
 insert	
 the	
 following:	

F.10.4.6	
 The	
 rsqrt	
 functions	

—	
 rsqrt(±0)	
 returns	
 ±∞	
 and	
 raises	
 the	
 “divide-­‐by-­‐zero”	
 floating-­‐point	
 exception.	
 	
 	
 	

—	
 rsqrt(x)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception	
 for	
 x	
 <	
 0.	
 	

—	
 rsqrt(+∞)	
 returns	
 +0.	
 	

	

F.10.4.7	
 The	
 compoundn	
 functions	

—	
 compoundn(x, 0)	
 returns	
 1	
 for	
 x	
 ≥	
 −1	
 or	
 x	
 a	
 NaN.	
 	
 	

—	
 compoundn(x, n)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception	
 for	

x	
 <	
 −1.	
 	
 	

—	
 compoundn(−1, n)	
 returns	
 +∞	
 and	
 raises	
 the	
 divide-­‐by-­‐zero	
 floating-­‐point	
 exception	

for	
 n	
 <	
 0.	
 	
 	
 	

—	
 compoundn(−1, n)	
 returns	
 +0	
 for	
 n	
 >	
 0.	
 	
 	

	

F.10.4.8	
 The	
 rootn	
 functions	

—	
 rootn(±0, n)	
 returns	
 ±∞	
 and	
 raises	
 the	
 “divide-­‐by-­‐zero”	
 floating-­‐point	
 exception	
 for	

odd	
 n	
 <	
 0.	
 	
 	
 	

—	
 rootn(±0, n)	
 returns	
 +∞	
 and	
 raises	
 the	
 “divide-­‐by-­‐zero”	
 floating-­‐point	
 exception	
 for	

even	
 n	
 <	
 0.	
 	
 	
 	

—	
 rootn(±0, n)	
 returns	
 +0	
 for	
 even	
 n	
 >	
 0.	
 	
 	
 	

—	
 rootn(±0, n)	
 returns	
 ±0	
 for	
 odd	
 n	
 >	
 0.	
 	
 	
 	

—	
 rootn(±∞, n)	
 is	
 equivalent	
 to	
 rootn(±0, −n)	
 for	
 n	
 not	
 0,	
 except	
 that	
 the	
 “divide-­‐by-­‐

zero”	
 floating-­‐point	
 exception	
 is	
 not	
 raised.	
 	
 	
 	

—	
 rootn(x, 0)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception	
 for	
 all	
 x	

(including	
 NaN).	

—	
 rootn(x, n)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception	
 for	
 x	
 <	
 0	
 and	

n	
 even.	
 	

	

	
 	
 F.10.4.9	
 The	
 pown	
 functions	

—	
 pown(x, 0)	
 returns	
 1	
 for	
 all	
 x	
 not	
 a	
 signaling	
 NaN.	

—	
 pown(±0, n)	
 returns	
 ±∞	
 and	
 raises	
 the	
 “divide-­‐by-­‐zero”	
 floating-­‐point	
 exception	
 for	
 odd	

n	
 <	
 0.	
 	
 	
 	

—	
 pown(±0, n)	
 returns	
 +∞	
 and	
 raises	
 the	
 “divide-­‐by-­‐zero”	
 floating-­‐point	
 exception	
 for	

even	
 n	
 <	
 0.	
 	
 	
 	

—	
 pown(±0, n)	
 returns	
 +0	
 for	
 even	
 n	
 >	
 0.	
 	
 	
 	

—	
 pown(±0, n)	
 returns	
 ±0	
 for	
 odd	
 n	
 >	
 0.	
 	
 	
 	

—	
 pown(±∞, n)	
 is	
 equivalent	
 to	
 pown(±0, −n)	
 for	
 n	
 not	
 0,	
 except	
 that	
 the	

“divide-­‐by-­‐zero”	
 floating-­‐point	
 exception	
 is	
 not	
 raised.	
 	
 	
 	

	

	
 	
 F.10.4.10	
 The	
 powr	
 functions	

—	
 powr(x, ±0)	
 returns	
 1	
 for	
 finite	
 x	
 >	
 0.	
 	
 	
 	

—	
 powr(±0, y)	
 returns	
 +∞	
 and	
 raises	
 the	
 “divide-­‐by-­‐zero”	
 floating-­‐point	
 exception	
 for	

finite	
 y	
 <	
 0.	
 	
 	
 	

—	
 powr(±0, −∞)	
 returns	
 +∞.	
 	
 	
 	

—	
 powr(±0, y)	
 returns	
 +0	
 for	
 y	
 >	
 0.	
 	
 	
 	

—	
 powr(+1, y)	
 returns	
 1	
 for	
 finite	
 y.	
 	
 	
 	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 19	

	

—	
 powr(x, y)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception	
 for	
 x	
 <	
 0.	
 	
 	
 	

—	
 powr(±0, ±0)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception.	
 	
 	
 	

—	
 powr(+∞, ±0)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception.	
 	
 	
 	

—	
 powr(1, ±∞)	
 returns	
 a	
 NaN	
 and	
 raises	
 the	
 “invalid”	
 floating-­‐point	
 exception.	
 	
 	
 	

8	
 Reduction	
 functions	
 in	
 <math.h>	

This	
 clause	
 specifies	
 changes	
 to	
 C11	
 +	
 TS18661-­‐1	
 +	
 TS18661-­‐2	
 +	
 TS18661-­‐3	
 to	
 include	
 functions	
 that	

support	
 reduction	
 operations	
 recommended	
 by	
 IEC	
 60559.	

Changes	
 to	
 C11	
 +	
 TS18661-­‐1	
 +	
 TS18661-­‐2	
 +	
 TS18661-­‐3:	

After	
 7.12.13a,	
 insert	
 the	
 following:	

7.12.13b	
 Reduction	
 functions	

The	
 functions	
 in	
 this	
 subclause	
 should	
 be	
 implemented	
 so	
 that	
 intermediate	
 computations	
 do	

not	
 overflow	
 or	
 underflow.	
 	

Functions	
 computing	
 sums	
 of	
 length	
 n	
 =	
 0	
 return	
 the	
 value	
 +0.	
 Functions	
 computing	
 products	

of	
 length	
 n	
 =	
 0	
 return	
 the	
 value	
 1	
 and	
 store	
 the	
 scale	
 factor	
 0	
 in	
 the	
 object	
 pointed	
 to	
 by	
 sfptr.	

7.12.13b.1	
 The	
 reduc_sum	
 functions	

Synopsis	

[1]	
 #include <math.h>
#include <stddef.h>
double reduc_sum(size_t n, const double p[static n]);
float reduc_sumf(size_t n, const float p[static n]);
long double reduc_suml(size_t n,

const long double p[static n]);
_FloatN reduc_sumfN(size_t n, const _FloatN p[static n]);
_FloatNx reduc_sumfNx(size_t n, const _FloatNx p[static n]);
_DecimalN reduc_sumdN(size_t n, const _DecimalN p[static n]);
_DecimalNx reduc_sumdNx(size_t n,

const _DecimalNx p[static n]);

Description	

[2]	
 The	
 reduc_sum	
 functions	
 compute	
 the	
 sum	
 of	
 the	
 n	
 members	
 of	
 array	
 p:	
 Σi=0,n−1p[i].	
 A	

range	
 error	
 may	
 occur.	

Returns	

[3]	
 The	
 reduc_sum	
 functions	
 return	
 the	
 computed	
 sum.	
 	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

20	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

7.12.13b.2	
 The	
 reduc_sumabs	
 functions	

Synopsis	

[1]	
 #include <math.h>
#include <stddef.h>
double reduc_sumabs(size_t n, const double p[static n]);
float reduc_sumabsf(size_t n, const float p[static n]);
long double reduc_sumabsl(size_t n,

const long double p[static n]);
_FloatN reduc_sumabsfN(size_t n, const _FloatN p[static n]);
_FloatNx reduc_sumabsfNx(size_t n,

const _FloatNx p[static n]);
_DecimalN reduc_sumabsdN(size_t n,

const _DecimalN p[static n]);
_DecimalNx reduc_sumabsdNx(size_t n,

const _DecimalNx p[static n]);

Description	

[2]	
 The	
 reduc_sumabs	
 functions	
 compute	
 the	
 sum	
 of	
 the	
 absolute	
 values	
 of	
 the	
 n	
 members	
 of	

array	
 p:	
 Σi=0,n−1|p[i]|.	
 A	
 range	
 error	
 may	
 occur.	

Returns	

[3]	
 The	
 reduc_sumabs	
 functions	
 return	
 the	
 computed	
 sum.	
 	

7.12.13b.3	
 The	
 reduc_sumsq	
 functions	

Synopsis	

[1]	
 #include <math.h>
#include <stddef.h>
double reduc_sumsq(size_t n, const double p[static n]);
float reduc_sumsqf(size_t n, const float p[static n]);
long double reduc_sumsql(size_t n,

const long double p[static n]);
_FloatN reduc_sumsqfN(size_t n, const _FloatN p[static n]);
_FloatNx reduc_sumsqfNx(size_t n,

const _FloatNx p[static n]);
_DecimalN reduc_sumsqdN(size_t n,

const _DecimalN p[static n]);
_DecimalNx reduc_sumsqdNx(size_t n,

const _DecimalNx p[static n]);

Description	

[2]	
 The	
 reduc_sumsq	
 functions	
 compute	
 the	
 sum	
 of	
 squares	
 of	
 the	
 values	
 of	
 the	
 n	
 members	

of	
 array	
 p:	
 Σi=0,n−1	
 (p[i]	
 ×	
 p[i]).	
 A	
 range	
 error	
 may	
 occur.	

Returns	

[3]	
 The	
 reduc_sumsq	
 functions	
 return	
 the	
 computed	
 sum.	
 	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 21	

	

7.12.13b.4	
 The	
 reduc_sumprod	
 functions	

Synopsis	

[1]	
 #include <math.h>
#include <stddef.h>
double reduc_sumprod(size_t n, const double p[static n],

const double q[static n]);
float reduc_sumprodf(size_t n, const float p[static n],

const float q[static n]);
long double reduc_sumprodl(size_t n,

const long double p[static n],
const long double q[static n]);

_FloatN reduc_sumprodfN(size_t n, const _FloatN p[static n],
const _FloatN q[static n]);

_FloatNx reduc_sumprodfNx(size_t n,
const _FloatNx p[static n],
const _FloatNx q[static n]);

_DecimalN reduc_sumproddN(size_t n,
const _DecimalN p[static n],
const _DecimalN q[static n]);

_DecimalNx reduc_sumproddNx(size_t n,
const _DecimalNx p[static n],
const _DecimalNx q[static n]);

Description	

[2]	
 The	
 reduc_sumprod	
 functions	
 compute	
 the	
 dot	
 product	
 of	
 the	
 sequences	
 of	
 members	
 of	

the	
 arrays	
 p	
 and	
 q:	
 Σi=0,n−1	
 (p[i]	
 ×	
 q[i]).	
 A	
 range	
 error	
 may	
 occur.	

Returns	

[3]	
 The	
 reduc_sumprod	
 functions	
 return	
 the	
 computed	
 sum.	
 	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

22	
 ©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	

	

7.12.13b.5	
 The	
 scaled_prod	
 functions	

Synopsis	

[1]	
 #include <math.h>
#include <stddef.h>
#include <stdint.h>
double scaled_prod(size_t n,

const double p[static restrict n],
intmax_t * restrict sfptr);

float scaled_prodf(size_t n,
const float p[static restrict n],
intmax_t * restrict sfptr);

long double scaled_prodl(size_t n,
const long double p[static restrict n],
intmax_t * restrict sfptr);

_FloatN scaled_prodfN(size_t n,
const _FloatN p[static restrict n],
intmax_t * restrict sfptr);

_FloatNx scaled_prodfNx(size_t n,
const _FloatNx p[static restrict n],
intmax_t * restrict sfptr);

_DecimalN scaled_proddN(size_t n,
const _DecimalN p[static restrict n],
intmax_t * restrict sfptr);

_DecimalNx scaled_proddNx(size_t n,
const _DecimalNx p[static restrict n],
intmax_t * restrict sfptr);

Description	

[2]	
 The	
 scaled_prod	
 functions	
 compute	
 a	
 scaled	
 product	
 pr	
 of	
 the	
 n	
 members	
 of	
 the	
 array	
 p	

and	
 a	
 scale	
 factor	
 sf,	
 such	
 that	
 pr	
 ×	
 bsf	
 =	
 Πi=0,n−1p[i],	
 where	
 b	
 is	
 the	
 radix	
 of	
 the	
 type.	
 These	

functions	
 store	
 the	
 scale	
 factor	
 sf	
 in	
 the	
 object	
 pointed	
 to	
 by	
 sfptr.	
 A	
 domain	
 error	
 occurs	
 if	

the	
 scale	
 factor	
 is	
 outside	
 the	
 range	
 of	
 the	
 intmax_t	
 type.	
 The	
 functions	
 should	
 not	
 cause	
 a	

range	
 error.	

Returns	

[3]	
 The	
 scaled_prod	
 functions	
 return	
 the	
 computed	
 scaled	
 product	
 pr.	
 	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ISO/IEC	
 TS	
 18661-­‐4:2015(E)	

©	
 ISO/IEC	
 2015	
 –	
 All	
 rights	
 reserved	
 23	

	

7.12.13b.6	
 The	
 scaled_prodsum	
 functions	

Synopsis	

[1]	
 #include <math.h>
#include <stddef.h>
#include <stdint.h>
double scaled_prodsum(size_t n,

const double p[static restrict n],
const double q[static restrict n],
intmax_t * restrict sfptr);

float scaled_prodsumf(size_t n,
const float p[static restrict n],
const float q[static restrict n],
intmax_t * restrict sfptr);

long double scaled_prodsuml(size_t n,
const long double p[static restrict n],
const long double q[static restrict n],
intmax_t * restrict sfptr);

_FloatN scaled_prodsumfN(size_t n,
const _FloatN p[static restrict n],
const _FloatN q[static restrict n],
intmax_t * restrict sfptr);

_FloatNx scaled_prodsumfNx(size_t n,
const _FloatNx p[static restrict n],
const _FloatNx q[static restrict n],
intmax_t * restrict sfptr);

_DecimalN scaled_prodsumdN(size_t n,
const _DecimalN p[static restrict n],
const _DecimalN q[static restrict n],
intmax_t * restrict sfptr);

_DecimalNx scaled_prodsumdNx(size_t n,
const _DecimalNx p[static restrict n],
const _DecimalNx q[static restrict n],
intmax_t * restrict sfptr);

Description	

[2]	
 The	
 scaled_prodsum	
 functions	
 compute	
 a	
 scaled	
 product	
 pr	
 of	
 the	
 sums	
 of	
 the	

corresponding	
 members	
 of	
 the	
 arrays	
 p	
 and	
 q	
 and	
 a	
 scale	
 factor	
 sf,	
 such	
 that	
 pr	
 ×	
 bsf	
 =	

Πi=0,n−1(p[i]	
 +	
 q[i]),	
 where	
 b	
 is	
 the	
 radix	
 of	
 the	
 type.	
 These	
 functions	
 store	
 the	
 scale	
 factor	
 sf	
 in	

the	
 object	
 pointed	
 to	
 by	
 sfptr.	
 A	
 domain	
 error	
 occurs	
 if	
 the	
 scale	
 factor	
 is	
 outside	
 the	
 range	
 of	

the	
 intmax_t	
 type.	
 These	
 functions	
 should	
 not	
 cause	
 a	
 range	
 error.	

Returns	

[3]	
 The	
 scaled_prodsum	
 functions	
 return	
 the	
 computed	
 scaled	
 product	
 pr.	
 	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 18
66

1-4
:20

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

