TECHNICAL ISO/IECTS
SPECIFICATION 18661-4

First edition
2015-10-01

Information Technology —
Programming languages, their
environments, and system software
interfaces — Floating-point
extensions for G+

Part 4
Supplementary functions

Technologies de l'information — Langages de programmatjon, leurs
environnemeits et interfaces du logiciel systeme — Extensipns a
virguleflottante pour C —

Partie4: Fonctions supplémentaires

Reference number

@ m ISO/IEC TS 18661-4:2015(E)
Y=
©ISO/IEC 2015

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

WwWw.iso.org

ii © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

1
2
3
4
5

ISO/IEC TS 18661-4:2015(E)

Terms and definitions

C standard conformance

5.1
5.2
5.3

10
11
Bih

Freestanding implementations........u s dore
Predefined macros
Y 1 0 10 B 0 0 0 4 U< T =) L Do

Operation binding

Mathematical functions in <math.h>

Reduction functions in <math.h>

Future directions for <complex.h>

Type-generic macros <tgmath_h>

Constant rounding modes <fenv_h>

JHOBraphy .. e s

© ISO/IEC 2015 - All rights reserved

iii

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IECJTC1

The proce]
described
different t

dures used to develop this document and those intended for its further maintenance
in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for
ypes of document should be noted. This document was drafted in accordance with

are
the
the

editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

t of
hts.
the

Attention

patent rig
Details of]
Introducti

s drawn to the possibility that some of the elements of this document may be the subjec
hts. ISO and IEC shall not be held responsible for identifying any.ér-all such patent rig
any patent rights identified during the development of the/document will be in

bn and/or on the ISO list of patent declarations received (see wiviv.iso.org/patents).

Any trade not

constitute

name used in this document is information given for the‘econvenience of users and does
an endorsement.

For an explanation on the meaning of ISO specific terms)and expressions related to conformity
assessment, as well as information about ISO's adheren¢e to the WTO principles in the Technjcal
Barriers tq Trade (TBT) see the following URL: Forewaerd* Supplementary information

The comm tee

SC 22, Prog

ittee responsible for this document is ¥SO/IEC JTC 1, Information technology, Subcommif
yjramming languages, their environmeiits, and system software interfaces.

ISO/IEC T
Programm
for C:

5 18661 consists of the following parts, under the general title Information technology

ing languages, their environments, and system software interfaces — Floating-point extensjons

Part 1} Binary floating-point.arithmetic

Part 2| Decimal floating*point arithmetic

Part 3} Interchange and extended types

Part 4t Supplementary functions

The following part is under preparation:

— Part 5: Supplementary attributes

ISO/IEC TS 18661-1 updates ISO/IEC 9899:2011, Information technology — Programming Language C,
annex F in particular, to support all required features of ISO/IEC/IEEE 60559:2011, Information
technology — Microprocessor Systems — Floating-point arithmetic.

ISO/IEC TS 18661-2 supersedes ISO/IEC TR 24732:2009, Information technology — Programming
languages, their environments and system software interfaces — Extension for the programming language
C to support decimal floating-point arithmetic.

iv © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

ISO/IEC TS 186610-3, ISO/IEC TS 186610-4, and ISO/IEC TS 186610-5 specify extensions to
ISO/IEC 9899:2011 for features recommended in ISO/IEC/IEEE 60559:2011.

© ISO/IEC 2015 - All rights reserved \"

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

Introduction

Background

IEC 60559 floating-point standard

The IEEE 754-1985 standard for binary floating-point arithmetic was motivated by an expanding
diversity in floating-point data representation and arithmetic, which made writing robust programs,

debugging
systems |
60559:19¢
were the f

1

6

Fa
thil

En
nu

pllowing:

Filitate movement of existing programs from diverse computers to those that adhere to
5 standard.

hance the capabilities and safety available to programmers who, though not expert in
nerical methods, may well be attempting to produce numerically sophisticated

programs. However, we recognize that utility and safety are sometithes antagonists.

En
arg
to
thg

rourage experts to develop and distribute robust and effiefent numerical programs that
portable, by way of minor editing and recompilation, onto any computer that conforms
this standard and possesses adequate capacity. When Testricted to a declared subset of
standard, these programs should produce identicalresults on all conforming systems.

Provide direct support for

a. Execution-time diagnosis of anomalies
b. Smoother handling of exceptions

c. Interval arithmetic at areasonable cost

Provide for development of

En

a. Standard elementary functions such as exp and cos
b. Very high\precision (multiword) arithmetic
c. Coupling of numerical and symbolic algebraic computation

hblé rather than preclude further refinements and extensions.

To these ends, the standard specified a floating-point model comprising the following:

vi

of
EC

9 international standard was equivalent to the IEEE 754-1985 standard. Its stated“goals

formats - for binary floating-point data, including representations for Not-a-Number (NaN) and
signed infinities and zeros

operations - basic arithmetic operations (addition, multiplication, etc.) on the format data to
compose a well-defined, closed arithmetic system; also specified conversions between floating-
point formats and decimal character sequences, and a few auxiliary operations

context - status flags for detecting exceptional conditions (invalid operation, division by zero,
overflow, underflow, and inexact) and controls for choosing different rounding methods

© ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

The ISO/IEC/IEEE 60559:2011 international standard is equivalent to the IEEE 754-2008 standard for
floating-point arithmetic, which is a major revision to IEEE 754-1985.

The revised standard specifies more formats, including decimal as well as binary. It adds a 128-bit
binary format to its basic formats. It defines extended formats for all of its basic formats. It specifies
data interchange formats (which may or may not be arithmetic), including a 16-bit binary format and an
unbounded tower of wider formats. To conform to the floating-point standard, an implementation must
provide at least one of the basic formats, along with the required operations.

The revised standard specifies more operations. New requirements include - among others - arithmetic

op4

mo
ma

andg

Thd

sta

rec

Thd
cod
corn

Oth
corj
reproducible results, and support for program debugging.

Thd

It

commputer language or other interface being used), nor does it define the concrete repr
(specific layout in storage, orin a processor's register, for example) of data or context, ex¢
dogs define specific encodings that are to be used for the exchange of floating-point da]

diff

IEQ
Ho}
rec
har
of 3

seven reduction functions for sums and scaled products.

e revised standard places more emphasis on reproducible results, mzhich is refleg

nded for at least three more decimal digits than is required to distinguish all numbers in
ported binary format; it fully specifies conversions involvinig any number of decimg
pmmends that transcendental functions be correctly rounded:

 revised standard requires a way to specify a constant rounding direction for a static
e, with details left to programming language standards. This feature potentially allows
trol without incurring the overhead of runtime acgess to a global (or thread) rounding mo

er features recommended by the revised standard include alternate methods for exceptio1
trols for expression evaluation (allowingror disallowing various optimizations), suppo

 revised standard, like its predecessor, defines its model of floating-point arithmetic in th
either defines the way in which operations are expressed (which might vary depend

erent implementations that conform to the specification.

60559 does notinclude bindings of its floating-point model for particular programming
vever, the srevised standard does include guidance for programming language sta
pgnition-of the fact that features of the floating-point standard, even if well suppor
dware,-are not available to users unless the programming language provides a commens
upport. The implementation’s combination of both hardware and software determines co

to thefloating-point standard.

rations that round their result to a narrower format than the operands (with just one frounding),
e conversions with integer types, more classifications and comparisons, and more-opefations for
haging flags and modes. New recommendations include an extensive set of mathematical functions

ted in its

ndardization of more operations. For the most part, behaviors are completely specified. The standard
requires conversions between floating-point formats and decimal character sequences to b
roy
suf

b correctly
the widest
| digits. It

portion of
rounding
He.

1 handling,
't for fully

e abstract.
Ing on the
esentation
ept that it
h between

languages.
hdards, in
ted in the
urate level
nformance

C support for IEC 60559

The C standard specifies floating-point arithmetic using an abstract model. The representation of a
floating-point number is specified in an abstract form where the constituent components (sign,
exponent, significand) of the representation are defined but not the internals of these components. In
particular, the exponent range, significand size, and the base (or radix) are implementation-defined.
This allows flexibility for an implementation to take advantage of its underlying hardware architecture.
Furthermore, certain behaviors of operations are also implementation-defined, for example in the area
of handling of special numbers and in exceptions.

© ISO/IEC 2015 - All rights reserved vii

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

The reason for this approach is historical. At the time when C was first standardized, before the floating-
point standard was established, there were various hardware implementations of floating-point
arithmetic in common use. Specifying the exact details of a representation would have made most of the
existing implementations at the time not conforming.

Beginning with ISO/IEC 9899:1999 (C99), C has included an optional second level of specification for
implementations supporting the floating-point standard. C99, in conditionally normative annex F,
introduced nearly complete support for the IEC 60559:1989 standard for binary floating-point
arithmetic. Also, C99’s informative annex G offered a specification of complex arithmetic that is

compatible with IEC 60559:1989

ISO/IEC 9899:2011 (C11) includes refinements to the C99 floating-point specification, though-it'is till
based on IEC 60559:1989. C11 upgraded annex G from “informative” to “conditionally normative”.
ISO/IEC TR 24732:2009 introduced partial C support for the decimal floating-point arithmeti¢ in
ISO/IEC/IEEE 60559:2011. ISO/IEC TR 24732, for which technical content was completed while IEEE
754-2008 [was still in the later stages of development, specifies decimal types based on ISO/IEC/IEEE
60559:2011 decimal formats, though it does not include all of the operations réquired by ISO/IEC/IEEE
60559:2011.

Purpose

The purpdgse of ISO/IEC TS 18661 is to provide a C language binding for ISO/IEC/IEEE 60559:2(11,
based on the C11 standard, that delivers the goals of ISO/IEC/IEEE 60559 to users and is feasibl¢ to
implement. It is organized into five parts.

ISO/IEC TS 18661-1 provides changes to C11 that.gover all the requirements, plus some basic
recommerdations, of ISO/IEC/IEEE 60559:20#1 for binary floating-point arithmetic.| C
implemenfations intending to support ISO/IEC/IEEE 60559:2011 are expected to conform| to
conditionglly normative annex F as enhanced by‘the changes in ISO/IEC TS 18661-1.

ISO/IEC TS 18661-2 enhances ISO/IEC (TR 24732 to cover all the requirements, plus some basic
recommerdations, of ISO/IEC/IEEE- 60559:2011 for decimal floating-point arithmetic.| C
implemenfations intending to provide an extension for decimal floating-point arithmetic supporting
ISO/IEC/IEEE 60559:2011 are expected to conform to ISO/IEC TS 18661-2.

ISO/IEC T$ 18661-3 (Interchange and extended types), ISO/IEC TS 18661-4 (Supplementary functiops),
and ISO/IEC TS 18661-5-(Supplementary attributes) cover recommended features of ISO/IEC/IEEE
60559:2011. C implementations intending to provide extensions for these features are expected to
conform tg the corresponding parts.

Additionpl background on supplementary functions

This document uses the term supplementary functions to refer to functions that provide operations
recommended, but not required, by IEC 60559.

ISO/IEC/IEEE 60559:2011 specifies and recommends a more extensive set of mathematical operations
than C11 provides. The IEC 60559 specification is generally consistent with C11, though it adds
requirements for symmetry and antisymmetry. This part of ISO/IEC TS 18661 extends the specification
in Library subclause 7.12 Mathematics to include the complete set of IEC 60559 mathematical
operations. For implementations conforming to annex F, it also requires full IEC 60559 semantics,
including symmetry and antisymmetry properties.

viii © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

IEC 60559 requires correct rounding for its required operations (squareRoot, fusedMultiplyAdd, etc.),
and recommends correct rounding for its recommended mathematical operations. This part of ISO/IEC
TS 18661 reserves identifiers, with cr prefixes, for C functions corresponding to correctly rounded
versions of the IEC 60559 mathematical operations, which may be provided at the option of the
implementation. For example, the identifier crexp is reserved for a correctly rounded version of the
exp function.

IEC 60559 also specifies and recommends reduction operations, which operate on vector operands.
These operatlons which Compute sums and products may associate in any order and may evaluate in
any-wi ified results.
This part of ISO/IEC TS 18661 extends the spec1f1cat10n in L1brary subclause 7 12 Mathematics to
include functions corresponding to the IEC 60559 reduction operations. For implementations
corfforming to annex F, it also requires the IEC 60559 specified behavior for floating-point exdeptions.

© ISO/IEC 2015 - All rights reserved ix

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

TECHNICAL SPECIFICATION

ISO/IEC/TS 18661-4:2015(E)

In

formation technology — Programming languages, their

environments, and system software interfaces — Floating-point
extensions for C —

Part 4:

Su

Thi
rec

An

Thd

indispensable for its application. For dated references, only the edition cited applies. Fof
erences, the latest edition of the referenced document (including any amendments) applieg.

ref

ISO

ISO
ari

ISO

pplementary functions

Scope

s part of ISO/IEC TS 18661 extends programming language C to include functions spe
pmmended in [SO/IEC/IEEE 60559:2011.

Conformance
implementation conforms to this part of ISO/IEC TS 18661-if

it meets the requirements for a conforming impleméntation of C11 with all the changes to
specified in parts 1-4 of ISO/IEC TS 18661;

it conforms to ISO/IEC TS 18661-1 or ISO/IECTS 18661-2 (or both); and

it defines __STDC_IEC_60559_FUNCS: _to 201506L.

Normative references

e following documents, in whole or in part, are normatively referenced in this documer

lem”software interfaces — Floating-point extensions for C — Part 1: Binary floating-point ar

sys

rified and

Cl1l1 as

t and are
undated

/1EC 9899:201 1, \Information technology — Programming languages — C

/IEC/IEEE~"60559:2011, Information technology — Microprocessor Systems— Flodting-point
hmetic

/IEC-TS 18661-1:2014, Information technology — Programming languages, their environ

ments and
thmetic

ISO/IEC TS 18661-2:2015, Information technology — Programming languages, their environments and
system software interfaces — Floating-point extensions for C — Part 2: Decimal floating-point arithmetic

ISO/IEC TS 18661-3:2015, Information technology — Programming languages, their environments and
system software interfaces — Floating-point extensions for C — Part 3: Interchange and extended types

© ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

4 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9899:2011,
ISO/IEC/IEEE 60559:2011, ISO/IEC TS 18661-1:2014, ISO/IEC TS 18661-2:2015, ISO/IEC
TS 18661-3:2015, and the following apply.

4.1
C11

standard [SO/IEC 9899:2011, Information technology — Programming languages C. including Technical
Corrigendum 1 (ISO/IEC 9899:2011/Cor. 1:2012)

5 Cst3gndard conformance
5.1 Freestanding implementations

The specification in C11 + TS18661-1 + TS18661-2 allows freestanding implementations to conform to
this part ¢f ISO/IEC TS 18661.

5.2 Prefdefined macros
Change tp C11 + TS18661-1 + TS18661-2 + TS18661-3:
In 6.10.8.3#1, add:

___STPC_IEC_60559 FUNCS___ The integer constant 201506L, intended to indicate
support of functions specified and recommended in IEC 60559.

5.3 Stamdard headers

The new [identifiers added to C11 library headers by this Part of Technical Specification 18661 |are
defined or|declared by their respective headers only if __ STDC_WANT_IEC_60559 FUNCS_EXT__ is defined
as a macrp at the point in the source file'where the appropriate header is first included. The following
changes tp C11 + TS18661-1 + TS18661-2 + TS18661-3 list these identifiers in each applicable librjary
subclause.

Changes to C11 + TS18661+1 + TS18661-2 + TS18661-3:
In 7.12, rgnumber paragraph 1le to 1h, and after paragraph 1d insert the paragraphs:

[le] The following identifiers are declared only if _ STDC_WANT_IEC_60559 FUNCS EXT__ is
defingd as ajmacro at the point in the source file where <math . h> is first included:

XpZm1 rootnt sinpil
exp2mlf rootnl tanpi

exp2mll pown tanpif

explo pownf tanpil

explof pownl reduc_sum
explol powr reduc_sumf
exploml powr¥ reduc_suml
explomlif powrl reduc_sumabs
explomll acospi reduc_sumabsT
logpl acospifT reduc_sumabsl
logplf acospil reduc_sumsq

2 © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

logpll asinpi reduc_sumsqf
log2pl asinpif reduc_sumsqgl
log2plf asinpil reduc_sumprod
log2pill atanpi reduc_sumprodf
loglOpl atanpif reduc_sumprodl
logl0plf atanpil scaled_prod
logl0Op1ll atan2pi scaled_prodf
rsqrt atan2pif scaled_prodl
rsqrtf atan2pil scaled_prodsum
rsqrtl cospi scaled_prodsumf
compoundn cospitT Scafled_prodsuml
compoundnf cospil scaled_proddifF
compoundnl sinpi scaled_proddaFff
rootn sinpif scaled_proddiTfl

[1f] The following identifiers are declared only if __ STDC_WANT_I1EC_ 60559 DFP_EXT | and
__STDC_WANT _IEC_60559 FUNCS_EXT___ are defined as macros at the'point in the sourfe file

where <math.h> is first included:

for supported types _DecimalN, where N = 32, 64, and 128:

exp2mldN
expl0dN
explOmidN
logpldN
log2pldN
1og10pldN
rsqrtdN
compoundndN
rootndN

powndN
powrdN
acospidnN
asinpidN
atanpidi
atan2pidN
cospidN
sinpidN

tanpidN
reduc_sumdN
reduc_sumabsdN
reduc_sumsqdN
reduc_sumproddN
scaled_proddN
scaled_prodsumdN
scaled_proddiffd]

=

[1g] The following identifiers,are declared only if __ STDC_WANT_IEC_60559 TYPES EXT | and
__STDC_WANT_IEC_60559,FUNCS_EXT___are defined as macros at the point in the sourfe file

where <math.h> is firstincluded:

for supported types. FloatN:

exp2mlFN pownfN tanpifN

explOTN powrfN reduc_sumfN
explOmlfN acospifN reduc_sumabsftN
PogplfN asinpifthN reduc_sumsqfN
1092pl1fN atanpifhN reduc_sumprodfN
1oglOplfN atan2pifN scaled_prodfN
rsqrtfN cospifnN scaled_prodsumfN
compoundnfN sinpifN scaled_proddifffN
rootnfN

© ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

for supported types _FloatNx:

exp2m1fNx pownfNx tanpifNx
expl0fNx powrfNx reduc_sumfNx
explOomlfNx acospifNx reduc_sumabsfNx
logplfNx asinpifNx reduc_sumsqfNx
1og2p1FNx atanpifNx reduc_sumprodfNx
10g10pl1fNx atan2pifiNx scaled_prodfnNx
rsqrtfNx cospifNx scaled_prodsumfNx
ompoundnTiX SINPITNX Scaled_proddiTTTNX
nootnfNx
for supported types _Decimal N, where N # 32, 64, and 128:
gxp2mldN powndN tanpidN
gxpl0dN powrdN reduc_sumdnN
gxplOmidN acospidN reduc_sumabsdN
llogpldN asinpidN reduc, sumsqdN
llog2p1dN atanpidN reduc_sumproddN
llog10pldN atan2pidnN Scaled_proddN
nNsqredN cospidN scaled_prodsumdN
dompoundndN sinpidN scaled_proddiffdN
rnootndN
for supported types _DecimalNx:
gxp2mldNx powndNXx tanpidNx
gxpl0dNx powrdNx reduc_sumdNx
gxplOmldNx acosprdNx reduc_sumabsdNx
ogpldNx asinpidNx reduc_sumsqdNx
log2pldNx atanpidNx reduc_sumproddNx
log10pldNx atan2pidNx scaled_proddnNx
NsqrtdNx cospidNx scaled_prodsumdNx
dompoundndNx sinpidNx scaled_proddiffdNx
nootndNx

After 7.23#1c, insert-the'paragraph:

[1d] | The «following identifiers are defined type-generic macros only if
__STPC, WANT_1EC_60559 FUNCS_EXT___is defined as a macro at the point in the source
file where'<tgmath.h> is first included:

exp2ml rsqrt asinpi

expl0 compoundn atanpi

exploml rootn atan2pi

logpl pown cospi

log2pl powr sinpi

loglOpl acospi tanpi

© ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

6 Operation binding

The following change to C11 + TS18661-1 + TS18661-2 + TS18661-3 shows how functions in C11 and
in this Part of Technical Specification 18661 provide operations recommended in IEC 60559.

Change to C11 + TS18661-1 + TS18661-2 + TS18661-3:
After F.3#22, add:

[23] The C functions in the following table provide operations recommended by IEC 60559 and

similar operations. Correct rounding, which IEC 60559 specifies for its operations (except for
the reduction operations), is not required for the C functions in the table. See also 7.31.6a.
IEC 60559 operation C function Clauses - C11
exp exp 7.12.6.1, F.10.3.1
expm1 expml 7.12.6.37F10.3.3
exp? exp2 7.12,6.2,F.10.3.2
exp2m1 exp2ml 7.12.6/14,F.10.3.14
exp10 explo0 7.12.6.15,F.10.3.15
exp10m1 expl0Oml 7.12.6.16,F.10.3.16
log log 7.12.6.7, F.10.3.7
log2 log2 7.12.6.10,F.10.3.10
log10 log10 7.12.6.8,F.10.3.8
logp1 loglp, logpl 7.12.6.9,F.10.3.9
log2p1 log2pl 7.12.6.17,F.10.3.17
log10p1 loglOpl 7.12.6.18,F.10.3.18
hypot hypot 7.12.7.3,F.10.4.3
rSqrt rsqrt 7.12.7.6,F.10.4.6
compound compoundn 7.12.7.7, F.10.4.7
rootn rootn 7.12.7.8,F.10.4.8
pown pown 7.12.7.9,F.10.4.9
pow pow 7.12.7.4,F.10.4.4
powr powr 7.12.7.10,F.10.4.10
sin sin 7.12.4.6,F.10.1.6
cos cos 7.12.4.5,F.10.1.5
tan tan 7.12.4.7,F.10.1.7
sinPi sinpi 7.12.4.13,F.10.1.13
cosPi cospi 7.12.4.12,F.10.1.12
tanpi 7.12.4.14,F.10.1.14
asinpi 7.12.4.9,F.10.1.9
acospi 7.12.4.8,F.10.1.8
atanPi atanpi 712410 E10.1.10
atan2Pi atan2pi 7.12.4.11,F.10.1.11
asin asin 7.12.4.2,F.10.1.2
acos acos 7.12.4.1,F.10.1.1
atan atan 7.12.4.3,F.10.1.3
atan2 atan?2 7.12.4.4,F.10.1.4
sinh sinh 7.12.5.5,F.10.2.5
cosh cosh 7.12.5.4,F.10.2.4
tanh tanh 7.12.5.6,F.10.2.6
asinh asinh 7.12.5.2,F.10.2.2
acosh acosh 7.12.5.1,F.10.2.1

© ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

atanh atanh 7.12.5.3,F.10.2.3

sum reduc_sum 7.12.13b.1, F.10.10b.1
dot reduc_sumprod 7.12.13b.4,F.10.10b.4
sumSquare reduc_sumsq 7.12.13b.3,F.10.10b.3
sumAbs reduc_sumabs 7.12.13b.2, F.10.13b.2
scaledProd scaled_prod 7.12.13b.5, F.10.10b.5
scaledProdSum scaled_prodsum 7.12.13b.6, F.10.10b.6
scaledProdDiff scaled_proddiff 7.12.13b.7, F.10.10b.7

7 Mathematical functions in <math_h>

This clauge specifies changes to C11 + TS18661-1 + TS18661-2 + TS18661-3 to include functions that
support mathematical operations recommended by IEC 60559. The changes reserve names |for
correctly founded versions of the functions. IEC 60559 recommends support for the @orrectly rounfled
functions| The changes also support the symmetry and antisymmetry properntiés that IEC 60559
specifies for mathematical functions.

After 7.12.4.7, insert the following:

7.12.4.8 The acospi functions
Synopsis

[1] #include <math._h>

double acospi(double x);

qloat acospif(float x);

llong double acospil(long doubledx);
_[FloatN acospifN(_FloatN x);
_[FloatNx acospifNx(_FloathNx X);
_[DecimalN acospidN(_DecimalN x);
_[DecimalNx acospidNx(, DecimalNx X);

Descrjiption

[2] The acospi functiens'compute the principal value of the arc cosine of X, divided by 7, thus
measyring the anglé in half-revolutions. A domain error occurs for arguments not in the
interval [-1, +1].

Retunns

[3] THe@cospi functions return arccos(x)/m, in the interval [0, 1].

6 © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

7.12.4.9 The asinpi functions
Synopsis

[1] #include <math._h>
double asinpi(double x);
float asinpif(float x);
long double asinpil(long double x);
_FloatN asinpifN(_FloatN x);
_FloatNx asinpifNxX(FloatNx X);
_DecimalN asinpidN(_DecimalN x);
_DecimalNx asinpidNx(_DecimalNx X);

Description

[2] The asinpi functions compute the principal value of the arc sine of(X; divided by 7, thus
measuring the angle in half-revolutions. A domain error occurs for arguments not in the
interval [-1, +1]. A range error occurs if the magnitude of nonzero X'istoo small.

Returns

[3] The asinpi functions return arcsin(X) / m, in the intefval [-1/2, +1/2].
7.12.4.10 The atanpi functions

Synopsis

[1] #include <math.h>
double atanpi(double x);
float atanpif(float x);
long double atanpil(long double x);
_FloatN atanpifN(xFloatN Xx);
_FloatNx atanpifNx(_FloatNx X);
_DecimalN atanpidN(_DecimalN x);
_DecimalNx .atanpidNx(_DecimalNx X);

Description
[2] The atanpi functions compute the principal value of the arc tangent of X, divided|by 7,

thus measuring the angle in half-revolutions. A range error occurs if the magnitude of nonzero
X is(too small.

Reurns

[3] The atanpi functions return arctan(x) / m, in the interval [-1/2, +1/2].

© ISO/IEC 2015 - All rights reserved 7

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

7.12.4.11 The atan2pi functions
Synopsis

[1] #include <math._h>
double atan2pi(double y, double x);
float atanz2pif(float y, float x);
long double atan2pil(long double y, long double X);
_FloatN atan2pifN(_FloatN y, _FloatN x);
_FloatNx atan?pifNx(FloatNx y, FloatNX X);
_[DecimalN atan2pidN(_DecimalN y, _DecimalN x);
_[DecimalNx atan2pidNx(_DecimalNx y, _DecimalNx X);

Descrjiption

[2] THe atan2pi functions compute the angle, measured in half-revolutions, stbtended at the
origin by the point (X, y) and the positive x-axis. Thus, atan2pi computes-arctan(y/Xx) / m, in
the range [-1, +1]. A domain error may occur if both arguments are zero. A range error occurs
if X is|positive and the magnitude of nonzero y/X is too small.

Returnns
[3] THe atan2pi functions return the computed angle, in the'interval [-1, +1].

7.12.4.12 The cospi functions

Synopsis

[1] #Ainclude <math.h>

ouble cospi(double x);

loat cospif(float x);

llong double cospil(long‘.double x);
_[FloatN cospifN(_FloatN x);
_|[FloatNx cospifNx(_FloatNx X);
_[DecimalN cospidN(_DecimalN x);
_[DecimalNx cospi#dNx(_DecimalNx X);

Description

[2] The cospli functions compute the cosine of ™ x X, thus regarding X as a measurement in
half-revolations.

Returns

[3] The cospi functions return cos(m x X).

8 © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

7.12.4.13 The sinpi functions
Synopsis

[1] #include <math._h>
double sinpi(double x);
float sinpif(float x);
long double sinpil(long double x);
_FloatN sinpifN(_FloatN x);
_FloatNx sinpifNx(FloatNx X);
_DecimalN sinpidN(_DecimalN Xx);
_DecimalNx sinpidNx(_DecimalNx X);

Description

[2] The sinpi functions compute the sine of 7w x X, thus regarding X as a‘measurement i half-
revolutions.

Returns
[3] The sinpi functions return sin(m x X).
7.12.4.14 The tanpi functions
Synopsis
[1] #include <math.h>
double tanpi(double x);
float tanpif(Ffloat x);
long double tanpil(longidouble x);
_FloatN tanpifN(_FloatN x);
_FloatNx tanpifNx¢.FloatNx Xx);

_DecimalN tanpidN(_DecimalN Xx);
_DecimalNx tanpidNx(_DecimalNx X);

Description

[2] The tanpi-functions compute the tangent of m x X, thus regarding X as a measuremgnt in
half-revolutions. A pole error may occur for arguments n + 1/2, for integers n.

Returns

frraen o (o AVA|
cor i cat(rit IayD

[2
4

=

In 7.12.6.9, replace the subclause title:

7.12.6.9 The 10oglp functions

© ISO/IEC 2015 - All rights reserved 9

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

with:
7.12.6.9 The loglp and logpl functions

In 7.12.6.9#1, append to the Synopsis:

double logpl(double x);

float logplf(Float x);

long double logpll(long double x);
FloatN logplfN(FloatN Xx);

_[FloatNx logplfNx(_FloathNx X);

_[DecimalN logpldN(_DecimalN Xx);

_[DecimalnNx logpldNx(_DecimalNx X);

In 7.12.6.9#2, replace the first sentence:
The 1oglp functions compute the base-e (natural) logarithm of 1 plus the argument.
with:

The 1oglp functions are equivalent to the logpl functions. These functions compute the
bdse-e (natural) logarithm of 1 plus the argument.

Replace 7|12.6.943:

[3]] The loglp functions return loge (1 + X).

with:

[3[] These functions return log. (1 + X).

In F.10.3.9, replace the subclause title:
F.10.3.9 The 10glp functions

with:
F.10.3.9 The loglp'and logpl functions

After 7.12.6.13, insert the following:

7.12.T.14- The exp2ml functions

Synopsis

[1] #include <math.h>
double exp2ml(double Xx);
float exp2mlf(Float Xx);
long double exp2mll(long double x);
_FloatN exp2mlfN(_FloatN x);
_FloathNx exp2mlfNx(_FloatNx X);
_DecimalN exp2mldN(_DecimalN x);
_DecimalNx exp2mldNx(_DecimalNx X);

10 © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

Description

[2] The exp2ml functions compute the base-2 exponential of the argument, minus 1. A range
error occurs if finite X is too large or if the magnitude of nonzero X is too small.

Returns
[3] The exp2ml functions return 2* - 1.

7.12.6.15 The expl0 functions

Synopsis

[1] #include <math.h>
double expl0(double x);
float explOf(float x);
long double explO0l(long double Xx);
_FloatN explOfN(_FloatN x);
_FloatNx explOfNx(_FloathNx X);
_DecimalN explOdN(_DecimalN x);
_DecimalNx expl0dNx(_DecimalNx X);

Description

[2] The explO functions compute the base-10)yexponential of the argument. A range|error
occurs if the magnitude of finite X is too large:

Returns

[3] The exp10 functions return 107
7.12.6.16 The explOml funetions
Synopsis

[1] #include <math._h>
double explOml(double Xx);
float explOomlf(Float x);
long, double explOmlil(long double x);
_FloatN explOm1ifN(_FloatN x);
“FloatNx explOmlfNx(_FloatNx X);
“DecimalN explOmldN(_DecimalN Xx);

[mY = L AL 1 O vad-l AL 2 AL
_ UL rarniVA TAPLIUINLUIVA _UCTCHRINIANINVA A),

Description

[2] The exp1lOml functions compute the base-10 exponential of the argument, minus 1. A
range error occurs if finite X is too large.

Returns

[3] The expl0m1l functions return 10* - 1.

© ISO/IEC 2015 - All rights reserved 11

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

7.12.6.17 The 10g2p1 functions
Synopsis

[1] #include <math._h>
double log2pl(double x);
float log2plf(float x);
long double log2pll(long double x);
_FloatN log2plfN(_FloatN x);
_FloatNx 1og2pl1fNxX(FloatNx X);
_[DecimalN log2pldN(_DecimalN x);
_[DecimalNx log2pldNx(_DecimalNx X);

Descrjiption

[2] The 1og2p1l functions compute the base-2 logarithm of 1 plus the argument. A domain
error pccurs if the argument is less than -1. A pole error may occur if the argument equals -1.

Returnns

[3] THe log2p1 functions return logz(1 + X).
7.12.6.18 The 10g10p1l functions
Synopsis

[1] #A#include <math._h>

double loglOpl(double x);

qloat loglOplf(Float x);

llong double loglOpll(long deuble x);
_[FloatN 1oglOpl1fN(_FloathA*x);
_[FloatNx 1o0g1l0plfNx(_FloathNx X);
_[DecimalN loglOpldN(-DPecimalN x);
_DecimalNx 1og10pXdNx(_DecimalNx X);

Descrjiption

[2] THe 10g10p1 functions compute the base-10 logarithm of 1 plus the argument. A domain
error joccurs if the-argument is less than -1. A pole error may occur if the argument equals -1.
A range error'ogcurs if the magnitude of nonzero X is too small.

Retullns

[3] The log10p1 functions return logio(1 + X).

12 © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

After 7.12.7.5, insert the following:
7.12.7.6 The rsqrt functions
Synopsis

[1] #include <math._h>
double rsqgrt(double x);
float rsqrtf(float x);
long double rsqrtl(long double x);
_FloatN rsqrtfN(_FloatN x);
_FloatNx rsqrtfNx(_FloathNx X);
_DecimalN rsqrtdN(_DecimalN Xx);
_DecimalNx rsqrtdNx(_DecimalNx X);

Description

[2] The rsqgrt functions compute the reciprocal of the square root‘of-the argument. A d¢main

error occurs if the argument is less than zero. A pole error may _occur if the argument gquals
Zero.

Returns

[3] The rsqrt functions return 1 / Vx.
7.12.7.7 The compoundn functions
Synopsis

[1] #include <math.h>
#include <stdint_h>
double compoundn(dauble x, intmax_t n);
float compoundnf(float x, intmax_t n);
long double compoundnl(long double x, intmax_t n);
_FloatN compoundnfN(_FloatN x, intmax_t n);
_FloatNx eompoundnfNx(_FloatNx X, intmax_t n);
_DecimalN_compoundndN(_DecimalN x, intmax_t n);
_DecimalVx compoundndNx(_DecimalNx x, intmax_t n);

Description

[2} The compoundn functions compute 1 plus X, raised to the power n. A domain error gccurs

V3 1A b 1o+] | g3 N A] 'fX
I /N L. 'Y lallsc Cl1VUl lllay ULLlur 11717 15 tUU 1I4dl SC, uClJCllulllS Ul A I} PUIC ClI1VUl lllay ULl r 1

equals -1 and n<0.

Returns

[3] The functions return (1 + x)".

© ISO/IEC 2015 - All rights reserved 13

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

7.12.7.8 The rootn functions
Synopsis

[1] #include <math._h>

#include <stdint._h>

double rootn(double x, intmax_t n);

float rootnf(Float x, intmax_t n);

long double rootnl(long double x, intmax_t n);

FloatN rootnfN(FloatN X, intmax t n);

_|[FloatNx rootnfNx(_FloatNx x, intmax_t n);
_DecimalN rootndN(_DecimalN x, intmax_t n);
_[DecimalNx rootndNx(_DecimalNx X, intmax_t n);

Descifiption

[2] The rootn functions compute the principal nth root of X. A domain error occurs if n is 0 or
if X <P and n is even. A range error may occur if n is —1. A pole error may‘occur if X equals zero
and n|< 0.

Returnns
[3] THe rootn functions return x/".

7.12.7.9 The pown functions

Synopsis

[1] #include <math._h>

include <stdint.h>

ouble pown(double x, intmax _t n);

loat pownf(float x, intmax_t n);

llong double pownl(loag- double x, intmax_t n);
_[FloatN pownfN(_FloatN x, intmax_t n);
_[FloatNx pownfNx(_FloatNx x, intmax_t n);
_[DecimalN powndN(_DecimalN x, intmax_t n);
_[DecimalNx powndNx(_DecimalNx x, intmax_t n);

Descijiption

[2] The pown functions compute X raised to the nth power. A range error may occur. A pole
error may,occur if X equals zero and n < 0.

Returns

[3] The pown functions return x".

14 © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

7.12.7.10 The powr functions
Synopsis

[1] #include <math._h>
double powr(double x, double y);
float powrf(float x, float y);
long double powrl(long double x, long double y);
_FloatN powrfN(_FloatN x, _FloatN y);
_FloatNx powrfNX(FloatNx x, FloatNX y);

_DecimalN powrdN(DecimalN x, DecimalN y);

Description

equals zero and finite y < 0.
Returns

[3] The powr functions return x”.
After 7.31.6, insert:

7.31.6a Mathematics <math.h>

_DecimalNx powrdNx(_DecimalNx x, _DecimalNx y);

[2] The powr functions compute X raised to the power Yy as exp(y x log(x)). A domain
occurs if X < 0 or if X and y are both zero. A range error may occur. A-pole error may occ

error
hr if X

With the condition that the macro __ STDC_1EC_60559 FUNCS__ is defined, the function

names
crexp crrsqgrt cracospi
crexpml crcompoundn cratanpi
crexp2 crrootn cratan2pi
crexp2ml crpown crasin
crexplO crpow cracos
crexplOml crpowr cratan
crlog crsin cratan?
crlog2 Ccrcos crsinh
crlog1o crtan crcosh
crdoglp crsinpi crtanh
erlogpl crcospi crasinh
crlog2pl crtanpi cracosh
crlogl0pl crasinpi cratanh
crhypot

and the same names suffixed with ¥, 1, TN, TNX, dN, or dNX may be added to the <math.h>

header.

In 7.31.64a, attach a footnote to the wording:

With the condition that the macro _ STDC_ 1EC_60559 FUNCS__ is defined, the function

names

© ISO/IEC 2015 - All rights reserved

15

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

where the footnote is:
*) The cr prefix is intended to indicate a correctly rounded version of the function.
After F.10#2, insert:

[2a] For each single-argument function f in <math.h> whose mathematical counterpart is
symmetric (even), f{x) is f{-x) for all rounding modes and for all x in the (valid) domain of the
function. For each single- argument function fin <math _h> Whose mathematical counterpart is
antisymme X X

roundTiesToAway, and roundTowardZero, and for all x in the (valld) domain of the function:
The ajtan2 and atan2pi functions are odd in their first argument.

After F.1(.1.7, insert the following:

F.10.1.8 The acospi functions

ospi (+1) returns +0.
ospi(x) returns a NaN and raises the “invalid” floating-point exception for |x| > 1.

.9 The asinpi functions

$1npi(x0) returns *0.
$1Np I (x) returns a NaN and raises the “invalid” floating-point exception for |x| > 1.

.10 The atanpi functions

anpi (x0) returns +0.
anpi(zo) returns +1/2.

.11 The atan2pi functions

an2pi (20, -0) returns £1.

an2pi (£0, +0) returns_+0.

an2pi (20, x) returns't1 for x < 0.

an2pi (0, x) returns 0 for x > 0.
an2pi(y, #0)returns-1/2fory<0.
an2pi (s 520) returns +1/2 fory > 0.
an2pi(xy, -o) returns *1 for finite y > 0.
an2pi(ty, +o) returns 0 for finite y > 0.

an2p| (%00, x) returns +1/2 for finite x.
a Q//l Fr\v FIY\I"QV

— atan2p| (+oo +oo) returns +1/4 for finite x.
F.10.1.12 The cospi functions
— cospi(£0) returns 1.

— cospi(n+1/2) returns +0, for integers n.
— cospi(xo) returns a NaN and raises the “invalid” floating-point exception.

16 © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

F.10.1.13 The sinpi functions

— sinpi(z0) returns 0.

— sinpi(zn) returns 0, for positive integers n.

— sinpi (o) returns a NaN and raises the “invalid” floating-point exception.

F.10.1.14 The tanpi functions

— tanpi(zx0) returns *0.

tarp D) returns—+0forpositiveevenrandnegative odd-integers
— tanpi(n) returns -0, for positive odd and negative even integers n.
— tanpi(n+1/2) returns +oo and raises the “divide-by-zero” floating-point exception,|for
even integers n.
— tanpi(n+ 1/2) returns -0 and raises the “divide-by-zero” floating-point'exception,|for
odd integers n.
— tanpi (#x) returns a NaN and raises the “invalid” floating-point exeeption.

After F.10.3.13, insert the following:
F.10.3.14 The exp2ml functions

— exp2m1(#0) returns *0.
— exp2ml(-o) returns -1.
— exp2ml(+o0) returns +co.

F.10.3.15 The expl10 functions

— expl0(z0) returns 1.
— expl0(-x) returns +0.
— expl0(+o0) returns +oo.

F.10.3.16 The exp10Oml functions

— expl0m1(£0) returns +0.
— explOoml(-g)-returns -1.
— explOml (=) returns +co.

F.10.3.17 The log2pl functions

— A0g2p1(£0) returns *0.

~<{A0g2p1(-1) returns —co and raises the “divide-by-zero” floating-point exception.

— 10g2Zp1(x) returns a NaN and raises the ‘1nvalid floating-point exception for x < — 1.
— log2p1(+x) returns +oo.

F.10.3.18 The 10g10p1 functions

— 10g10p1(z0) returns *0.

— 10g10p1(-1) returns —oo and raises the “divide-by-zero” floating-point exception.

— 10g10p1(x) returns a NaN and raises the “invalid” floating-point exception for x < -1.
— 10g10pl(+) returns +co.

© ISO/IEC 2015 - All rights reserved 17

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

After F.10.4.5, insert the following:
F.10.4.6 The rsqrt functions

— rsqgrt(z0) returns +oo and raises the “divide-by-zero” floating-point exception.
— rsqgrt(x) returns a NaN and raises the “invalid” floating-point exception for x < 0.
— rsqrt(+m) returns +0.

F.10.4.7 The compoundn functions

compoundn(x, 0) returns 1 forx=-1 or xa NaN.
— compoundn(x, n) returns a NaN and raises the “invalid” floating-point exception for
xf-1

compoundn(-1, n) returns +co and raises the divide-by-zero floating-point exeeption
fopn<0.
— compoundn(-1, n) returns +0 forn > 0.

F.10.4.8 The rootn functions

otn(#0, n) returns oo and raises the “divide-by-zero” floating-point exception for

r

oddn<0.

rootn(x0, n) returns +co and raises the “divide-by-zero” floating-point exception for

evjenn < 0.

— rootn(z0, n) returns +0 for even n > 0.
rootn(z£0, n) returns =0 for odd n> 0.
rootn(zow, n) isequivalent to rootn(z0,¢.>n) for n not 0, except that the “divide-by-
zdro” floating-point exception is not raised.

— rootn(x, 0) returnsa NaN and raises the “invalid” floating-point exception for all x
(including NaN).

— rootn(x, n) returnsa NaN and raises the “invalid” floating-point exception for x < 0 and
n gven.

F.10{4.9 The pown functions

wn(x, 0) returns.lfor all x not a signaling NaN.
Iwn(iO , n) returns +oo and raises the “divide-by-zero” floating-point exception for odd
< 0.
own(x0, @) returns +oo and raises the “divide-by-zero” floating-point exception for
even n < Q.

|
T S T O

“divide-by-zero” floating-point exception is not raised.

F.10.4.10 The powr functions

— powr(x, =0) returns 1 for finite x > 0.

— powr (20, y) returns +oo and raises the “divide-by-zero” floating-point exception for
finite y < 0.

— powr(£0, -o) returns +co.

— powr (20, y) returns +0 fory> 0.

— powr(+1, y) returns 1 for finite y.

18 © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

8

ISO/IECTS 18661-4:2015(E)

— powr(x, y) returnsa NaN and raises the “invalid” floating-point exception for x < 0.
— powr(£0, =0) returnsa NaN and raises the “invalid” floating-point exception.

— powr(+o, *0) returnsa NaN and raises the “invalid” floating-point exception.

— powr (1, #oo) returnsa NaN and raises the “invalid” floating-point exception.

Reduction functions in <math.h>

This clause specifies changes to C11 + TS18661-1 + TS18661-2 + TS18661-3 to include functions that
support reduction operations recommended by IEC 60559.

Ch:llnges toC11 + TS18661-1 + TS18661-2 + TS18661-3:

Aft

br 7.12.13a, insert the following:
7.12.13b Reduction functions

The functions in this subclause should be implemented so that intermediate computatio
not overflow or underflow.

Functions computing sums of length n = 0 return the value +0Functions computing pra
of length n = 0 return the value 1 and store the scale factor 0 in the object pointed to by st

7.12.13b.1 The reduc_sum functions
Synopsis

[1] #include <math._h>
#include <stddef._h>
double reduc_sum(size_t n, const double p[static n]);
float reduc_sumf(size_tn, const float p[static n]);
long double reduc_sumb(size_t n,
const long doublé p[static n]);
_FloatN reduc_sumfN(size_t n, const _FloatN p[static n]);
_FloatNx reduc sumfNx(size_t n, const _FloatNx p[static n]);

_Decimal % reduc_sumdNx(size_t n,
const ;“DecimalNx p[static n]);

Description

[2] The reduc_sum functions compute the sum of the N members of array p: Zi-on-1p
rarige error may occur.

_DecimalN reduc_sumdN(size_t n, const _DecimalN p[static n])|;

ns do

ducts
Fptr.

[i]. A

Returns

[3] The reduc_sum functions return the computed sum.

© ISO/IEC 2015 - All rights reserved

19

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

20

7.12

.13b.2 The reduc_sumabs functions

Synopsis

[1]

#include <math.h>
#include <stddef.h>
double reduc_sumabs(size_t n, const double p[static n]);
float reduc_sumabsf(size_t n, const float p[static n]);
long double reduc_sumabsl(size_t n,

const long double p[static n]);

_[FloatN reduc_sumabsfN(size_t n, const _FloatN p[static n]);
_[FloatNx reduc_sumabsfNx(size_t n,

const _FloatNx p[static n]);

_[DecimalN reduc_sumabsdN(size_t n,

const _DecimalN p[static n]);

_[DecimalNx reduc_sumabsdNx(size_t n,

const _DecimalNx p[static n]);

Description

[2] THe reduc_sumabs functions compute the sum of the absolute values of the n members of
array |p: Zizon-1|P[i]]- A range error may occur.

Retuins

[3] The reduc_sumabs functions return the computed sum.

.13b.3 The reduc_sumsq functions

Synopsis

[1]

include <math._.h>

include <stddef.h>

ouble reduc_sumsq(size_t n, const double p[static n]);
loat reduc_sumsgf(size_t n, const float p[static n]);
llong double reduc_sumsqgl(size_t n,

const long-double p[static n]);

_[FloatN reduc_sumsqfN(size_t n, const _FloatN p[static n]);
_[FloatNx2reduc_sumsqfNx(size_t n,

const! _FloatNx p[static n]);

_[DecimalN reduc_sumsqdN(size_t n,

const _DecimalN p[static n]);

_DecimalNx reduc_sumsqdNx(size_t n,
const _DecimalNx p[static n]);

Description

[2] The reduc_sumsq functions compute the sum of squares of the values of the n members
of array p: Zi-on-1 (P[] x p[i]). A range error may occur.

Returns

[3] The reduc_sumsq functions return the computed sum.

© ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

7.12.13b.4 The reduc_sumprod functions
Synopsis

[1] #include <math._h>
#include <stddef._h>
double reduc_sumprod(size_t n, const double p[static n],
const double q[static n]);
float reduc_sumprodf(size_t n, const float p[static n],
const float g[static n]);

long double reduc_sumprodl(size_t n,
const long double p[static n],
const long double g[static n]);

_FloatN reduc_sumprodfN(size_t n, const _FloatN p[static n],
const _FloatN q[static n]);

_FloatNx reduc_sumprodfNx(size_t n,
const _FloatNx p[static n],
const _FloatNx g[static n]);

_DecimalN reduc_sumproddN(size_t n,
const _DecimalN p[static n],
const _DecimalN qg[static n]);

_DecimalNx reduc_sumproddNx(size_t n,
const _DecimalNx p[static n],
const _DecimalNx g[static n]);

Description

[2] The reduc_sumprod functions cemipute the dot product of the sequences of memb
the arrays p and q: Zizon-1 (P[] x q[i}). A range error may occur.

Returns

[3] The reduc_sumprod functions return the computed sum.

ers of

© ISO/IEC 2015 - All rights reserved

21

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IEC TS 18661-4:2015(E)

22

7.12.13b.5 The scaled_prod functions

Synopsis

[1] #include <math._h>
#include <stddef.h>
#include <stdint.h>
double scaled_prod(size_t n,

const double p[static restrict n],
intmax t * restrict sfptr);

filoat scaled _prodf(size_t n,

const float p[static restrict n],
intmax_t * restrict sfptr);

long double scaled_prodl(size_t n,

const long double p[static restrict n],
intmax_t * restrict sfptr);

_|[FloatN scaled_prodfN(size_t n,

const _FloatN p[static restrict n],
intmax_t * restrict sfptr);

_|[FloatNx scaled_prodfNx(size_t n,

const _FloatNx p[static restrict n],
intmax_t * restrict sfptr);

_|DecimalN scaled_proddN(size_t n,

const _DecimalN p[static restrict nj,
intmax_t * restrict sfptr);

_|[DecimalNx scaled_proddNx(size_t n,

const _DecimalNx p[static restrict n],
intmax_t * restrict sfptr);

Description

[2] THe scaled_prod functions compute a scaled product pr of the n members of the array p

and a
functi

scale factor sf, such that prix b5 = Ilizon-1p[i], where b is the radix of the type. These
pns store the scale factor sf in the object pointed to by sfptr. A domain error occurs if

the sdale factor is outside the range of the intmax_t type. The functions should not cause a

range

error.

Retuins

[3] THe scaled _prod functions return the computed scaled product pr.

© ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

ISO/IECTS 18661-4:2015(E)

7.12.13b.6 The scaled_prodsum functions
Synopsis

[1] #include <math._h>

#include <stddef.h>

#include <stdint.h>

double scaled_prodsum(size_t n,
const double p[static restrict n],
const double g[static restrict n],
intmax_t * restrict sfptr);

float scaled_prodsumf(size_t n,
const float p[static restrict n],
const float g[static restrict n],
intmax_t * restrict sfptr);

long double scaled_prodsuml(size_t n,
const long double p[static restrict n],
const long double g[static restrict n],
intmax_t * restrict sfptr);

_FloatN scaled_prodsumfN(size_t n,
const _FloatN p[static restrict n],
const _FloatN q[static restrict n]¢
intmax_t * restrict sfptr);

_FloatNx scaled_prodsumfNx(size_t/,n;
const _FloatNx p[static restrict n],
const _FloatNx g[static restrict n],
intmax_t * restrict sfptk)j

_DecimalN scaled_prodsumdN{(size_t n,
const _DecimalN p[static restrict n],
const _DecimalN g[static restrict n],
intmax_t * restriet sfptr);

_DecimalNx scaled*prodsumdNx(size_t n,
const _DecimalNx p[static restrict n],
const _DecimalNx g[static restrict n],
intmax_t _* restrict sfptr);

Description

[2] The scaled_prodsum functions compute a scaled product pr of the sums d
corresponding members of the arrays p and q and a scale factor sf, such that pr x
Mi-dr-2(P L[] + q[i]), where b is the radix of the type. These functions store the scale factq

f the
b =
r sfin

thé object pointed to by sfptr. A domain error occurs if the scale factor is outside the ra

hge of

the Intmax_t type. These functions should not cause a range error.

Returns

[3] The scaled_prodsum functions return the computed scaled product pr.

© ISO/IEC 2015 - All rights reserved

23

https://iecnorm.com/api/?name=9534565f35e13ff9309fa0252941f52e

