INTERNATIONAL ISO/IEC
STANDARD 8824

Second edition
1990-12-15

Information technology - ©Open Systems
Interconnection — Specification of Abstract
Syntax Notation One.(ASN.1)

Technologies de l'informatien — Interconnexion de systémes ouvefts —
Spécification de la notation de syntaxe abstraite numéro 1 (ASN.1

H
H

“,,...n||l|||“

ez
h"llllm |......,.....nnlll|||||”
[%"'""HI
”"Ilum — u|l||||m

Reference number
ISO/IEC 8824 : 1990 (E)

l\
H

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Contents
T 80P - e 1
2 Normative referenCesottt e e e e 1
B DefiNtiONSttt e e e e, 1
4 Abbreviations e e e e 3
5 Notation used in this International Standardccovviiirinennnn... 3
51 Productions e e 3
5.2 Thealternativecollections, 4
53 Exampleofaproduction 4
54 /out 4
55 BOUMSION . . . e e e e e e e e e e e e e e 4
5.6 eferences to a collectionofsequences 4
5.7 eferencestoanitem 4
58 A0S .ttt e e e e e e e e e e e e e e e 5
6 Useofthg ASN.I notationottt i, 5
7 The ASNJl character set....... ...ttt ittt 6
8 ASN.TREMSttt it (N 6
8.1 eneralrules e 6
8.2 ypereferencesl 6
83 |dentifiers O 6
8.4 aluereferences L8000, 6
8.5 odulereference 8). 6
8.6 omment L e e e N 7
8.7 mptyitem O 7
8.8 umberitem A 7
8.9 inarystringitem @ 7
8.10 Hexadecimalstringitem %X\ 7
8.11 Characterstringitem &%, 7
8.12 Assignmentitem: @ 7
8.13 Binglecharacteritems<\ 8
8.14 Keyworditems00 8
8.15 RangeSeparatorSl e i e 8
816 Fllipsis 0 8
9 Moduledefinition 0 e e e 8

10 Referencing type and value definitions i, 10
11 Assigningtypes and valueso it i e 10
12 Definitionjoftypesandivaluesottt 10
13 Notation for the'booleantype e 12
14 Notationfortheintegertype00vueeeeeeuenneeennennnn... 12
15 Notation for the enumeratedtypecccoiiiiiiiiiiiiiiinnnnnn... 12
16 Notationfortherealtype it 12
17 Notation for the bitstringtype i 13
18 Notation for the octetstringtypet i it 14

© ISO/IEC 1990

Al rights reserved. No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without permission in
writing from the publisher.

ISO/IEC Copyright Office ® Case postale 56 e CH-1211 Geneéve 20 e Switzerland
Printed in Switzerland

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

19 Notationforthenulltype ..., 14

20 Notation for SEqUENCEIYPESttt it e e 14

21 Notation for sequence-oftypes B 15

22 Notation for Settypesvuet et 15

23 Notation for set-of typeso v inn e 15

24 Notation for ChoiCe typesvvuiiiiii e 16

25 Notation for selection typesouiiiii i e e 16

26 Notation fortagged typesiiiiiiiiiii i 17

27 Notation forthe anytype e ettt eaeaeee e 17

28 Notation for the object identifiertypecciiiunnnn.. . o ..18

29 Notation for character stringtypest a7 ..19

30 Notation for types defined inclauses 32-35 V% 19

31 Definition of character stringtypes Q... ..20

32 Generalizedtime..........coviiiiiiiiiiiii S ..22

33 Universaltimettt o T e e ..22

34 Theexternal typecootiiniiiiiin e et et et ..28

35 Theobjectdescriptortypeco S ..24

36 Subtype Notationii e ..25

37 SubtypeValue Setst ..25

371 SingleValue . . .00\ . L . 25

37.2 ContainedSubtype\.™ 26

373 ValueRange 26

3744 SizeConstraint™. 26

375 Permitted Alphabet 26

376 InnerSubtyping 26
Annexes

A The macronotationttt e e ..28

Adntroduction L L . 28

A2 Extensions to the ASN.1 character setanditems 28

A21 Macroreference 28

A22 Productionreference 28

A23 Localtypereference 28

A24 Localvaluereference 28

A25 Alternationitem 28

A2.6 Definitionterminatoritem 28

A2.7 Syntacticterminalitem 29

A28 Syntaclic category keyword tems 29

A2.9 Additionalkeyworditems 29

A3 Macrodefinitionnotation, 29

A4 Useofthenewnotation 31

B 1SO assignment of OBJECT IDENTIFIER componentvalues 32

C CCITT assignment of OBJECT IDENTIFIER componentvalues 33

D Joint assignment of OBJECT IDENTIFIER componentvalues 34

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

E Examplesand hintsiiiiiiiiiiiiiiin i iiiineeiiineennns 35
E1 Exampleofapersonnelrecord 35
E.1.1 Informal Description of Personnel Record 35

E.1.2 ASN.1 description of therecord structure 35

E.1.3 ASN.1descriptionofarecordvalue 36

E.2 Guidelines for use of the notation Ve 36
E21 Boolean 36

E22 Integer 36

E23 Enumerated 36

E24 Real 37

E25 Bitsting 37

E26 Octetstring 37

E27 Nul 38

E.28 Sequenceandsequence-of 38

E29 Set 39

E210 Tagged, 39

E.211 Choice 41

E212 Selectiontype0 L 41

E213 Any oo oA 42

E214 Exernal D, 42

E.3 Anexample of the use of the macronotation 42
E.4 Useinidentifying abstractsyntaxesQx 43
ES Subtypes L 0% L. 44
F Summaryofthe ASN.1notation...................... 20 oo ooiia.. .47

iv

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International

Electrotechnical Commission) form the specialized system for worldw

ation. National bodies that are members of ISO or IEC participate in-th
of International Standards through technical committees establishéd\by
organization to deal with particular fields of technical activity. |SO and
committees collaborate in fields of mutual interest. Other international
governmental and non-governmental, in liaison with ISO and/lIEC, also {
work.

In the field of information technology, ISO and.JEC have established a
committee, ISO/IEC JTC 1. Draft International’ Standards adopted

de standardiz-
p development
the respective

IEC technical
organizations,
ake part in the

joint technical
by the joint

technical committee are circulated to national bodies for voting. Publication as an

International Standard requires approval by.at least 75 % of the national
a vote.

bodies casting

International Standard 1SO/IEC 8824 was prepared by Joint Techni¢al Committee

ISO/IEC JTC 1, Information~technology.

This second edition cancels and replaces the first edition (ISO 8824 : 19
been technically revised.

B7), which has

Annexes A, B,"C-and D form an integral part of this International Standgrd. Annexes E

and F are far information only.

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Introduction

In the lower layers of the Basic Reference Model (see ISO 7498), each user data par-
ameter of a service primitive is specified as the binary value of a sequence of octets.

Inthe presentation layer, the nature of user data parameters changes. Application layer
standards require the presentation service user data (see ISO 8822) to carry the value
of quite complex types, possibly including strings of characters from a variety of char-
acter sets. In order to specify the value which is carried, they require a defined nota-

tion which does-ret-dete P ation-of-the-vatue: apptermented
by the specification of one or more algorithms called encoding rules which determine
the value of th¢ session layer octets carrying such application layer values (called the
transfer syntax). The presentation layer protocol (see ISO 8823) can negotiate which
transfer syntaxps are to be used. .

The purpose of specifying a value is to distinguish it from other possible values. The
collection of the value together with the values from which it is distinguished is called
a type, and orje specific instance is a value of that type. More generally, a value or
type can often be considered as composed of several simpler values or types, together
with the relatiopships between them. The term datatype is often used as a synonym

for type.

In order to corrpctly interpret the representation of a value (whether by marks on paper
or bits on a corpmunication line), it is necessary to know (usually from the contéxt), the
type of the valjie being represented. Thus the identification of a type is.an‘important
part of this International Standard.

A very generalftechnique for defining a complicated type is to define a small number
of simple typgs by defining all possible values of the simple types, then combining
these simple types in various ways. Some of the ways of defining new types are as fol-
lows: :

a) given @an (ordered) list of existing types, a value ¢an be formed as an (ordered)
sequence |of values, one from each of the existing types; the collection of all
possible vplues obtained in this way is a new:type; (if the existing types in the list
are all djstinct, this mechanism can be\extended to allow omission of some
values fromn the list);

b) given plist of (distinct) existingtypes, a value can be formed as an (unordered)
set of values, one from each.of the existing types; the collection of all possible
values obtpined in this way is.a hew type; (the mechanism can again be extended
to allow orhission of some values);

c) given g single existing type, a value can be formed as an (ordered) sequence
or (unordgred) set-of zero, one or more values of the existing type; the (infinite)
collection pf all\possible values obtained in this way is a new type;

d) given. clisti ypes,avaiueca pe OSe O anvone o 2
the set of all possible values obtained in this way is a new type;

€) given atype, a new type can be formed as a subset of it by using some struc-
ture or order relationship among the values.

Types which are defined in this way are called structured types.
Every type defined using the notation specified in this International Standard is as-

signed a tag. The tag is defined either by this International Standard or by the user of
the notation. .

Vi

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

It is common for the same tag to be assigned to many different types the particular

type being identified by the context in which the tag is used

The user of the notation may choose to assign distinct tags to two occurrences of a
single type, thereby creating two distinct types. This can be necessary when it is re-
quired to distinguish which choice has been made in situations such as d) above

Four classes of tag are specified in the notation.

1 .
in this International Standard, and each tag is either

a) assigned to a single type; or

b) assigned to a construction mechanism.

The second class oftag is the application class. Application class tag

to types by other standards. Within a particular <standard, an applicat
assigned to only one type.

The third class is the private class. Private’class tags are never assig

tional Standards. Their use is enterprise, specific.

The final class of tag is the context=specific class. This is freely assig

use of this notation, and is interpreted according to the context in whi

Tags are mainly intended formachine use, and are not essential for th
tion defined in this International Standard. Where, however, it is nece

that certain types be distinct, this is expressed by requiring that they hay
The allocation of tags is therefore an important part of the use of this

NOTES

1 All types)which can be defined in the notation of this International Stang
Given.any type, the user of the notation can define a new type with a differer]

2" Encoding rules always carry the tag of a type, explicitly orimplicitly, with an
of-a value of the type. The restrictions placed on the use of the notation are

sure that the tag is sufficient to unambiguously determine the actual type, {

plicable type definitions are available.

This International Standard specifies a notation which both enables con

to be defined and also enables values of these types to be specified.

without determining the way an instance of this type is to be represeg
quence of octets) during transfer. A notation which provides this facility

tation for abstract syntax definition.

One is used as a semi-formal tool to define protocols. The use of the
not necessarily preclude ambiguous specifications. It is the responsibi
of the notation to ensure that their specifications are not ambiguous.

specified with-

s are assigned
on class tag is

ed by Interna-

ned within any
ch it is used.

human nota-
ary to require
e distincttags.
notation.

ard have a tag.
t tag.

y representation
designed to en-
rovided the ap-

hplicated types

This is done
nted (by a se-
is called a no-

The purpose of this International Standard is to specify a notation for abstract syntax
mmmmnta Notation

notation does
lity of the users

This International Standard is supported by other standards which specify encoding

rules. The application of encoding rules to the value of a type defined

by ASN.1 re-

sults in a complete specification of the representation of values of that type during

transfer (a transfer syntax).

This International Standard is technically aligned with CCITT Recommendation X.208

(1988).

vii

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Clauses 7 to 30 (inclusive) of this International Standard define the simple
types supported by ASN.1, and specify the notation to be used for referen-
cing simple types and defining structured types. Clauses 7 to 30 also specify
the notation to be used for specifying values of types defined using ASN.1.

Clause 31 of this International Standard defines additional types (character
string types) which, by the application of encoding rules for character sets,
can be equated with the octetstring type.

Clauses 3210 3¢

Uc

tured types whi(

th are considered to be of general utility, but which require no
additional enco|

Hing rules.

NOTE — Itis expgcted that these clauses will be added to, to encompass other com-
mon datatypes sych as diagnostics, authentication information, accounting informa-
tion, security pargmeters and so on.

The value notatjon and semantic definition for types defined in these clauses
are derived from a definition of the type using the ASN.1 notation. This type
definition can bg referenced by standards defining encoding rules in order to
specify encodings for these types.

Clauses 36 and|37 of this International Standard define a notation which en-

ables subtypes

Annex A is part
tending the bas

Annex B is part

0 be defined from the values of a parent type.

of this International Standard, and specifies a notation foréex-

jc ASN.1 notation. This is called the macro facility.

pf this International Standard, and defines the object identifier

tree for authorities supported by ISO.

Annex C is part
fier tree for auth

Annex D is part
fier tree for joint|

of this International Standard and defines the object identi-
orities supported by CCITT.

of this International Standard and defines the object identi-
use by ISO and CCITT.

Annex E is not
and hints on th

part of this International Standard, and provides examples
use of the ASN.1 notatien.

Annex F is not part of this International Standard, and provides a summary
of ASN.1 using the notation of clause 5.

The text of this International\Standard, and in particular the annexes B to D,
are the subject of joint ISO-CCITT agreement.

N—~s

viii

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

INTERNATIONAL STANDARD

ISO/IEC 8824 : 1990 (E)

Information technology — Open Systems
Interconnection — Specification of Abstract Syntax
Notation One (ASN.1)

1 Scope

This Internatignal Standard specifies a notation for abstract

syntax defini
(ASN.1).

ion called Abstract Syntax Notation One

This Internatipnal Standard defines a number of simple

types, with the
these types arf

This Internatig

r tags, and specifies a notation for referencing
d for specifying values of these types.

nal Standard defines mechanisms for con-

structing new fypes from more basic types, and specifies a

notation for d
them tags, an

This Internatig
erence to oth
ASN.1.

fining such structured types and assigning
for specifying values of these types.

nal Standard defines character sets (by ref-
er International Standards) for use within

This International Standard defines a number of useful types

(using ASN.1)
The ASN.1 no

which can be referenced by users of ASN.1.

ation can be applied whenever itlis necessary

to define the arastract syntax of information Itis particularly,
S

but not exclu

The ASN.1 no

vely, applicable to application protocols.

ation is also referenced by other presentation

layer standards which define encoding rules for the simple

types, the strug
useful types d

2 Normat

tured types, the'eharacter string types and the
efined in ASNi 1

ve references

The following

ISO 6523: 1984, Data interchange - Structure for identifica-

tion of organizations.

ISO 7498: 1984, Informatiomprocessing s
Systems Interconnectiont Basic Reference M
CCITT Recommendatién X.200).

/stems - Open
fodel (see also

ISO 8601: 1988, -Data elements and interchange formats -

Information Interechange - Representation
times.

ISO 8822:1988, Information processing sy

of dates and

stems - Open

Systéms’Interconnection - Connection-oriefted presenta-

tion.sérvice definition.

ISO 8823: 1988, Information processing sj

istems - Open

Systems Interconnection - Connection-oriepted presenta-

tion protocol specification.

ISO/IEC 8825: 1990, /nformation technd
Systems Interconnection - Specification of A
Rules for Abstract Syntax Notation One (AS

CCITT X.208 (1988), Specification of Abstra
tion One (ASN.1).

CCITT X.121 (1988),
lic data networks.

International numberir]

3 Definitions

logy - Open
basic Encoding
V. 7).

Ct Syntax Nota-

g plan for pub-

tions given in ISO 7498 and the following defjnitions apply.

For the purposes of this International StanTrd the defini-

whnicn, througn

reference in this text, constitute provisions of this Interna-
tional Standard. At the time of publication, the editions indi-
cated were valid. All standards are subject to revision, and
parties to agreements based on this International Standard
are encouraged to investigate the possibility of applying the
most recent editions of the standards indicated below. Mem-
bers of IEC and ISO maintain registers of currently valid In-
ternational Standards.

ISO 2375: 1985, Data processing - Procedure for registra-
tion of escape sequences.

ISO 3166: 1988, Codes for the representation of names of

countries. .

3.1 value: A distinguished member of a set of values.
3.2 type: A named set of values.

3.3 simple type:
set of its values.

A type defined by directly specifying the

3.4 structured type:
or more other types.

A type defined by reference to one

3.5 component type: One of the types referenced when
defining a structured type.

3.6 tag: A type denotation which is associated with every
ASN.1 type.

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

3.7 tagging: Replacing the existing (possibly the default)
tag of a type by a specified tag.

3.8 ASN.1 character set: The set of characters, specified
in clause 7, used in the ASN.1 notation.

3.9 items: Named sequences of characters from the
ASN.1 character set, specified in clause 8, which are used to
form the ASN.1 notation.

3.10 type (or value) reference name: A name associ-
ated uniquely with a type (or value) within some context.

NOTE — Reference names are assigned to the types defined in this
International Standard; these are universally available within
ASN.1. Other reference names are defined in other standards, and
are applicable only in the context of that standard.

NOTE — Where acomponenttype is declared to be optional,avalue
of the new type need not contain a value of that component type.

3.23 sequence-of type: A structured type, defined by
referencing a single existing type; each value in the new type
is an ordered list of zero, one or more values of the existing
type.)

NOTE — Encoding rules do not limit the number of values in a se-
quence-of value.

3.24 settype: A structured type, defined by referencing
a fixed, unordered, list of distinct types (some of which may
be declared to be optional); each value in the new type is an
unordered list of values, one from each of the component

types.

NOTE — Whereacomponenttypeisdeclared tobe optional, thenew

3.11 ASN.1 eficoding rules: Rules which specity the rep-
resentation dufing transfer of the value of any ASN.1 type;
ASN.1 encodirjg rules enable information being transferred
to be identified by the recipient as a specific value of a spe-
cific ASN.1 type.

3.12 charactpr string type: A type whose values are
strings of charjcters from some defined character set.

3.13 Dboolearj type: A simple type with two distinguished
values.

3.14 true: (ne ofthe distinguished values of the boolean
type.

3.15 false: [The other distinguished value of the boolean
type.

3.16 integer|type: A simple type with distinguished
values which afe the positive and negative whole numbers,
including zero [as a single value).

NOTE — Particular encoding rules limit the range of an integer; but
such limitations pre chosen so as not to affect any user of ASN.1.

3.17 enumenated type: A simple type whose'values are
given distinct iglentifiers as part of the type notation.

3.18 realtype: Asimpletype whosedistinguished values
(specified in 1§.2) are members of thé'set of real numbers.

3.19 Dbitstring type: A simple\type whose distinguished
values are an grdered sequence of zero, one or more bits.

NOTE — Encoding rulesdo notlimitthe number of bits in a bit-string.

3.20 octetstying type: A simple type whose distin-

guished valueg aré an ordered sequence of zero, one or
more octets, e i ight

3.25 set-of type: A structured type; defingd by referen-
cing a single existing type; each value'in the hew type is an
unordered list of zero, one or more values ¢f the existing

type.

NOTE — Encoding rules do n6t limit the number of values in a set-
of value.

3.26 taggedtypei A type defined by refergncing a single
existing type and-atag; the new type is isomorphic to the
existing type, but is distinct from it.

3.27 choice type: A structured type, defined by referen-
cing afixed, unordered, list of distinct types; [each value of
the.new type is a value of one of the componént types.

3:28 selection type: A structured type, defined by ref-
erence to a component type of a choice type.

3.29 any type: A choice type whose conjponent types
are unspecified, but are restricted to the set ¢f types which
can be defined using ASN.1.

3.30 external type: A type whose distinglished values
cannot be deduced from their characterisatign as external,
but which can be deduced from the encod|ng of such a
value; the values may, but need not, be desgribable using
ASN.1, and thus their encodings may, but needi not, conform
to ASN.1 encoding rules.

3.31 information object: A well-defined pigce of informa-
tion, definition, or specification which requires a name in
order to identify its use in an instance of comrpunication.

3.32 object identifier: A value (distinguishable from all
other such values) which is associated with dn information

bits.

NOTE — Encodingrules do notlimitthe number of octetsin an octet
string.

3.21 nulltype: Asimpletype consisting of a single value,
also called nuill.

NOTE — The nullvalue iscommonlyused where several alternatives
are possible, but none of them apply.

3.22 sequence type: A structured type, defined by ref-
erencing a fixed, ordered, list of types (some of which may
be declared to be optional); each value of the new type is an
ordered list of values, one from each component type.

J

3.33 object identifier type: A type whose distinguished
values are the set of all object identifiers allocated in accord-
ance with the rules of this International Standard.

NOTE — The rulesofthis International Standard permitawide range
of authorities to independently associate object identifiers with in-
formation objects.

3.34 object descriptortype: A type whose distinguished
values are human-readable text providing a brief description
of an information object.

NOTE — An object descriptor value is usually, but not always asso-
ciated with a single information object. Only an object identifier
value unambiguously identifies an information object.

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

3.35 recursive definitions: A set of ASN.1 definitions
which cannot be reordered so that all types used in a con-
struction are defined before the definition of the construction.

NOTE — Recursive definitions are allowed in ASN.1: the user of the
notation has the responsibility for ensuring that those values (of
the resulting types) which are used have a finite representation.

3.36 module: One or more instances of the use of the
ASN.1 notation for type and value definition, encapsulated
using the ASN.1 module notation (see clause 9).

3.37 production: A part of the formal notation used to
specify ASN.1, in which allowed sequences of items are as-
sociated with a name which can be used to reference those
sequences in the definition of new sets of allowed sequen-
ces.

ISO/IEC 8824 : 1990(E)

b) organization code; and

¢) International Code Designator.

4 Abbreviations

ASN.1 Abstract Syntax Notation One.

uTC Coordinated Universal Time.

ICD International Code Designator.

DCC Data Country Code.

DNIC Data Network Identification Code.
RPOA Recognised Private Operating Agency.

5 Notation used in this International Stan-

dard

3.38 Coordi T
maintained bylthe Bureau Internationale de I'Heure (Interna-
tional Time Bufeau) that forms the basis of a coordinated dis-
semination of standard frequencies and time signals.

NOTES

1 The source pf this definition is Recommendation 460-2 of the
Consultative Cdmmittee on International Radio (CCIR). CCIR has
also defined the acronym for Coordinated Universal Time as UTC.

2 UTCisalso Jeferred to as Greenwich Mean Time and appropri-
ate time signald are regularly broadcast.

3.39 user (off
defines the al
tion using AS

ASN.1): The individual or organisation that
ract syntax of a particular piece of informa-
A0

3.40 subtypd (of a parenttype): Atypewhose values are

specified as a
parent type).

3.41 parent type (of a subtype):

subtype.

NOTE — Thepa

subset of the values of some other type (the

Type used to define;a

enttype mayitselfbe a subtype of some othertype.

The ASN.1 notation consists of a sequéence of characters
from the ASN.1 character set specified-inclalse 7.

Each use ofthe ASN.1 notation contains characters from the

ASN.1 character set grouped into’items. Cla
all the sequences of characters forming AS
names each item.

The ASN.1 notationis specified in clause 9

se 8 specifies
N.1 items, and

(and following

clauses) by specifying the collection of seqﬂences of items

which form valid instances of the ASN.1 n
specifying the\semantics of each sequence.

tation, and by

In order to'specify these collections, this International Stan-

dard . usés a formal notation defined in the
clauses.

5.1 Productions

A new (more complex) collection of ASN.1
defined by means of a production. This use
collections of sequences defined in this Inte
dard and forms a new collection of sequence

following sub-

sequences is
5 the names of
national Stan-

by specifying

3.42 subtypd specification: A notation.'which can be
used in assocfation with the notation for a‘type, to define a
subtype of thaf type.

3.43 subtypevalue set: A notation forming part of a sub-
type specificafion, specifying .a 'set of values of the parent
type which arg to be included.in-the subtype.

3.5 This Interpational Standard uses the following terms
defined in 1ISO|8822:

a) presentation data value; and

either

a) thatthe new collection of sequencesis to consist of
any sequence contained in any of the priginal collec-
tions; or

b) thatthe new collection is to consist of any sequence
which can be generated bytaking exactlyjone sequence
from each collection, and juxtaposing tHem in a speci-
fied order.

Each production consists of the following parts, on one or
several lines, in order:

b) (an) abstract syntax; and
c) abstract syntax name; and
d) transfer syntax name.

3.6 This International Standard also uses the following term
defined in ISO 8823:

a) presentation context identifier.

3.7 This International Standard also uses the following terms
defined in ISO 6523:

a) issuing organization; and

a) aname for the new collection of sequences;

b) the characters

€) one or more alternative collections of sequences,
defined as in 5.2, separated by the character

A sequence is present in the new collection if it is present in
one or more of the alternative collections. The new collection
is referenced in this International Standard by the name in a)
above.

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Table 1 - Universal class tag assignments

UNIVERSAL 1
UNIVERSAL 2
UNIVERSAL 3
UNIVERSAL 4
UNIVERSAL 5
UNIVERSAL 6
UNIVERSAL 7
UNIVERSAL 8
UNIVERSAL 9
UNIVERSAL 10
UNIVERSAL 11-15

Boolean type

Integer type

Bitstring type
Octetstring type

Null type

Object identifier type
Object descriptor type
External type

Real type
Enumerated type
Reserved for future editions of

this International Standard

UNIVERSAL 16
UNIVERSAL 17
UNIVERSAL 18-22,25-27
UNIVERSAL 23 - 24
UNIVERSAL 28-...

Sequence and Sequence-of types
Set and Set-of types

Character string types

Time types

Reserved for addenda to this
International Standard

NOTE — Ifthe same sequence appearsin more than one alternative,
any semantic ambiguity in the resulting notation is resolved by
other parts of the complete ASN.1 sequence.

5.2 The alternative collections

Each of the al{ernative collections of sequences in "one or
collections of* is specified by a list of names.
Each name is gither the name of an item, or is the name of a
collection of sdquences defined by a production in this Inter-
national Standprd.

The collection of sequences defined by the alternative-con-
sists of all seqiiences obtained by taking any one of.the se-
quences (or the item) associated with the first.name, in
combination with (and followed by) any one.ofithe sequen-
ces (or item) agsociated with the second name; in combina-
tion with (and followed by) any one ofthe sequences (or item)
associated with the third name, and so.on up to and includ-
ing the last name (or item) in the alternative.

5.3 Example of a production

BitStringValue ::=

bstring |
hstring |
{IdentifierList}

NOTE —{and (}are’the names of items contdining the single

characters.{ and } (see clause 8).
In this example, IdentifierList would be defin

production; either before or after the productig
StringValue.

5.4 Layout

ed by a further
n defining Bit-

Each production used in this Internationd Standard is

preceded and followed by an empty line. Emp
appear within productions. The production
single line, or may be spread over several lines
significant.

5.5 Recursion

ly recursive. In this case the productions are t

ty lines do not
may be on a
. Layout is not

be continous-

The productions in this International Standag are frequent-

ly reapplied until no new sequences are gen

NOTE — Inmany cases, such reapplication resultsi
collection of allowed sequences, some or all of w|
selves be unbounded. This is not an error.

5.6 References to a collection of seq

ated.

anunbounded
hich may them-

ences

is a production which associates with the name BitString-
Value the following sequences:

a) any bstring (an item); and
b) any hstring (an item); and

c) any sequence associated with IdentifierList,
preceded by a { and followed by a }

This International Standard references a collection of se-
quences (part of the ASN.1 notation) by referencing the first
name (before the ::=) in a production; the name is sur-
rounded by " to distinguish it from natural language text, un-
less it appears as part of a production.

5.7 References to an item

This International Standard references an item by referen-
cing the name of the item; the name is surrounded by * to
distinguish it from natural language text, unless it appears as
part of a production.

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

5.8 Tags

A tag is specified by giving its class and the number within
the class. The class is one of

universal
application
private
context-specific.

The number is a non-negative integer, specified in decimal
notation.

Restrictions on tags assigned by the user of ASN.1 are spe-
cified in clause 26.

Tags in the universal class are assigned in such a way that,

ISO/IEC 8824 : 1990(E)

NOTE — Additional tags in the universal class are reserved for as-
signment by future editions of this International Standard.

6 Use of the ASN.1 notation

6.1 The ASN.1 notation for a type definition shall be "Type"
(see 12.1).

6.2 TheASN.1 notation for a value of a type shall be "Value"
(see 12.7).

NOTE - ltis notin general possible to interpret the value notation
without knowledge of the type.

6.3 The ASN.1 notation for assigning a type to a type ref-
erence name shall be "Typeassignment" (see 11.1).

for structured[types, The top-level structure can be deduced
from the tag, and for simple types, the type can be deduced
from the tag. Fable 1 summarises the assignment of tags in
the universal class which are specified in this International
Standard.

6.4 The ASN.1 notation for assigning a valye to a value ref-
erence name shall be "Valueassignmerit®(sge 11.2).

6.5 The notation *Typeassignment” and "Valueassign-
ment" shall only be used withinthe notation|"ModuleDefini-
tion" (but see 9.1).

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

7 The ASN.1 character set

7.1 An ASN.1 item shall consist of a sequence of the char-
acters listed in table 2, except as specified in 7.2 and 7.3.

Table 2 - ASN.1 characters

A to Z
ato z

8.1.2 Each item specified in the following subclauses shall
appear on a single line, and (except for the "comment" item)
shall not contain spaces.

8.1.3 The length of a line is not restricted.

8.1.4 Theitems in the sequences specified by this Interna-
tional Standard (the ASN.1 notation) may appear on one line
or may appear on several lines, and may be separated by
one or more spaces or empty lines.

8.1.5 An item shall be separated from a following item by
a space, or by being placed on a separate line, if the initial
character (or characters) of the following item is a permitted
character (or characters) for inclusion at the end of the char-
acters in the earlier item.

NOTES

1 The additional characters > and | are used in the macro-nota-
tion (see annex A).

tional standards Bodies, additional characters may appear in the

2 Where equivatlent derivative standards are developed by na-
following items (the last five of which are defined in annex A):

typereference 8.2.1)
identifier 8.3)
valuereference (8.4)
modulerefererjce (8.5)
macroreferen (A.2.1)

productionrefgrence (A.2.2)
localtyperefergnce (A.2.3)
localvaluerefejence (A.2.4)
astring (A2.7)

When additional dharacters are introduced to accommodate a lan-
guage in which the distinction between upper-case and lower-case
letters is without meaning, the syntactic distinction achieved by
dictating the case pf the first character of certain of the above ASN.1
items has to be aghieved in some other way.

7.2 Where the|notation is used to specify the valué_ of a
character string type, all characters of the defined.¢haracter
set can appear [in the ASN.1 notation, surrounded by the
characters " (se¢ 8.11).

7.3 Additional |characters may appear.in the "comment"
item (see 8.6).

7.4 There shall be no significance placed on the typo-
graphical style, $ize, colour,intensity, or other display char-
acteristics.

7.5 The upperjand |ower case letters shall be regarded as
distinct.

8-2—TFypereferences

Name of item - typereference

8.2.1 A‘typereference” shall consist of an arb
(one or more) of letters, digits, and hyphens. TH
acter shall be an upper-case letter.)A hyphen sh

trary number
¢ initial char-
all not be the

last character. A hyphen shall not be immedigtely followed

by another hyphen.

NOTE — The rules concerning hyphen are designed
guity with (possibly following) comment.

8.2.2 A “typereference" shall not be one of
character sequences listed in table 3.

to avoid ambi-

the reserved

NOTE £ 8Subclause A.2.9specifiesadditional reservefd character se-

quences when within a macro definition.

8.3 Identifiers

Name of item - identifier

An “identifier" shall consist of an arbitrary nun

hber (one or

more) of letters, digits, and hyphens. The inifial character

shall be a lower-case letter. A hyphen shall ng
character. A hyphen shall not be immediately fol
other hyphen.

NOTE — The rules concerning hyphen are designed
guity with (possibly following) comment.

8.4 Value references
Name of item - valuereference

A "valuereference" shall consist of the sequent

t be the last
lowed by an-

0 avoid ambi-

e of charac-

ters specified for an “identifier” in 8.3. In analysin

8 ASN.1items

8.1 General rules

8.1.1 The following subclauses specify the characters in
ASN.1 items. In each case the name of the item is given,
together with the definition of the character sequences which
form the item.

NOTE — Annex A specifies additional items used in the macro nota-
tion.

j an instance

of-use-of-this-netation,—a—"valuereference’is—distinguished

from an "identifier* by tr'me context in which it appears.

8.5 Module reference

Name of item - modulereference

A "modulereference” shall consist of the sequence of char-
acters specified for a "typereference"” in 8.2. In analysing an
instance of use of this notation, a "modulereference” is dis-
tinguished from a “typereference” by the context in which it
appears.

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

Table 3 - Reserved character sequences

ISO/IEC 8824 : 1990 (E)

A "bstring” shall consist of an arbitrary number (possibly
zero) of zeros and ones, preceded by a single * and followed
by the pair of characters:

f the character
shall be repre-
haracter set in-

B
BOOLEAN
INTEGER EXAMPLE - ’01101100'B
BIT
STRING 8.10 Hexadecimal string item
OCTET Name of item - hstring
NULL
SEQUENCE 8.10.1 An ‘“hstring" shall consist of an arbitrary number
OF (possibly zero) of the characters
SET ABCDEFO0123456 789
IMPLICIT
CHOICE preceded by a single ' and followed by the pakr of characters
ANY "H
EXTERNAL
OBJECT EXAMPLE --7AB0196’H
IDENTIFIER 8.10.2 Each character js used to denote the yalue of asemi-
OPTIONAL octet using a hexadecimal representation.
DEFAULT
COMPONENTS 8.11 Characten string item
TRUE Name of item 3 cstring
FALSE , ,
BEGIN A*cstring’ shall consist of an arbitrary number|(possibly zero)
of characters from the character set referenced by a charac-
END ter string type, preceded and followed by *.
set includes the character *, this character
sented in the "cstring” by a pair of *. The ¢
8.6 Commpnt volved is not limited to the character set listedl in table 2, but
is determined by the type for which the "cstfing" is a value
Name of item | comment (see 7.2).
8.6.1 A "comment” is not referenced in the definition’ of the EXAMPLE -

ASN.1 notatiop. It may, however, appear at any time between
other ASN.1 items, and has no significance.

8.6.2 A "comment" shall commence with,a pair of adjacent
hyphens and ghall end with the next pairof adjacent hyphens
or at the end ¢f the line, whichever occurs first. A comment
shall not contgin a pair of adjacent hyphens other than the
pair which opéns it and the pair, if any, which ends it. It may
include charagters which dre_not in the character set speci-
fiedin 7.1 (se¢ 7.3).

8.7 Empty(item

8.12 Assignment item
Name of item - *;: ="

This item shall consist of the sequence of ch

" %5 48 st 5 e

aracters

NOTE — This sequence does not contain any spacp characters (see

Name of item - empty
The “"empty” item contains no characters. It is used in the no-

tation of clause 5 when alternative sets of sequences are spe-
cified, to indicate that absence of all alternatives is possible.

8.8 Number item
Name of item - number

A "number” shall consist of one or more digits. The first digit
shall not be zero unless the "number” is a single digit.

8.9 Binary string item

Name of item - bstring

8.1:2):

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

8.13 Single character items

Names of items -

{
}

<

-

b P N o~

- (hyphen)

b

An item with any of the names listed above shall consist of

DEFINED

BY
PLUS-INFINITY
MINUS-INFINITY
TAGS

ltems with the above names shall consist of the sequence of

characters in the name.
NOTES

1 Spaces do not occur in these sequences.

2 Where these sequences are not listed as reserved sequences

in 8.2.2, they are distinguished from other items

containing the

same characters by the context in which they appear.

characters (see

characters (see

following pro-

the single characterferming-the-rame: 8-15—Range-separator
NOTES Name of item - ..
1 Theitem"| ”13 defined in A.2.5. This item shall consist of the sequence of chdracters
2 The item > i$ defined in A.2.6.
8.14 Keywqrd items NOTI)E—This sequence dogs not contain any space
8.1.2).
Names of items -
BOOLEAN 8.16 Ellipsis
INTEGER :
BIT Name of item*- ...
STRING This itém-shall consist of the sequence of chdracters
OCTET
NULL
SEQUEN(CE
OF NOTE —This sequence does not contain any space|
SET 8.1.2).
IMPLICI]
CHOICE
ANY 9 Module definition
EXTERNAL
OBJECT 9.1 A "ModuleDefinition" is specified by the
IDENTIFIER ductions:
OPTIONAL .
DEFAULI : ModuleDefinition :: =
COMPONENTS Moduleldentifier
UNIVERSAL DEFINITIONS
APPLICATTION TagDefault
PRIVATH ="
TRUE BEGIN
FALSE ModuleBody
BEGIN END
END
DEFINITIONS Moduleldentifier :: =
EXPLICIT modulereference
ENUMERATED AssignedIdentifier
EXPORTS
IMPORTS AssignedIdentifier ::=
REAL ObjectIdentifierValue |
MIN
MAX TagDefault ::=
SIZE EXPLICIT TAGS |
FROM IMPLICIT TAGS |
WITH empty
COMPONENT
PRESENT
ABSENT

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ModuleBody ::=
Exports Imports AssignmentList |

empty
Exports ::=
EXPORTS SymbolsExported ; |
empty
SymbolsExported ::=
SymbolList |
empty

Imports :: =
IMPORTS SymbolsImported ; |
empty

ISO/IEC 8824 : 1990 (E)

NOTE — Clause 26 gives the meaning of both "EXPLICIT TAGS" and
"IMPLICIT TAGS".

9.3 The "modulereference® appearing in the "ModuleDe-
finition* production is called the module name. Module
names are chosen so as to ensure consistency and com-
pleteness of all "Assignment" sequences appearing within
the "ModuleBody" of all “ModuleDefinition" sequences with
this module name. A set of "Assignment” sequences is con-
sistent and complete if, for every “typereference" or "value-
reference” appearing within it, there is exactly one
"Typeassignment" or "Valueassignment” (respectively) asso-
ciating the name with a type or value (respectively), or exact-
ly one "SymbolsFromModule" in which the "typereference"
or "valuereference" (respectively) appears as a "Symbol".

9.4 Module names shall be used only once (except as spe-

SymbolsImported :: =
SymbolsFromModuleList |
empty

SymbolsFromModuleList :: =
SymbdlsFromModule |
SymbdlsFromModuleList SymbolsFromModule

SymbolsFromModule :: =
SymbolList FROM Moduleldentifier

SymbolList ::=
Symbol | SymbolList , Symbol

Symbol :|=
typereference | valuereference

AssignmeptList :: =
Assignment |
AssignmentList Assignment

Assignme

nt ;=

cified-in-9-10)-within-the-sphere-ofinterest-ofthe definition of

the module.

NOTE - ltisrecommended that modulesdetined {n ISO Standards
should have module names of the form

ISOxocxx-yyyy

where xxxx is the number,of the Stahdard, and ylyy is a suitable
acronym for the Standard\(e.g. JTM, FTAM, or CCR). A similar con-
vention can be applied\by other standards-makinjg bodies.

9.5 Ifthe "Assignedldentifier” includes an*Q bjectldentifier-
Value", the latter unambiguously and uniquely identifies the
module.

NOTE ~ ltisrecommended that an object identifigr be assigned so
thatothers can unambiguously refer to the module.

9.6 The "Moduleldentifier* in a "SymbolsFromModule*
shall appear in the "ModuleDefinition" of anotifier module, ex-
cept thatif itincludes an "ObjectldentifierValug®, the "module-
reference® may differ in the two cases.

NOTES

TypeAssignment | ValueAssignment

NOTES

1 Annex A spegifies a "MacroDefinition"sequence which can also
appear in the "AssignmentList". Notations defined by a macro de-
finition may appear before or after the/macro definition, within the
same module.

2 In individual| (but deprecated) cases, and for examples and for
the definition of types with universal class tags, the "ModuleBody"
can be used ou}side ©6f a\"ModuleDefinition".

3 ‘"Typeassignment" and "Valueassignment' productions are

1 Adifferent "modulereference" from that used

in the other mo-

dule should only be used when symbols are to bp imported from

two modules with the same name (the modules

being named in

disregard of 9.4). The use of alternative distingt names makes
these names available for use in the body of the module (see 9.8).

2 When both a "modulereference” and an "Obje¢tidentifierValue"

are used in referencing a module, the latter shall b|
finitive.

9.7 Whenthe "SymbolsExported" alternativ
selected:

specified in clause 11.

4 The grouping of ASN.1 datatypes into modules does not
necessarily determine the formation of presentation data values
into named abstract syntaxes for the purpose of presentation con-
text definition.

5 The value of "TagDefault" for the module definition affects only
those types defined explicitly in the module. It does not affect the
interpretation of imported types.

6 A'"macroreference" (see annex A), can also appear as a "Sym-
bol",

9.2 The "TagDefault" is taken as "EXPLICIT TAGS" if it is
"empty”.

P considered de-

e of "Exports” is

a) each "Symbol" in "SymbolsExported* shall be
definedimthe module being constructed:

: and

b) every "Symbol" to which reference from outside the

module is appropriate shall be included

in the "Symbol-

sExported® and only these *Symbol*s may be ref-

erenced from outside the module; and

c) ifthere are no such “Symbol"s, then the empty alter-

native of "SymbolsExported" (not of "Ex
selected.

NOTES

ports”) shall be

1 The "empty" alternative of "Exports" is included for backwards

compatibility.

2 Every"Symbol" defined in a module where "Exports"is "empty"

may be referenced from other modules.

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

9.8 When the "Symbolsimported" alternative of “imports* is
selected:

a) each "Symbol" in "SymbolsFromModule® shall be
defined in the module denoted by the "Moduleldentifier*
in "SymbolsFromModule®; and

b) if the "SymbolsExported" alternative of "Exports" is
selected in the definition of the module denoted by the
"Moduleldentifier” in "SymbolsFromModule" the "Sym-
bol" shall appear in its "SymbolsExported"; and

c) only those "Symbol's that appear amongst the
"SymbolList" of a "SymbolsFromModule" may appear
asthe “typereference” in any “Externaltypereference” (or
the “valuereference” in any "Externalvaluereference")
which has the "modulereference” denoted by the *Mo-
duleldentifier” of that "SymbolsFromModule®; and

DefinedValue :=
Externalvaluereference |
valuereference

specify the sequences which shall be used to reference type
and value definitions. .

10.2 Except as specified in 9.10, the “typereference” and
“valuereference” alternatives shall not be used unless the ref-
erence is within the module in which a type or value is as-
signed (see 11.1 and 11.2) to the typereference or
valuereference.

10.3 The "Externaltypereference” and “"Externalvalueref-
erence" shall not be used unless the corresponding “typere-
ference” or "valuereference" has been assigned a type or
value respectively (see 11.1 and 11.2) within the correspond-

d) ifthere Iare no such "Symbol"s, then the "empty" al-
ternative of|"Symbolsimported® (not of *Imports*) shall
be selected

NOTES

1 The "empty" alternative of "Imports” is included for backwards
compatibility.

2 A module wherre "Imports" is empty may reference "Symbol"s
defined in other modules.

9.9 A*Symbolf in a "SymbolsFromModule" may appear in
*ModuleBody" ip a "DefinedType" (if it is a “typereference”)
or "DefinedValue® (if it is a "valuereference"). The meaning
associated with the "Symbol" is that which it has in the mo-
dule denoted by the corresponding *Moduleldentifier".
Where the "Symbol” also appears in an "AssignmentList" (de-
precated), or appears in one or more other instances of
*SymbolsFromMlodule®, it shall only be used in a "External-
TypeReference®| or "ExternalValueReference"” whose "mo-
dulereference” i§ that in "SymbolsFromModule* (see 9.10):
Where it does npt so appear, it may be used in a "Defined-
Type" or "DefinedValue"® directly.

9.10 Except ag specified in 9.9, a "typereference" or "value-
reference” shall be referenced in a module different from that
in which it is deflned by using an "Externaltypereference” or
"Externalvaluereference®, specified by the following produc-

ing—-modulereference-

11 Assigning types and values

11.1 A ‘“typereference” shall be-assigned a type by the no-
tation specified by the "Typeassignment" produiiction:

Typeassignment :;=
typereference
", - "

Type

The *"typeréference” shall not be one of the ngmes used to
referencéthe character string types defined in clause 32, and
shall net be one of the names used to refererce the types
defined in clauses 32-35.

1.2 A "valuereference" shall be assigned a [value by the
notation specified by the “"Valueassignment" prpduction:

Valueassignment ::=
valuereference

Type

Value

The *Value" being assigned to the “valuereferepce” shall be

tions: a valid notation (see 12.7) for a value of the type defined by
*Type".
Externaltypgreference :: =
modulereference .
C 12 Definition of types and values
typereference
12.1 A type shall be referenced by one of the sequences
Externalvalvereference u= Type™:
podiierelerence Type ::= BuiltinType | DefinedType | Subtype
: (see 10.1)
valuereference

10 Referencing type and value definitions
10.1 The productions

DefinedType ::=
Externaltypereference
typereference

10

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

BuiltinType ::= BuiltinValue ::=

BooleanType BooleanValue I
IntegerType IntegerValue |
BitStringType BitStringValue |
OctetStringType OctetStringValue [
NullType NullValue [
SequenceType SequenceValue |
SequenceOfType SequenceOfValue I
SetType SetValue I
SetOfType SetOfValue |
ChoiceType ChoiceValue |
SelectionType SelectionValue |
TaggedType TaggedValue |
AnyType AnyValue |
ObjectIdentifierType ObjectldentifierValue |
CharacterStringType CharacterStringValue |
UsetulType EnumeratedValue |
Enumerated Type RealValue

RealType

NOTE — Avalue notation defined in a macro may also be used as a
NOTES sequence for "Value" (see annex A);

1 Atype notatjon defined in a macro can also be used as a se-
quence for "Type" (see annex A).

2 Additional blilt-in types may be defined by future editions of
this Internation]I Standard.

122 The'B
clauses.

itinType" notation is specified in the following

12.3 The "Sybtype" notation is specified in clause 36.

12.4 The typp being referenced is the type defined by the
"BuiltinType"® dr "Subtype" assigned to the "DefinedType".

12.5 In som¢ notations within which a type is referenced,
the type may pe named. In such cases, this International
Standard spedifies the use of the notation *NamedType™

NamedType :=
identifier Type |
Type
SelectionType

The notation "BelectionType" and the corresponding value
notation is spegified in clause 25¢

NOTE — The notation "SelectionType" contains an "identifier"which
may form part of the value notation when “SelectionType" is used
as a "NamedType" (see 25.1),

12.6 The "idgntifier"is not part of the type, and has no ef-
fect on the type. The type referenced by a *NamedType" se-

12.8 Ifthetype is defined using one of the nptations shown
on the left below, then the value shall be spegified using the
notation shown on the right below:

Type notation Value notation
BooleanType BooleanValue
IntegérType IntegerValue
BitStringType BitStringValue
OctetStringType OctetStringValde
NuliType NullValue j
SequenceType SequenceValu
SequenceOfType SequenceOfValue
SetType SetValue

SetOfType SetOfValue
ChoiceType ChoiceValue
TaggedType TaggedValue
AnyType AnyValue
ObjectldentifierType Objectidentifieryalue
CharacterStringType CharacterStringValue
EnumeratedType EnumeratedVallie
RealType RealValue

NOTE — Additional value notations may be defing
tions of this International Standard.

d by future edi-

Where the type is a DefinedType, the value nqtation shall be

the notation for a type used in producing the DefinedType.

12.9 The value notation for a type defined by the *Useful-
Type” notation is specified in clauses 32-35.

quence is that nced bythe contained "Type” sequence.

12.7 The value of a type shall be specified by one ofthe se-

quences "Value™

Value ::= BuiltinValue | DefinedValue

12,10 The "BuiltinValue" notation is specified in the follow-
ing clauses.

12.11 The value of a type referenced using the *Named-
Type" notation shall be defined by the notation "Named-
Value™:

NamedValue ::=
identifier Value |
Value

where the "identifier” (if any) is the same as that used in the
"NamedType" notation. 25.2 specifies further restrictions on
the "NamedValue" when the "NamedType" was a "Selection-
Type".

1

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)
NOTE — The "identifier* is part of the notation, it does not form part

of the value itself.

12.12 The "identifier" shall be present in the "NamedValue"
if and only if it was present in the "NamedType".

NOTE — An "identifier" is always present in the case of a "Selection-

Type".

13 Notation for the boolean type

13.1 The boolean type (see 3.13) shall be referenced by
the notation "BooleanType":

BooleanType ::= BOOLEAN

13.2 Thetag hmmmm““—tmm

class, number {.

IntegerValue ::=
SignedNumber |
identifier

14.10 The "identifier" in "IntegerValue” shall be equal to that
of an “identifier" in the "IntegerType" sequence with which the
value is associated, and shall represent the corresponding
number.

NOTE — Whendefining an integer value for which an "identifier" has
been defined, use of the "identifier" form of "IntegerValue" should
be preferred.

15 Notation for the enumerated type

15.1 The enumerated type (see 3.17) shall be referenced

13.3 Theval
be defined by

BooleanV4

14 Notatid

141 Theinte

e of a boolean type (see 3.14 and 3.15) shall
e notation "BooleanValue":

lue ::= TRUE|FALSE

n for the integer type

her type (see 3.16) shall be referenced by the

notation "IntegerType"™:

IntegerTyy

NamedNuj

NamedNu

SignedNup

14.2 The sec
be used if the "

e =
INTEGER [
INTEGER {NamedNumberList }

mberList ::=
NamedNumber |
NamedNumberList,NamedNumber

mber ::=
identifier(SignedNumber) |
identifier(DefinedValug)

hber ::= number |-number

bnd alternative of "SignedNumber” shall not
number” is zero.

14.3 The "Na
finition of a typ
fiedin 14.9

edNumberliist® is not significant in the de-
. It is used solely in the value notation speci-

EnumeratedType ::=
ENUMERATED {. Enume]

Enumeration ::=
NamedNumber |

ration }

Enumeration, NamedNumber

NOTES

1 Each value has‘an identifier which is associatg
tion, with a distinct integer. This provides contrg
sentation of the value in order to facilitate compati

d, in this nota-
| of the repre-
ble extensions,

but the values themselves are not expected to have any integer se-

mantics.

2. 'The numeric values inside the "NamedNu
"Enumeration” are not necessarily ordered or conti

15.2 For each "NamedNumber®, the “iden
*SignedNumber” shall be distinct from all oth
and "SignedNumber"s in the "Enumeration".

15.3 The enumerated type has a tag whig
class, number 10.

15.4 The value of an enumerated type shall
the notation "EnumeratedValue":

EnumeratedValue :: = identifier

mber"s in the
guous.

ifier" and the
er "identifier"s

h is universal

pe defined by

15.5 The "identifier" in "EnumeratedValue" sHall be equal to

that of an "identifier" in the "EnumeratedType" s
which the value is associated.

equence with

14.4 The "DefinedValue” shall be a reference to a value of

16 Notation for the real type

type integer, o G-

14.5 The value of each "SignedNumber" or "DefinedValue"
appearing in the "NamedNumberList" shall be different, and
represents a distinguished value of the integer type.

14.6 Each "identifier” appearing in the "NamedNumberList"
shall be different.

14.7 The order of the "NamedNumber* sequences in the
"NamedNumberList® is not significant.

14.8 The tag for types defined by this notation is universal
class, number 2.

14.9 The value of an integer type shall be defined by the
notation "IntegerValue":

12

16.1 The realtype (see 3.18) shall be referenced by the no-

tation "RealType":
RealType::= REAL

16.2 The values of the real type are the values PLUS-IN-

FINITY and MINUS-INFINITY together with the real numbers

capable of being specified by the following formula involving

three integers, M, B and E:

MxBE

where M is called the mantissa, B the base, and E the expo-
nent. M and E may take any integer values, positive or nega-

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

tive, while B can take the values 2 or 10. All combinations of
M, B and E are permitted.

NOTES

1 This type is capable of carrying an exact representation of any
number which can be stored in typical floating point hardware, and
of any number with a finite character decimal representation.

2 The encoding (of this type) which is specified in ISO 8825 allows
use of base 2, 8 or 16 with a binary representation of real values,
and base 10 with a character representation. The choice is a sen-
der’s option.

16.3 The real type has a tag which is universal class, num-
ber 9.

ISO/IEC 8824 : 1990 (E)

17.5 Thevalue of each "number" or “DefinedValue" appear-
ing in the "NamedBitList" shall be different, and is the num-
ber of a distinguished bit in a bitstring value.

17.6 Each "identifier" appearing in the "NamedBitList" shall
be different.

NOTE — The order of the "NamedBit" sequences in the "NamedBit-
List" is not significant.

17.7 This type has a tag which is universal class, num-
ber 3.

17.8 The value of a bitstring type shall be defined by the
notation "BitStringValue™:

16.4 The notation for defining a value of a real type shall BitStringValue ::=
be "RealValug™: bstring |
E hstring |
RealValye ::= {IdentifierList} |
NumericRealValue | SpecialRealValue {}
NumeridRealValue ::= IdentifierList ::=
{ Mantissa, Base, Exponent } | 0 identifier |

“Mantissq 1= SignedNumber
Base =+ 2| 10

Exponefjt := SignedNumber
SpecialRealValue ::=

PLUS-INFINITY | MINUS-INFINITY

The form "0"[shall be used for zero values, and the alternate
form for "NdéimericRealValue® shall not be used for zero
values.

17 Notation for the bitstring type

17.1 The bjtstring type (see 3.19) shall be referenced by the
notation "BitBtringType":

BitStringType ::=
BIT STRING
BIT STRING{NamedBitList}

IdentifierList,identifier

17.9 Each "identifier" in "BitStringValue® shall be the same
as an "“identifier”inrthe "BitStringType" seqyence with which
the value is assoCiated.

17.10 <Fhe user of the notation determings, and can indi-
cate. by comment, whether or not the presg¢nce or absence
of trailing zero bits is significant.

NOTE — Encoding rules enable the transfer of an arbitrary pattern,
arbitrary length, string of bits.

17.11 The "{IdentifierList}" and "{}" nqgtations for "Bit-
StringValue" shall not be used if the presenge or absence of
trailing zero bits is significant. This notation denotes a bit-
string value with ones in the bit positions [specified by the
numbers corresponding to the "identifier* [sequences, and
with all other bits zero.

NOTE — The"{}"sequenceis used to denote a bistring value which
contains no one bits.

17.12 In specifying the encoding rules fgr a bitstring, the
bits shall be referenced by the terms first bif and trailing bit,
as defined above.

17.13 When using the "bstring" notation, {he first bit is on

17.14 When using the “hstring" notation, the most signifi-

cant bit of each hexadecimal digit corresponds to the earlier

NamedBitList ::=
NamedBit | g the ‘ost ;
NamedBitList,NamedBit the left, and the trailing bit is on the right.
NamedBit ;=
identifier(number) | (leftmost) bit in the bitstring.

identifier(DefinedValue)

17.2 The "NamedBitList" is not significant in the definition
of atype. Itis used solely in the value notation specified
in 17.8.

17.3 The first bit in a bit string has the number zero. The
final bit in a bit string is called the trailing bit.

NOTE - This terminology is used in specifying the value notation
and the encoding rules.

17.4 The "DefinedValue" shall be a reference to a non-ne-
gative value of type integer, or of a type derived from integer
by tagging.

NOTE — This notation does notin any way constrain the way encod-
ing rules place a bitstring into octets for transfer.

17.15 The "hstring" notation shall not be used unless either:

a) the bitstring value consists of a multiple of four bits;
or ~

b) the presence or absence of trailing zero bits is not
significant.

13

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

EXAMPLE
’A98A’H
and
’1010100110001010’B

are alternative notations for the same bitstring value.

18 Notation for the octetstring type

18.1 The octetstring type (see 3.20) shall be referenced by
the notation "OctetStringType":

has atag which is universal class, num-

18.3 The valug of an octetstring type shall be defined by
the notation "OgetStringValue™:

OctetStringValue ::=
bstring |
hstring
18.4 In specifyjng the encoding rules for an octetstring, the

octets are refergnced by the terms first octet and trailing
octet, and the bits within an octet are referenced by the terms
most significarjt bit and least significant bit.

18.5 When us|ng the "bstring” notation, the left-most bit
shall be the mos{ significant bit of the first octet. If the "bstring”
is not a multiple pf eight bits, it shall be interpreted as if it con-
tained additionaj zero trailing bits to make it the next multiple
of eight.

18.6 When using the "hstring" notation, the left-most hex-
adecimal digit shall be the most significant semi-ogctet of the
first octet. If the Thstring” is not an even number of hexadeci-
mal digits, it shall be interpreted as if it contained-a single ad-
ditional trailing Zero hexadecimal digit.

19 Notatiop for the null type

19.1 The nulltype (see 3.21)-shall be referenced by the no-
tation "NullTypef:

ullType ::= NULL

SequenceType :=
SEQUENCE{ElementTypeList} |
SEQUENCE({}

ElementTypeList ::=
‘ElementType |
ElementTypeList,ElementType

ElementType ::=
NamedType |
NamedType OPTIONAL |
NamedType DEFAULT Value |
COMPONENTS OF Type

20.2 The "Type" in the fourth alternative of the "Element-
Type" shall be a sequence type. The "COMPONENTS OF
ype" notation shall be used to define the incliision, at this
point in the “EIementTypeLlst of all the “ElementType" se-
quences appearing in the referenced type:

NOTE — This transformation is logically completed grior to the sat-
isfaction of the requirements in the following clauses.

20.3 For each series of oné or more consecutfve “Element-
Types® marked as OPTIONAL or DEFAULT, thetags of those
"ElementTypes" and of any immediately followihg "Element-
Type" shall be distinct. (See clause 26).

20.4 If "OPTIONAL" or "DEFAULT" are preseft, the corre-
sponding value-may be omitted from a value of the new type,
and fromrthe information transferred by encoding rules.

NOTES

1 “The value notation may be ambiguous in thig case, unless
“identifier" sequences are present in each NamedType.

2 Encoding rules ensure that the encoding for a sequence value
in which a "DEFAULT" or "OPTIONAL" element valup is omitted is
the same as that for a sequence value of a type in whose type de-
finition the corresponding element was omitted. This feature can
be useful in defining subsets.

20.5 [f "DEFAULT" occurs, the omission of a palue for that
type shall be exactly equivalent to the insertior) of the value
defined by "Value®, which shall be a value spegification that
is valid for the type defined by "Type" in the *NamedType"
sequence.

20.6 The "identifier"s (if any) in all "NamedType" sequen-
ces of the "ElementTypeList® shall be distinct.

20.7 Allsequence types have atag whichis universal class,
number 16.

19.2 This type has atag which is universal class, num-
ber 5.

19.3 The value of the null type shall be referenced by the
notation "NullValue®:

NullValue ::= NULL

20 Notation for sequence types

20.1 The notation for defining a sequence type (see 3.22)
from other types shall be the "SequenceType™:

14

NOTE =Sequence-of types have the same 1ag (see21.3).

20.8 The notation for defining the value of a sequence type
shall be "SequenceValue™:

SequenceValue ::= {ElementValueList} |
{}
ElementValueList ::=
NamedValue |

ElementValueList,NamedValue

20.9 The "{}" notation shall only be used if.

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

a) all "ElementType" sequences in the "Sequence-
Type" are marked "DEFAULT" or "OPTIONAL", and all
values are omitted; or

b) the type notation was "SEQUENCE{}".

20.10 There shall be one "NamedValue® for each "Named-
Type" in the "SequenceType" which is not marked OP-
TIONAL or DEFAULT, and the values shall be in the same
order as the corresponding "NamedType" sequences.

NOTE — The use of "NamedType" sequences which do not contain
an identifier is not prohibited, but can render the value notation
ambiguous if "OPTIONAL" or "DEFAULT" is used.

21 Notation for sequence-of types

ISO/IEC 8824 : 1990 (E)
NOTE — This transformation is logically completed prior to the sat-
isfaction of the requirements in the following clauses.

22.3 The "ElementType" types in a set type shall all have
different tags. (See clause 26).

22.4 Sub-clauses 20.4, 20.5 and 20.6 also apply to set
types.

22.5 All settypes have atag which is universal class, num-
ber 17.

NOTE — Set-of types have the same tag (see 23.3).

22.6 There shall be no semantics associated with the order
of values in a set type.

22.7 The notation for defining the value of a set type shall

21.1 The nptation for defining a sequence-of type (see
3.23) from arjother type shall be the "SequenceOfType".

SequencgOfType ::=
SEQUENCE OF Type|
SEQUENCE

21.2 The nptation "SEQUENCE" is synonymous with the
notation "SEQUENCE OF ANY" (see clause 27).

21.3 All sequence-of types have a tag which is universal
class, numbgr 16.

NOTE - Sethnce types have the same tag (see 20.7).

21.4 Thengtation for defining avalue of a sequence-oftype
shall be the "BequenceOfValue™:

SequencgOfValue ::= {ValueList}|{}

ValueList ::=
Value |
ValueList,Value

The "{}" notEtion is used when there are.no,component
values in the sequence-of value.

21.5 Each Value" sequence in the *ValueList" shall be the
notation for a value of the *"Type" specified in the "Sequen-
ceofType".

NOTE — Sem4gntic significanceimay be placed on the order of these
values.

22 Notatjon for set types

be-*SetVaiue™:
SetValue ::= {ElementValugeLigt}|{}

“ElementValueList* is specified.in 20.8.

22.8 The "SetValue" shall‘only be "{}" if:

a) all "ElementType" sequences in the “SetType" are

marked "DEFAULT" or "OPTIONAL", and all values are

omitted; or,

b) thetype notation was *SET{}".
22.9 There shall be one "NamedValue" for each "Named-
Type€’ in the *SetType" which is not marked|*OPTIONAL" or
"DEFAULT".
NOTES
1 These "NamedValues" may appear in any orgler.

2 The use of "NamedType" sequences which flo not contain an

identifier is not prohibited, but can render the value notation am-
biguous.

23 Notation for set-of types

23.1 The notation for defining a set-of typg (see 3.25) from
another type shall be the "SetOfType":

SetOfType ::=
SET OF Type |
SET

23.2 The notation "SET" is synonymous with the notation
"SET OF ANY" (see clause 27).

22.1 The notation for defining a set type (see 3.24) from
other types shall be the "SetType":

SétTypc u=
SET{ElementTypeList} |
SET{}

"ElementTypelList” is specified in 20.1

222 The "Type" in the fourth alternative of the "Element-
Type" (see 20.1) shall be a settype. The "COMPONENTS OF
Type" notation shall be used to define the inclusion of all the
“ElementType" sequences appearing in the referenced type.

23.3 All set-of types have a tag which is universal class,
number 17.

NOTE — Settypes have the same tag (see 22.5). »

23.4 The notation for defining a value of a set-of type shall
be the "SetOfValue™:

SetOfValue ::= {ValueList}|{}
*ValuelList" is specified in 21.4.

The *{}" notation is used when there are no component
values in the set-of values.

15

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

23.5 Each "Value" sequence in the "ValueList® shall be the
notation for a value of the "Type" specified in the "SetofType".

NOTES

1 Semantic significance should not be placed on the order of
these values.

2 Encoding rules are not required to preserve the order of these
values.

24 Notation for choice types

24.1 The notation for defining a choice type (see 3.27) from
other types shall be the "ChoiceType":

ChoiceType ::=CHOICE{AlternativeTypeList}

C ::=CHOICE
{f [2] NULL,
g [3] NULL}

3 (INCORRECT)
A ::=CHOICE
{b B,
c C}

B ::=CHOICE
{d [0] NULL,
e [1] NULL}

C == CHOICE
{f [0] NULL,
g [1] NULL}

AlternativeTypeList ::=
NamedType |
AlternativeTypeList?NamedType

NOTES

1 The encoding rliles encode the chosen alternative in a way
which is indistingulshable from a "Type" consisting only of the
"Type" contained in|that alternative.

2 Specifying a "ChoiceType" with a single "NamedType" in the
"AltemativeTypeLisJ‘ cannot be distinguished in any encoding of a
value from direct uge of the “Type" in the "NamedType".

242 The types defined in the "AlternativeTypeList* shall all
have distinct tags|(see clause 26.)

24.3 The tag of the choice type shall be considered to be
variable. When a value is selected, the tag becomes equal to
the tag of the "Type" in the "NamedType" in the "Alternative-
Typelist" from whiich the value is taken.

24.4 Where this type is used in a place where this Interna-
tional Standard rgquires the use of types with distinct-tags
(see 20.3, 22.3, arjd 24.2), the tags of all types defined-in the
*AlternativeTypeList” shall differ from those of the-other types
(see clause 26). The following examples illustrate this re-
quirement. Examples 1 and 2 are correct.uses of the nota-
tion. Example 3 is jncorrect, as the tags fortypes d and f, and

24.5 The “identifier's (if any) in all "NamedTyge" sequen-
ces of the "AlternativeTypeList" shall be distinct.

24.6 Where this type is used in a place where this Interna-
tional Standard requires the use.6f {NamedTypgs" with dis-
tinct "identifiers®, the “identifier’s (iPany) of all "NamedTypes"
in the "AlternativeTypeList* shall differ from thosg (if any) of
the other "NamedType"s,

24.7 The notation for-defining the value of a ¢hoice type
shall be the "ChoiceValue":

ChoiteValue ::= NamedValue

24.8 _.Ifthe "NamedValue" contains an “identifierf, it shall be
a notation for a value of that type in the "AlternatiyeTypeList*
that\is'named by the same “identifier". If the *“NgmedValue"
does not contain an “identifier®, it shall be a no}ation for a
value of one of those types in the "AlternativeTypelList* that
are not named by an "identifier".

NOTE — Failure to use an "identifier"in the "NamedType" can make
the value notation ambiguous.

25 Notation for selection types

25.1 A "NamedType" appearing in the "AlternativeTypel -

e and g are identical. ist" of a "ChoiceType" can be referenced by the n¢tation "Se-
lectionType":
EXAMPLES . . .
SelectionType ::= identifier < Type
1 A [:= CHOICE
{bB where "Type" is a notation referencing the “ChoicgType*, and
c NULi} “identifier” is the "identifier" in the *NamedType".
NUTE — "SelectionType™ can be used either as a"NamedType", in
B ::= CHOICE which case the "identifier" is used in the value notation, or as a
{d [0] NULL, "Type" within a “NamedType", in which case its "identifier" is not
e [1] NULL} used.
e 25.2 The notation for a value of a selection type shall be
2 A = CHOI{%EB "SelectionValue™:
¢ C} SelectionValue ::= NamedValue
B ::= CHOICE where the "NamedValue" contains the identifier that appears
{d [0] NULL, in the corresponding "SelectionType" if the "SelectionType"
e [1] NULL} is used as a "NamedType", but not otherwise.

16

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

A tagged type (see 3.26) is a new type which is isomorphic

with an old type, but which has a different tag. In all encod-
ing schemes a value of the new type can be distinguished

= o vVaile Ot LIR O - JR 8 -1

from a value of the old type. The tagged typeis mamly ofuse
where this International Standard requires the use of types
with distinct tags (see 20.3, 22.3, 24.2, 24.4, and 27.6).

NOTE — Where a protocol determines that values from several da-
tatypes may be transmitted at any moment in time, distinct tags
may be needed to enable the recipient to correctly decode the

ales
vaiue.

26.1 The notation for ataggedtype shall be *“TaggedType":

TaggedType ::=
Tag Type |

ISO/IEC 8824 : 1990 (E)

26.8 Ifthe "(‘Igce" is 'emp‘y , there are no restri

the use of "Tag", other than those implied by the requ:rement
for distinct tags in 20.3, 22.3, and 24.2.

26.9 Implicit tégging indicates, for those encoding rules
which provide the option, that explicit identification of the tag
ofthe "Type" inthe "TaggedType" is not needed during trans-
fer.

NOTE - It can be useful to retain the old tag where this was univer-
sal class, and hence unambiguously identifies the old type without
knowledge of the ASN.1 definition of the new type. Minimum trans-
fer octets is, however, normally achieved by the use of IMPLICIT.
An example of an encodmg using IMPLICIT is given in ISO 8825.

26.10 The “IMPLICIT" alternative shall not be used if the

"
type defined by "Type" is a choice type or an any type.

Tag IMPLICIT Type |
Tag EXPLICIT Type

Tag ::=| [Class ClassNumber]

Nhirhihas oo —
ClassNumber ::=

number |
DefinedValue

Class ::

UNIVERSAL
APPLICATION |
PRIVATE |

empty

26.2 The "DefinedValue” shall be a reference to a non-ne-
gative value ¢f type integer, or of a type derived from type in-
teger by tagding.

26.3 The ngw type is isomorphic with the old type, buthas
a tag with "Class" class and number "ClassNumber", unléss
the "Class"” is|"empty”, when the tag is context-specific class,
number "ClagsNumber*.

26.4 The "Class" shall not be "UNIVERSAL* except for
types defined in this International Standard:

NOTE — Use of universal class tags are-agreed from time to time by
ISO and CCI

26.5 Ifthe "Class” is "APPLICATION®, the same "Tag" shall
not be used again in the §ame module.

26.6 |If the 1Class"<is~*PRIVATE" the "Tag" is available for
use on an enterprise*specific basis.

26.7 The taggr
any of the following holds:

a) the "Tag EXPLICIT Type" alternative is used;

b) the "Tag Type" alternative is used and the value of
*TagDefault" for the module is *"EXPLICIT TAGS";

c) the "Tag Type" alternative is used and the value of
*TagDefault” for the module is "IMPLICIT TAGS", but the
type defined by "Type" is a choice type or an any type.

The tagging construction specifies implicit tagging other-
wise.

26 11T Tt

*TaggedValue®:

bdType" shall be

TaggedValue ::= Value

where "Value® is the notationfora value of the "Type* in the
" T armema AT o ¥

rayycuiype .

3

NOTE — The "Tag" doesnotappear in this notatig

27 Notation‘for the any type

27.1 The notation for an any type (see 3.20) is "AnyType":

AnyType ::= ANY |
ANY DEFINED BY identifier

NOTE — The use of "ANY" in an ISO Standard or JCITT Recommen-
dation produces an incomplete specification [unless it is sup-
plemented by additional specification. The "ANY DEFINED BY"
construct provides the means of specifying in ar] instance of com-
munication the type which fills the ANY, and a pojnter to its seman-
tics. If the following rules for its use are followeq, it can provide a
complete specification. Use of ANY without the DEFINED BY con-
struct is deprecated.

27.2 The "DEFINED BY" alternative shall be used only
when the any type, or a type derived from it by tagging, is
one of the component types of a sequencel(type or set type
(the containing type).

27.3 The "identifier" in the "DEFINED BY"|alternative shall
also appear in a "NamedType" that specifigs another, non-
optional, component of the containing typg. The "Named-
Type" shall be either an integer type or an|object identifier
type.

i i type, the docu-
ment employung the "DEFINED BY" notation shall contain, or
explicitly reference, a single list which specifies the ASN 1
type to be carried by the ANY for each permitted value of the
integer type. There shall be precisely one such list covering
all instances of communication of the containing type.

27.5 When the *"NamedType" is an object identifier type,
there is a need for registers which, for each allocated object
identifier value, associate a single ASN.1 type (which may be
a CHOICE type) which is to be carried by the ANY.

NOTES

1 There may be an arbitrary number of registers associating an
object identifier value with an ASN.1 type for this purpose.

17

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

2 Registration of values for open interconnection is expected to
occur within ISO Standards and CCITT Recommendations using
the notation. Where a separate International Registration Authority
is intended for any instance of "ANY DEFINED BY", this should be
identified in the document using the notation.

3 The main difference between the integer and object identifier
definers is that the use of integer references a single list, contained

in the using standard, whilst the use of object identifier allows an
nnan.nndnd cat of types determinad by any at itharihs ahla #a alla_

SNneeC Set Ot Iypes Leter el 2y QULIVTITY Qe W0 Qo=

cate object ndentmers

27.6 This type has an indeterminate tag, and shall not be

Aavsd 'TH ~
used where this International Standard requires distinct tags

(see 20.3, 22.3, 24.2 and 24.4).

27.7 The notation for the value of an any type shall be

defined using ASN. 1, and is *AnyValue*:

0
- =
J
=
3
3
-

a imbhart in ¢
He Nuinnivci

e i [U orm" shall be th
numeric value assigned to the o ject identifier component.

=
Z
"3
CT
D
=
-|'|
:\
3
=
N

a bl
©

28.8 The "identifier" in the *"NameAndNumberForm" shall
be specified when a numeric value is assigned to the object
identifier component. .

NOTE — The authorities allocating numeric values to object identi-
fier components are identified in the annexes to this International

Standard.

28.9 The semantics of an object identifier value are defined

by reference to an object identifier tree. An object identifier

tree is a tree whose root corresponds to this International
Standard and whose vertices correspond to administrative
authorities responsible for allocating arcs from that vertex.
Each arc of the tree is labeiled by an object identifier compo-
nent which is a numeric value. Each information object to be

AnyValue :]= Type Value

where "Type" is tHe notation for the chosen type, and *Vaiue®
is the notation fof a value of this type.

28 Notation for the object identifier type

28.1 The objeqt identifier type (see 3.33) shall be ref-
erenced by the nptation "ObjectldentifierType":

ObjectIdentifierType ::=
OBJECT IDENTIFIER

28.2 This type Ihas a tag which is universal class, number

28.3 The value notation for an object identifier shall be *Ob-
jectldentifierValug™:

ObjectIdentifierValue :=
{ObjldComponentList } |
{DefinedValue ObjIldComponentList}

ObjIdComp¢onentList ::=
ObjIdComponent |
ObjIdComponent ObjIdComponentList
ObjIdComp¢nent ::= NameForm
NumberForm |
NameAndNumberForm
NameForm }:= identifier

NumberForm-i:= number|DefinedValue

identified is allocated precisely one vertex (nermally a leaf),
and no other information object (of the same-¢r a different

tvne) is allocated to that same vertex. Thug anl|information

SV S SHVVAITWE IV UIALU SQNTIY VOILOA. e Qi i nGiinauaOon

object is uniquely and unambiguously: identifiedl by the se-
quence of numeric values (object identifier components) la-
belling the arcs in a path from the®ootto the vertex allocated
to the information object.

NOTE — Objectidentifier valdes contain atleast two otfjectidentifier
components, as specified.in annexes B to D.

28.10 An object identifier value is semantically| an ordered
list of object identifier component values. Startjng with the
root of the objeet identifier tree, each object idgntifier com-
ponent valugidentifies an arc in the object identifier tree. The
last object identifier component value identifies pn arc lead-
ing to\a vertex to which an information object hps been as-
signéd. It is this information object which is identtified by the
object identifier value. The significant part of the pbject ident-
ifier component is the "NameForm" or *“Numberform" which
it reduces to, and which provides the numeric Jalue for the
object identifier component.

NOTE — In general, an information object is a class df information
(for example, a file format), rather than an instance of such a class
(for example, an individual file). It is thus the class of information,
(defined by some referencable specification), rather than the piece
of information itself, that is assigned a place in the trpe.

28.11 Where the "ObjectldentifierValue® inclddes a *De-
finedValue, the list of object identifier componefts to which
it refers is prefixed to the components explicitly pfesent in the
value.

EXAMPLES

With identifiers assigned as specified in annex H, the values

{iso standard 8571 pci (1)}

NameAndNumberForm ::=
identifier(NumberForm)

28.4 The "DefinedValue® in "NumberForm" shall be a ref-
erence to a value of type integer, or of a type derived from
integer by tagging.

28.5 The "DefinedValue" in "ObjectidentifierValue® shall be
a reference to a value of type object identifier, or of a type
derived from object identifier by tagging.

28.6 The "NameForm" shall be used only for those object
identifier components whose numeric value and identifier are
specified in annexes B to D, and shall be one of the ident-
ifiers specified in annexes B to D.

18

and

{1 0 871 1}
would each identify an object, "pci®, defined in ISO 8571.
With the following additional definition:

ftam OBJECT IDENTIFIER ::=
{iso standard 8571}

the following value is also equivalent to those above

{ftam pci (1)}

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

NOTE — ltisrecommended that, whenevera CCITT Recommenda-
tion, International Standard or other document assigns values of
type OBJECT IDENTIFIER to information objects there should be
an appendix or annex which summarises the assignments made
therein. It is also recommended that an authority assigning values
of type OBJECT IDENTIFIER to an information object should also
assign values of type ObjectDescriptor to that information object.

29 Notation for character string types

29.1 The notation for referencing a character string type
(see 3.12 and clause 31) shall be

CharacterStringType ::= typereference

where “typereference” is one of the character string type

ISO/IEC 8824 : 1990 (E)

CharacterStringValue ::= cstring
The definition of the character string type determines the

characters appearing in the “cstring".

30 Notation for types defined in clauses 32-
35

30.1 The notation for referencing a type defined in clauses
32-35 three of this International Standard shall be

UsefulType ::= typereference

where "typereference” is one of those defined in clauses 32-
35 using the ASN.1 notation.

names listed]:\-dausn 34
29.2 The tag of each character string type is specified in

clause 31.

29.3 The ndgtation for a character string value shall be

30.2 The tag of each "UsefulType" is spegified in clauses
32-35.

30.3 The notation for a value of a'UsefulType" is specified
in clauses 32-35.

19

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

31 Definition of character string types

This clause defines types whose distinguished values are se-
quences of zero, one or more characters from some charac-
ter set.

31.1 The type is defined by specifying:
a) the tag assigned to the type; and

b) a name by which the type definition can be ref-
erenced; and

c) the characters in the character set used in defining
the type, either by reference to a table listing the charac-
ter graphics or by reference to a registration number in

Table 4 - NumericString

Name Graphic
Digits 01...9
Space (space)

Table 5 - PrintableString

the International Register of Coded Character Sets to be
used with E :

The name in b) gbove may be used as a "typereference” in
the ASN.1 notatign (see clause 29).

31.2 Table 6 lists the name by which each of these type de-
finitions can be refferenced, the number of the universal class
tag assigned to the type, the defining registration numbers
or following tablg, and, where necessary, identification of a
NOTE relating to the entry in the table. Where a synonymous
name is defined in the notation, this is listed in parentheses.

Name Graphic

Capital letters A
Small letters a
Digits 0,1,
Space (:space)
Apostrophe

Left Parenthesis (
Right Parenthesis)
Plus sign +
Comma ,

identifies the type.

Note, however, that if ASN.1 is used to define

NOTE — Thetag aIigned to character string types unambiguously

new types from th

type (particularly using IMPLICIT), it may be

impossible to recggnise these types without knowledge of the

ASN.1 type definiti

pn.

31.3 Table 4 lists the characters which can appear in the

NumericString ty|

De.

31.4 Table 5 lists the characters which can appear in the

PrintableString

e.

31.5 The notatipn for these types shall be "cstring".

NOTE — This notat{on can only be used on amedium capable of dis-
playing the characfers which are present in the valué. The notation

for the value in oth

31.6 Inall casef
restricted by a cg

20

r cases is not defined.

5, the range of permitted-Characters may be
mment, but shall not'be extended.

Hyphen

Fudll stop
Solidus

Colon

Equal sign
Question mark

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Table 6- List of character string types

Name for Universal Defining registration numbers Notes
referencing class (see ISO 2375) or table number
the type number
NumericString 18 Table 4 (1)
PrintableString 19 Table 5 (1
TeletexString 20 87,102, 103, 106, 107 2
(T61String) + SPACE + DELETE
VideotexString 21 1, 72, 73, 102 108, 128, 129 3
SPACE '+ DELETE
VisibleString 26 2 + SPACE
(1SO646String)
IA5String 22 1, 2 + SPACE + DELETE
GraphicString 25 All G sets + SPACE
GeneralString 27 All G and all C sets

+ SPACE + DELKETE

NOTES

1 The type-style, size, colour, intensity, or other display characteristics are not
significant.

2 The entries corresponding to these registration numbers reference CCITT
Recommendation T.61 for rules concerning their use.

3 The entries corresponding to these

numbers provide the functionality

¢l

of CCITT Recommendations T.100 and T.101.

21

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

32 Generalized time
32.1 This type shall be referenced by the name
GeneralizedTime
32.2 The type consists of values representing
a) acalendar date, as defined in ISO 8601; and
b) atime of day, to any of the precisions defined in ISO
8601, except for the hours value 24 which shall not be

used; and

c) the local time differential factor as defined in ISO
8601.

32.4 The tag shall be as defined in 32.3
32.5 The value notation shall be the value notation for the
"VisibleString" defined in 32.3.
33 Universal time
33.1 This type shall be referenced by the name
UTCTime
33.2 The type consists of values representing:
a) acalendar date; and

b) atime to a precision of one minute or one second;

32.3 Thetype ined, using ASN.T, as follows:

GeneralizedTime ::=
[UNIVERSAL 24] IMPLICIT VisibleString

with the values of the "VisibleString" restricted to strings of
characters which are either

a) astringfepresenting the calendar date, as specified
in ISO 8601} with a four-digit representation of the year,
a two-digit representation of the month and a two-digit
representatipn of the day, without use of separators, fol-
lowed by a string representing the time of day, as spe-
cifiedin ISO|8601, without separators otherthan decimal
comma or decimal period (as provided for in ISO 8601),
and with nojterminating Z (as provided for in ISO 8601);
or

b) the characters in a) above followed by an upper-
case letter Z; or

¢) the chafacters in a) above followed by a string rept
resenting a|local time differential, as specified in ISO
8601, withotit separators.

In case a), the time shall represent the local time, Incase b),
the time shall represent UTC time. In case c){the part of the
string formed as|in case a) represents the localtime (t;), and

the time differential (t2) enables UTC time'to be determined
as follows:

UTC time is ti'--t2
EXAMPLES

Chse a)

and

c) (optionally) a local time differéntial fom coordi-
nated universal time.

33.3 The type can be defined, asing ASN.1, gs follows:

UTCTime :=
[UNIVERSAL 23IMPLICIT Visibl¢String

with the values of the*VisibleString" restricted [to strings of
characters which are'the juxtaposition of

a) the six digits YYMMDD where YY is the two low-
order digits of the Christian year, MM ig the month
(counting January as 01), and DD is the dayjofthe month
(01 to 31); and
b) either

1) the four digits hhmm where hh if hour (00 to
23) and mm is minutes (00 to 59); or

2) the six digits hhmmss where hh arjJd mm are as
in 1) above, and ss is seconds (00 to $9); and

c) either
1) the character Z; or

2) oneofthe characters + or -, followgd by hhmm,
where hh is hour and mm is minutes.

The alternatives in b) above allow varying predisions in the
specification of the time.

In alternative c)1), the time is UTC time. In altgrnative c)2),
the time (t;) speci is the local time;

19851106210627.3
local time 6 minutes, 27.3 seconds
after 9 pm on 6 November 1985.

Case b)

19851106210627.3Z
UTC time as above.

Case ¢)

19851106210627.3-0500

Local time as in example a), with
local time 5 hours retarded in
relation to UTC time.

22

the time differential (t;) specified by c)2) above enables the
UTC time to be determined as follows:

UTC time is t1 - t3

EXAMPLE - If local time is 7am on 2 January and coordinated
universal time is 12 noon on 2 January, the value is either of

UTCTime "8201021200Z"
UTCTime "8201020700-0500"

33.4 The tag shall be as defined in 33.3.

33.5 The value notation shall be the value notation for the
*VisibleString" defined in 33.3.

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

34 The external type

34.1 The notation for an external type (see 3.30) is “Exter-
nalType™:

ExternalType:: = EXTERNAL
34.2 The type consists of values representing

a) an encoding of a single data value that may, but
need not, be the value of a single ASN.1 datatype; and

b) identification information which determines the se-
mantics and encoding rules; and

¢) (optionally) an object descriptor which describes
the object.

ISO/IEC 8824 : 1990(E)

been completed, the presentation context identifier also
identifies the encoding rules (transfer syntax) for the data
value and the "direct-reference OBJECT IDENTIFIER" shall
not be included. If presentation layer negotiation is not com-
plete, an object identifier value is also needed which ident-
ifies the encoding rules (transfer syntax) used for the
encoding. Where presentation layer negotiation is in use,
and where the "direct-reference OBJECT IDENTIFIER" ele-
ment is allowed or required to carry such a value, this shall
be identified by comment associated with the use of the *EX-
TERNAL" notation, otherwise the field shall be absent.

NOTES
1 The effect of 34.5 and 34.6 is to make the presence of at least

one of the "direct-reference" and the "indirect-reference" manda-
tory.

The optional object descriptor shall not be present unless ex-
plicitly permitfed by comment associated with the use of the
EXTERNAL notation.

34.3 Type EXTERNAL permits the inclusion of any data
value from ar identified set of data values.

NOTES

2—Beth-references-are-present-when-presentation layer negotia-

tion is in use but incomplete.

34.7 If the data value is the valuelof'a single ASN.1 data-
type, andifthe encoding rules for this.data value are the same
as those for the complete "EXTERNAL" dalatype, then the
sending implementation shalluse any of [the *Encoding"
choices:

single-ASN1-type

1 The specifi
assignment of

ation of this set of data values, their semantics, the
an object identifier and (optionally) an object de-

scriptor, and the dissemination of this information to all communi-
cating partieq is called isteri . This
operation can pe performed by any authority entitled to allocate
an OBJECT IDENTIFIER value, as specified in annexes B to D.

2 A set of dafa values registered as an abstract syntax (with as-
sociated encoding rules) is not well-formed unless the encoding of
each data valup is self-identifying within the set of data value en-
codings. When[ASN.1 is used to define an abstract syntax, tagging
is used to proVide self-identification. Where an abstract syntax is
not well-formedl, use of the communications channel is either con-

text-sensitive

344 TheE
follows:

EXTERNAL :
{direct-ref}

leads to ambiguity.

TERNAL type can be defined, using ASN.1, as

=[UNIVERSAL 8] IMPLICIT SEQUENCE
rence OBJECT IDENTIFIER OPTIONAL,
ference INTEGER OPTIONAL,

octetialigned
arbitrary

as an implementation option.
34.8) Ifthe encoding of the data value, usir
negotiated encoding, is an integral numbef

the sending implementation shall use any of
choices:

octet-aligned
arbitrary

as an implementation option.

NOTE — Adatavalue which is a series of ASN.1 tyy

g the agreed or
of octets, then
the "Encoding”

es, and for which

the transfer syntax specifies simple concatenation of the octet

strings produced by applying the ASN.1 Basic]
each ASN.1 type, falls into this category, not tha

34.9 Ifthe encoding of the data value, usin
negotiated encoding, is not an integral numk
"Encoding” choice shall be

arbitrary

ncoding Rules to
of 34.7.

g the agreed or
er of octets, the

34.10 I[fthe "Encoding" choice is chosen

“single-ASN1-

data-valuerdescriptor ObjectDescriptor OPTIONAL,
encoding CHOICE
{singletASN1-type [0]° ANY,
octet-gligned [1] IMPLICIT OCTET STRING,
arbit [2] IMPLICIT BIT STRING}}
34.5 When |presentation layer negotiation of encoding
rules is not in use (prior agreement of transfer syntax) for the

type", then the ASN.1 type shall replace thg "ANY*, with a

value of this EXTERNAL, the “direct-reference OBJECT
IDENTIFIER" shall be present. In this case the identifier of the
set of data values is an object identifier which directly referen-
ces an abstract syntax and fills the “direct-reference OBJECT
IDENTIFIER" field of the "EXTERNAL". In this case, the ab-
stract syntax registration also defines the encoding rules
(transfer syntax) for the data value and the "indirect-reference
INTEGER"® shall not be included.

34.6 When presentation layer negotiation is in use for the
value of this EXTERNAL, the “indirect-reference INTEGER"
shall be present. In this case the identifier of the set of data
values is an integer which references an instance of use of
an abstract syntax. The integer is called a presentation con-
text identifier and fills the "indirect-reference INTEGER" field
of the "EXTERNAL". If presentation layer negotiation has

value equal to the data value to be encoded.

NOTE — The range of valueswhich mightoccurinthe "ANY"is deter-
mined by the registration of the object identifier value associated
with the "direct-reference", and/or the integer value associated with
the "indirect-reference".

34.11 Ifthe "Encoding” choice is chosen as "octet-aligned",
thenthe data value shall be encoded according to the agreed
or negotiated transfer syntax, and the resulting octets shall
form the value of the octetstring.

34.12 Ifthe "Encoding” choice is chosen as "arbitrary*, then
the data value shall be encoded according to the agreed or
negotiated transfer syntax, and the result shall form the value
of the bitstring.

23

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

34.13 The tag shall be as defined in 34.4.
34.14 The value notation shall be the value notation of the
type defined in 34.4.

35 The object descriptor type
35.1 This type shall be referenced by the name
ObjectDescriptor

35.2 The type consists of human-readable text which ser-
ves to describe an information object. The text is not an un-
ambiguous identification of the information object, but
identical text for different information objects is intended to
be uncommon.

NOTE — ltisrecommendedthatanauthorityassigning values oftype
"OBJECT IDENTIFIER" to an information object should also assign
values of type "ObjectDescriptor" to that information object.

35.3 Thetype can be defined, using the ASN.1 notation, as
follows:

ObjectDescriptor ::=
[UNIVERSAL 7] IMPLICIT GraphicString

The "GraphicString” contains the text describing the informa-
tion object.

35.4 The tag shall be as defined in 35.3.

35.5 The value notation shali be the value notation for the
*GraphicString" defined in 35.3.

24

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

36 Subtype notation

36.1 A subtype is defined by the notation for a parent type
followed by an appropriate subtype specification. The sub-
type specification notation is made up of subtype value sets.
The values in the subtype are determined as specified in 36.7
by taking the union of all the subtype value sets.

36.2 The subtype notation shall not be used so as to pro-
duce a subtype with no values.

36.3 The notation for a subtype shall be "Subtype":

Subtype ::=
ParentType SubtypeSpec |
SET SizeConstraint OF Type |
SEQUENCE SizeConstraint OF Type

ISO/IEC 8824 : 1990(E)

SubtypeSpec :: =
(SubtypeValueSet SubtypeValueSetList)

SubtypeValueSetList ::=
n | "
SubtypeValueSet SubtypeValueSetList |
empty

36.7 Each"SubtypeValueSet" specifies a number (possibly
zero) of values of the parent type, which are then included in
the subtype. A value of the parent type is a value of the sub-
type if and only if it is included by one or more of the subtype
value sets. The subtype is thus formed from the set union of
the values included by the subtype value sets.

36.8 A number of different forms of notation for *Subtype-
ValueSet" are provided. They are identified below, and their

36.4 When the "SubtypeSpec" notation follows the "Selec-
tionType" notation, the parent type is the *SelectionType", not
the "Type" in fhe "SelectionType" notation.

36.5 When the "SubtypeSpec" notation follows a set-of or
sequence-of type notation, it applies to the "Type" in the set-
of or sequenge-of notation, not to the set-of or sequence-of
type.

NOTE — The gpecial notation "SET SizeConstraint OF" and "SE-
QUENCE SizeConstraint OF" is used to provide an alternative
mechanism (which is more readable than the general case nota-
tion) for simple cases. More complex cases require the general
mechanism.

36.6 The sybtype specification notation shall be *Subty-
peSpec™:

syntax and semantics is defined in clause-37 As specified in
clause 37, and summarized in table 7,omp notations can
only be applied to particular parent types.

SubtypeValueSet :: =
SingleValue
ContainedSubtype
ValueRange
PermittedAlphabet
SizeConstraint
InnerTypeConstrainfs

37 Subtype Value Sets

37:1 Single Value

37.1.1 The "SingleValue" notation shall be
SingleValue ::= Value

where "Value® is the value notation for the parent type.

37.1.2 A ‘SingleValue" value set is the sinfle value of the

parenttype specified by “Value®. This notation can be applied
to all parent types.

Table 7 - Applicability of subtype value sets

Type (or derived from Single [Contained | Value Size Alphabet Inner
such atype by tagging) Value | Subtype | Range | Range Limitation | Subtyping
Bootearn Y&S Yes NG No No No
Integer Yes Yes Yes No No No
Enumerated Yes Yes No No No No
Real Yes Yes Yes No No No
Object Identifier Yes Yes No No No No
Bit String Yes Yes No Yes No No
Octet String Yes Yes No Yes No No
Character String Types Yes Yes No Yes Yes No
Sequence Yes Yes No No No Yes
Sequence-of Yes Yes No Yes No Yes
Set Yes Yes No No No Yes
Set-of Yes Yes No Yes No Yes
Any Yes Yes No No No No
Choice Yes Yes No No No Yes

25

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

37.2 Contained Subtype
37.2.1 The "ContainedSubtype" notation shall be:

ContainedSubtype ::= INCLUDES Type

37.2.2 A "ContainedSubtype" value set consists of all the
values of the "Type®, which is itself required to be a subtype
of the parent type. This notation can be applied to all parent

types.
37.3 Value Range
37.3.1 The "ValueRange" notation shall be:

ValueRange :=
LowerEndpoint .. UpperEndpoint

37.4.4 The unit of measure depends on the parent type, as
follows:

Type Unit of measure
bit string bit

octet string " octet

character string character

set-of component value
sequence-of component value

37.5 Permitted Alphabet
37.5.1 The "PermittedAlphabet" notation shall be:

PermittedAlphabet ::= FROM SubtypeSpec

37.3.2 A ‘"ValugRange" value set consists of all the values
in a range of vallies which are designated by specifying the
numerical values|of the endpoints of the range. This notation

can only be ap
derived from tho

NOTE — Forthe pul

lied to integer types, real types and types
Be types by tagging.

Fpose of subtyping, "PLUS-INFINITY" exceedsall

"NumericReal" valties and "MINUS-INFINITY" is less than all "Nu-

mericReal" values,

37.3.3 Eachen
case that endpo
which case the ¢
specification of

dpoint ofthe range is either closed (in which
nt is included in the value set) or open (in
ndpoint is not included). When open, the
he endpoint includes a less-than symbol

(<)

LowerEndppint ::=
LowerEndValue | LowerEndValue <

UpperEndppint ::=

UpperEndValue | < UpperEndValue
37.3.4 Anendpgoint may also be unspecified, in which'case
the range extends in that direction as far as the parent type
allows:

LowerEndVialue ::= Value | MIN

UpperEndValue ::= Value{-MAX

37.4 Size Constraint

37.4.1 The "SizeConstraint” notation shall be:
SizeConstrI

t\&i,= SIZE SubtypeSpec

37.5.2 A "PermittedAlphabet” value set consists of all
values which can be constructed using a sub-alghabet of the
parent string. This notation can only be dpplied|to character
string types, or to types formed from them by tagging.

37.5.3 The "SubtypeSpec” specifies the charficters which
may appear in the character string, and is any qubtype spe-
cification which can be applied to the subtype [obtained by
applying the subtype spécification *SIZE(1)" t¢ the parent
type.

37.6 Inner Subtyping

37.6.1 ThellnnerTypeConstraints" notation shall be:

InnérTypeConstraints ::=
WITH COMPONENT SingleTypeCpnstraint |
WITH COMPONENTS MultipleTypgConstraints

37.6.2 An "InnerTypeConstraints” includes in fhe value set
only those values which satisfy a collection of cgnstraints on
the presence and/or values of the components pfthe parent
type. A value of the parent type is not included infthe subtype
unless it satisfies all of the constraints expressed or implied
(see 37.6.6). This notation can be applied to tHe set-of, se-
quence-of, set, sequence and choice types, or types formed
from them by tagging.

37.6.3 For the types which are defined in termss of a single
other (inner) type (set-of, sequence-of and types derived
from them by tagging), a constraint taking the fdrm of a sub-
type value specification is provided. The notatipn for this is
"SingleTypeConstraint":

SingleTypeConstraint:: = SubtypeSpec
The "SubtypeSpec” defines a subtype of the kingle other

37.4.2 A "SizeConstraint” can only be applied to bitstring
types, octetstring types, character string types, set-of types
or sequence-of types, or types formed from any of those

types by tagging.
37.4.3 The "SubtypeSpec" specifies the permitted integer
values for the length of the members of the value set, and

takes the form of any subtype specification which can be ap-
plied to the following parent type:

INTEGER (0.MAX)

26

(inner) type. A value of the parent type is a member of the
subtype value set if and only if each inner value belongs to
the subtype obtained by applying the *SubtypeSpec* to the
inner type.

37.6.4 For the types which are defined in terms of multiple
other (inner) types (choice, set, sequence, and types derived
from them by tagging), a number of constraints on these
inner types can be provided. The notation for this is "Multi-
pleTypeConstraints":

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

MultipleTypeConstraints ::=

FullSpecification

FullSpecification | PartialSpecification

1= {TypeConstraints }

PartialSpecification := {... , TypeConstraints }

TypeConstraints ::=

NamedConstraint |
NamedConstraint, TypeConstraints

NamedConstraint ::=

identifier

Constraint | Constraint

37.6.5 The "TypeConstraints" contains a list of constraints
on the component types of the parent type. For a sequence

ISO/IEC 8824 : 1990(E)

37.6.8 A constraint on the value of an inner type is ex-

pressed by the notation "ValueConstraint":
ValueConstraint ::= SubtypeSpec | empty

The constraint is satisfied by a value of the parent type if and

only if the inner value belongs to the subtype specified by the
*SubtypeSpec" applied to the inner type.

37.6.9 A constraint on the presence of an inner type shall
be expressed by the notation "PresenceConstraint”:

PresenceConstraint ::=
PRESENT | ABSENT | OPTIONAL |

empty

e situations in

type, the consjraints must appear in order. The inner type to
whichthe congtraint applies is identified by means of its ident-

ifier, if it has o
types.

NOTE — Where
ambiguous.

37.6.6 The '
*FullSpecificat
Specification”
of "ABSENT"

ne, or by its position, in the case of sequence

the inner type has no identifier, the notation can be

MultipleTypeConstraints® comprises either a
on" or a “"PartialSpecification®. Where "Full-
s used, there is an implied presence constraint
on all inner types not explicitly listed (see

37.6.9), and

pach inner type which is not marked “OP-

listed. Where "PartialSpecification” is employed, there are no

TIONAL" or 'IEFAULT" in the parent type shall be explicitly

implied const
the list.

37.6.7 A par
ofits presence|
The notation i

Constrain

ints, and any inner type can be omitted from

icular inner type may be constrained in terms
(in values ofthe parenttype), its value, or both.
*Constraint™:

_

ValueConstraint PresenceConstraint

which they are permitted are defined in 37:6.

.1t037.6.9.3.

37.6.9.1 Ifthe parent type is a sequence or et, an element
type marked "OPTIONAL" may be constrained to be “PRES-
ENT" (in which case the constraint’is satisfigd if and only if
the corresponding element value’is present) or to be "AB-
SENT" (in which case the constraint is satisfigd if and only if
the corresponding elemeént value is absent)| or to be "OP-
TIONAL" (in which casé no constraint is placed upon the
presence of the corresponding element valug).

37.6.9.2 If the parent type is a choice, a cpmponent type
can be constrained to be "ABSENT", in which case the con-
straint is satisfied if and only if the corresponding component
type is‘not used in the value.

37:6.9.3 The meaning of an empty "PresenceConstraint"
depends on whether a "FullSpecification” or & "PartialSpeci-
fication" is being employed:

a) . in a "FullSpecification”, this is equivialent to a con-
straint of “PRESENT";

b) ina“"PartialSpecification®, no constrgint is imposed.

27

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex A

(Normative))

The macro notation

A.1 Introduction

A mechanism is provided within ASN.1 for the user of ASN.1
to define a new notation with which he can then construct
and reference ASN.1 types or specify values of types. The
new notation is defined using the notation "MacroDefinition".
A "MacroDefinition" simultaneo necifies a new natation

tent, the use of the new type notation is similar to a CHOICE
- the tag is indeterminate. Thus the new notation cannot in
this case be used in places where a known tag is required,
nor can it be implicitly tagged.

A.2 Extensions to the ASN.1 character set and
items

and referencing a type and also a new nota-
g a value. (See clause E.3 for an illustration

voked fors
type is exp

ntax analysis whenever a value of the macro
cted); and

c) specifigs, as the value of a standard ASN.1 type (of
arbitrary cgmplexity), the resulting type and value for.all
instances gf the macro value notation.

Aninstance of the syntax defined by the macro definition can
contain instanges of types or values (using.the standard
ASN.1 notation). These types or values (appéaring in the use
of the macro ngtation) can be associated, for the duration of
the syntax anallysis, with a local type.reference or a local
value reference by appropriate statéments in the macro de-
finition. It is alsq possible to embed, within the macro defini-
tion, standard ASN.1 type assignments. These assignments
become active|when the associated syntactic category is
matched against an item oritems in the instance of the new
notation being analysed. Their lifetime is limited to that of the
analysis.

When analysin
made during analysis of the corresponding type notation are
available. Such analysis is considered to logically precede
analysis of every instance of the value notation.

The resulting type and value of an instance of use of the new
value notation is determined by the value (and the type ofthe
value) finally assigned to the distinguished local value ref-
erence identified by the keyword item VALUE, according to
the processing of the macrodefinition for the new type nota-
tion followed by that for the new value notation.

Each "MacroDefinition® defines a notation (a syntax) for type
definition and a notation (a syntax) for value definition. The
ASN.1 type which is defined by an instance of the new type
notation may, but need not, depend on the instance of the
value notation with which the type is associated. To this ex-

28

The characters | and > are used in the macrg notation.

The items specified in the following .subclayses are also
used. ‘

A.2.1 Macroreference
Name of item - macroreference
A "macroreference”shall consist of the sequerjce of charac-
ters specified fora “typereference” in 8.2, except that all char-
acters shall be“in upper-case. Within a singlgd module, the
same sequence of characters shall not be used for both aty-
perefefence and a macroreference.
A:2:2 Productionreference

Name of item - productionreference

A "productionreference” shall consist of the|sequence of
characters specified for a "typereference” in 8.p.

A.2.3 Localtypereference
Name of item - localtypereference
A "localtypereference" shall consist of the seqyence of char-
acters specified for a "typereference” in 8.2. A "localtypere-
ference” is used as an identifier for typgs which are
recognised during syntax analysis of an instanice of the new
type or value notation.

A.2.4 Localvaluereference

Name of item - localvaluereference

valuereference shall consist of the sequence of char-
acters specified for a "typereference” in 8.2. A "localvalueref-
erence” is used as an identifier for values which are
recognised during syntax analysis of an instance of the new
type or value notation.

NOTE — A'localvaluereference" starts with an upper-case letter.
A.2.5 Alternation item

Name of item - *|*

This item shall consist of the single character |.

A.2.6 Definition terminator item

Name of item - >

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Table A.1 - Sequence specified by items

Item name Defining clause
"string" any sequence of characters
“identifier" 8.3 - Identifiers
"number" 8.8 - Numbers
"empty" 8.7 -Empty

This item shall consist of the single character >.

NOTE — The item < for the start of definitions is defined in clause
8.13.

The keyword "MACRO" shall be used to introduce a macro
definition. The keyword "TYPE NOTATION" shall be used as
the name of the production which defines the new type no-
tation. The keyword "VALUE NOTATION" shall be used as

A.2.7 Syntactic terminal item
Name of item -|astring

An "astring” shall consist of an arbitrary number (possibly
zero) of characters from the ASN.1 character set (see clause
7), surrounded by ". The character * shall be represented in
an "astring" byfa pair of *.

NOTE — Use of [astring" in the macronotation specifies the occur-
rence, at the corfesponding point in the syntax being analysed, of
the characters epclosed in quotation marks (").

A.2.8 Syntagtic category keyword items

Names of| items -

"string"
"identifier"
"number"

llemptyl

ltems with the above names shall consist (in the macronota-
tion) of the sequences of characters in the name, excluding
the quotation symbols (). These items are used inthe macro
notation to spgcify the occurrence, in an instance,of the new
notation, of ceftain sequences of characters: The sequences
in the new notation specified by each item are given in table
A.1 by referenfe to a clause in this International Standard
which defines the sequence of characters appearing in the
new notation.

NOTE — The mpcro notation does not support the distinction be-
tween identifierd and referenceSbased on the case of the initial let-
ter. This is for hitorical reasons.

A.2.9 Additignal keyword items

the name of the production which defines thelnew value no-
tation. The keyword "VALUE" shall be used.as the "localva-
luereference” to which the resulting value-is assigned. The
keyword "value® shall be used to specify that|each instance
of the new notation contains at this point, Using standard
ASN.1 notation, some value of atype (specified in the macro
definition). The keyword "type*shall be used fto specify that
each instance of the new nbtation contains at this point, using
standard ASN.1 notatioh; some "Type".

A.3 Macro definition notation

A.3.1 A macro shall be defined using the motation *Mac-
roDefinition"™:

MacroDefinition :: =
macroreference
MACRO

n.,__n

MacroSubstance

MacroSubstance ::=
BEGIN MacroBody END |
macroreference |
Externalmacroreference

MacroBody ::=
TypeProduction
ValueProduction
SupportingProductions

TypeProduction :=
TYPE NOTATION

ey M

MacroAlternativeList
Names of iftems -
MACRO ValueProduction ::=
TYPE VALUE NOTATION
NOTATION ="
VALUE MacroAlternativeList
value
type SupportingProductions ::=
ProductionList |
Items with the above names shall consist of the sequence of empty
characters in the name.
ProductionList ::=
The items specified in clauses A.2.2 to A.2.4 inclusive shall Production |

not be one ofthe A.2.9 sequences, exceptwhen used as spe-
cified below.

ProductionList Production

29

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

productlomefcrcnce
MacroAlternatlveLlst

Externalmacroreference :;=
modulereference . macroreference

A.3.2 If the "macroreference” alternative of "MacroSub-
stance” is chosen, then the module containing the macro de-
finition shall either:

a) contain another macro definition defining that "mac-
roreference”; or

astring
productionreference
"string"

"identifier"

"number"

"emptyll

type
type(localtypereference)
value(MacroType)

value(localvaluereference MacroType)

value(VALUE MacroType)

MacroType ::= localtypereference |
b) contain the *macroreference” in its “Symboisim- Type
ported".
NOTE — When in a macro, any "MacroType" defineH in that macro
A.3.3 Ifthe "Externalmacroreference” alternative of "Macro- can appear at any point in which ASN.1 specifies.a|"Type".

Substance"” is clhosen. then the module denoted by "module-

(AL LR L R R O LIS A PR LA RTE R RO O (N1 RO LA IOLC 0RO TN 141001015

reference” shall contain a macro definition defining the
“macroreference”. The associated definition is then also as-
sociated with thie "macroreference” being defined.

A.3.4 The chain of definitions which can arise from re-
peated applicatjons of the rules of A.3.2 to A.3.3 shall termi-
nate with a *MacroDefinition" which uses the "BEGIN
MacroBody END" alternative.

A.3.5 Each "productionreference” which occurs in a "Sym-
bolDefn" (see A}|3.9) shall occur exactly once as the firstitem
in a "Production®.

A.3.6 Each inptance of the new type notation shall com-
mence with thg sequence of characters in the "macroref-
erence”, followed by one of the sequences of characters
referenced by "TYPE NOTATION" after applying the produc-
tions specified in the macro definition.

A.3.7 Each ingtance of the new value notation shall consist
of one of the seqquences of characters referenced by "VALUE
NOTATION" after applying the productions specified-in the
macro definition.

A.3.8 The "MgcroAlternativeList” in a production specifies
the possible sets of character sequences.referenced by that
production. It is| specified by:

A "MacroAlternative” references all character ftrings which
are formed by taking any of of the:charactgr strings ref-

erenced by the first "SymbolDefnin the “Sy

inne rafal
lowed by any one of the charagter strings refes

second "SymbolDefn" in the {SymbolList*, ang
and including the last "SymbolDefn" in the "Sy|

NOTE — The "EmbeddedDefinitions" (if any) play]
determining these-stririgs.

A.3.10 An "astring" references the sequence
in the "astring” without the enclosing pair of *.

bolList*, fol-

ancand hy tha
SHCeh O Wi

so on, up to
mbolList".

o direct part in

of characters

A.311< A "productionreference” references gny sequence

of characters specified by the *Production” it id

entifies.

A.3.12 Thesequences of characters referencgd by the next

four alternatives for “"SymbolDefn" are specifie

NOTE — The sequences of characters referenced

] in table A.1.

by the "string"

should be terminated in an instance of the macro fotation by the

appearance of a sequence referenced by the next]
in the "SymbolList."

A.3.13 A*type" references any sequence of s
forms a "Type" notation as specified in 12.1.

NOTE — The "DefinedType" of 12.1 may in this case g
typereference" referencing a type defined in the m

A3.14 A “type(localtypereference)" referer
quence of symbols which forms a *Type" as spe
but in addition assigns that type to the "localty
A later assignment may occur to the same
ference”.

"SymbolDefn"

mbols which

ontaina"local-
hcro notation.

ces any se-
cifiedin 12.1,
pereference”.
“localtypere-

inthe 'MacroAIternatlveLlst'.

A.3.9 The notation for a "MacroAlternative" shall be:

MacroAlternative ::= SymbolList
SymbolList ::=
SymbolElement |
SymbolList SymbolElement
SymbolElement ::=
SymbolDefn |
EmbeddedDefinitions

30

A3T5 A value(Macrolype)" references any

sequence of

symbols which forms a *Value” notation (as specified in 12.7)
for the type specified by "MacroType".

A.3.16 A "value(localvaluereference MacroType)" referen-
ces any sequence of symbols which forms a *Value" notation
(as specified in 12.7) for the type specified by “MacroType",
but in addition assigns the value specified by the value nota-
tion to the “localvaluereference”. A later assignment may
occur to the “localvaluereference®.

A3.17 A “value(VALUE MacroType)" references any se-
quence of symbols which forms a "Value" notation (as spe-
cified in 12.7) for the type specified by "MacroType*, but in
addition returns the value as the value specified by the value

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

notation. The type of the value returned is the type referenced
by MacroType.

A.3.18 Precisely one assignment to VALUE (as specified in
A.3.17 or in A.3.19) occurs in the analysis of any correct in-
stance of the new notation.

A.3.19 The notation for an "EmbeddedDefinitions" shall be:

EmbeddedDefinitions ::=
< EmbeddedDefinitionList >

EmbeddedDefinitionList ::=
EmbeddedDefinition |
EmbeddedDefinitionList
EmbeddedDefinition

ISO/IEC 8824 : 1990(E)

lysis of an instance of the new notation at the time when the
"EmbeddedDefinitions" is encountered, and persists until
redefinition of the "localtypereference” or “localvalueref-
erence" occurs..

NOTES

1 The use of the associated "localtypereference" or “localvalue-
reference" elsewhere in the "Alternative" implies assumptions on
the nature of the parsing algorithm. Such assumptions should be
indicated by comment. For example, use of the "localtypere-
ference" textually following the "EmbeddedDefinitions" implies a
left to right parse.

2 The "localvaluereference" "VALUE" may be assigned a value
either by the "value (VALUE MacroType)" construct or by an "Em-
beddedDefinition". In both cases, the value is returned, as speci-
fied in A.3.17.

Embedd¢dDefinition ::=
LocalTypeassignment |
LocalValueassignment

LocalTypeassignment ::=
localtypereference

N, __n

MacroType

LocalValueassignment ::=
localvaluereference
MacroType

MacroValue

MacroValue ::=
Value |
localvaluereference

The assignment of a "MacroType" to a “localtypereference”
(or of a "MacroValue" to a *localvaluereference”) within an
"EmbeddedDEfinitions" takes effect during the syntax ana-

A.4 Use of the new notation

Whenever a "Type" (or "Value") notation is dalled for by this
International Standard, an instance of the type notation (or
value notation) defined by a macro may be|used, provided
that the macro is either:

a) defined within'the’same module; o

b) importediinto the module, by means of the appear-
ance of the**macroreference” in the "Syimbolsimported”
of the moedule.

To allow the latter possibility, a “macroreferefice” can appear
as a"Symbol" in 9.1.

NOTES

1 This extension to the standard ASN.1 notatioh is not shown in
the body of this International Standard.

2 ltis possible to construct modules including jequences of type
assignment and macro definitions which make pdrsing of the value
syntax in DEFAULT values arbitrarily complex.

31

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex B

(Normative)

ISO assignment of OBJECT IDENTIFIER component values

B.1 Three arcs are specified from the root node. The as-
signment of values and identifiers, and the authority for as-
signment of subsequent component values, are as follows:

Authority for
subsequent
assignments

Value Identifier

progressed alongside the establishment of procedures for
the identification of specific OS| Registration Authorities.

B.6 Thearcsimmediately below *“member-body" shall have
values of a three digit numeric country code, as specified in
ISO 3166, that identifies the ISO Member Body in that country
(see the NOTE). The "NameForm" of object identifier com-

0 ccitt CCITT
1 iso I1SO
2 joint-is¢-ccitt See annex D

NOTE — The renmpainder of this annex concerns itself only with ISO
assignment of vdlues.

B.2 The ide
signed above,

ifiers "ccitt", "iso" and “joint-iso-ccitt*, as-
ay each be used as a "NameForm®.

B.3 Four arcg are specified from the node identified by
"iso". The assignment of values and identifiers is

Authority for

Value Identifier subsequent
assignments
0 standarnd See clause B.4
1 registrgtion-authority See clause B.5
2 membejr-body See clause B.6
3 identifipd-organization See clause B.7

for the part number, unless this is specifically excluded in the
text of the Intdrnational Standard. Further arcs shall have
values as definpd in that International Standard.

NOTE — If a non-multipart International Standard allocates object
identifiers, and $ubsequently becomes a multipart International
Standard, it shall continug'to allocate object identifiers as if it were
a single part Inteynational Standard.

ponent is not permitted with these identitiers, Arcs below the
"country code" are not defined in this Internatignal Standard.

NOTE — The existence of a country code.in ISO

necessarily imply that there is an ISO_ Member Bog

that country or that the ISO Member Body for that

isters a scheme for the allocationof .object identifie

B.7 The arcs immediately-below “identified
shall have values of an'intérnational Code De:
allocated by the Régistration Authority for |
identify an issuing-organization specifically reg

authority as allocating object identifier com
NOTES 1 and_2). The arcs immediately below

suing erganization in accordance with ISO 65

3166 does not
y representing
country admin-
r components.

organization®
signator (ICD)
50 6523 that
stered by that
ponents (see
the ICD shall

3. Arcs below

have values of an "organization code" aIIocated by the is-

*organization code" are not defined by thi
Standard (see NOTE 3).

NOTES

1 The requirement thatissuing organizations are

Registration Authority for ISO 6523 as allocatin

codes for the purpose of object identifier compone

International

ecorded by the
g organization
ts ensures that

only numerical values in accordance with this Intdrnational Stan-

dard are allocated.

2 The declaration that an issuing organization all

bcates organiz-

ation codes for the purpose of object identifier comnponents does

not preclude the use of these codes for other purp

3 Itis assumed that the organizations identified §
ation code" will define further arcs in such a way ag

cation of unique values.

4 The effect of clause B.7 is that any organizatio
organization code from an appropriate issuing or
can then assign OBJECT IDENTIFIER values for its
with the assurance that those values will not conflic
signed by other organizations. By this means,
co

B.5 The arcs below “registration authority" are reserved for
an addendum to this International Standard which will be

32

prietary information formats.

pses.

y the "organiz-
to ensure allo-

can obtain an
anization, and
own purposes,
with values as-

manufacturer
to its own pro-

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex C

(Normative)

CCITT assignment of OBJECT IDENTIFIER component values

C.1 Three arcs are specified from the root node. The as-
signment of values and identifiers, and the authority for as-
signment of subsequent component values are as follows:

Authority for

These identifiers may be used as a "NameForm".

C.4 The arcs below “recommendation” have the value 1 to
26 with assigned identifiers of a to z. Arcs below these have
the numbers of CCITT Recommendations in the series ident-
ified by the letter. Arcs below this are determined as necess-
ary by the CCITT Recommendation. The identifiers ato z may

Value Identifier subsequent
assignments
0 ccitt CCITT
1 iso 1SO
2 joint-iso-ccitt See annex D

NOTE — The femainder of this annex concernsitself onlywith CCITT
assignment df values.

C.2 The identifiers "ccitt”, “iso" and "joint-iso-ccitt", as-
signed aboye, may each be used as a "NameForm".

C.3 Four J:rcs are specified from the node identified by
“ccitt”. The gssignment of values and identifiers is

Authority for

Value Identifier subsequent
assignments
rec endation See clause C.4
quegtion See clause C.5

See clause C.6
See clause C.7

admjnistration
network-operator

WNm=O

be used as a ‘Namerorm .

C.5 The arcs below "question” havevalug
to CCITT Study Groups, qualified by the S
value is computed by the formula:

study group numbef)¥ (Period *

where "Period" has.the value 0 for 1984-
1992, etc., and thesmultiplier is 32 decimal

The arcs bglow’each study group have
sponding tothe questions assigned to that
below this are determined as necessary b

s corresponding
tudy Period. The

32)
988, 1 for 1988-
he values corre-

study group. Arcs
y the group (e.g.

working party or special rapporteur group) assigned to study

the question.

C.6 The arcs below "administration" hale the values of

X.121 DCCs. Arcs below this are determin
by the Administration of the country identi
DCC.

ed as necessary
fied by the X.121

C.7 The arcs below "network-operator* have the value of

X.121 DNICs. Arcs below this are determir
by the Administration or RPOA identified b

ed as necessary
y the DNIC.

33

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex D

(Normative)

Joint assignment of OBJECT IDENTIFIER component values

D.1 Three arcs are specified from the root node. The as-
signment of values and identifiers, and the authority for as-
signment of subsequent component values are as follows:

Authority for

identify areas of joint ISO-CCITT standardisation activity, in
accordance with the "Procedures for assignment of object
identifier component values for joint ISO-CCITT use* 1

D.4 The arcs beneath each arc identified by the mechan-

Value Identifier subsequent isms of clause D.3 shall be allocated in accordance with
assignments mechanisms established when the arc is allocated.
. NOTE — Itis expected that this will involve delegation of authority to
0 FCltt CCITT the joint agreement of CCITT and ISO Rapporteurs for the joint area
1 1so I1SO of work.
2 joint-isofccitt See below

NOTE — The remainder of this annex concerns itself only with joint
ISO-CCITT assignment of values.

D.2 The identffiers "ccitt", “iso" and "joint-iso-ccitt”, as-
signed above, njay each be used as a "NameForm".

D.3 The arcs helow "joint-iso-ccitt" have values which are
assigned and agreed from time to time by ISO and CCITT to

D.5 Initial International Standards)and CCITT|Recommen-
dations in areas of joint ISO-CCITTactivity require to allocate
OBJECT IDENTIFIERS in advance of the establishment of
the procedures of D.3, and herice allocate in accordance with
annexes B or C. Informatiom objects identified in this way by
International Standards'‘or CCITT Recommengations shall
not have their OBJECTHDENTIFIERS changed when the pro-
cedures of clause'D:3 are established.

1 The Registration Authority for the assignment of object identifier component values for joint ISO-CCITT use is the American National
Standards Institute (ANSI), 1430 Broadway, New York, NY 10018, USA.

34

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex E

(Informative)

Examples and hints

This annex contains examples of the use of ASN.1 in the description of (hypothetical) data structures. It also contains hints, or
guidelines, for the use of the various features of ASN.1.

E.1 Example of a personnel record

The use of A§N.1 is illustrated by means of a simple, hypothetical personnel record.
E.1.1 Informal Description of Personnel Record

The structure jof the personnel record and its value for a particular individual are shown below.

Name: John P Smith
Title: Director

Employee Number: 51

Date of Hire: 17 September 1971
Name of Spouse: Mary T Smith
Number of Children: 2

Child Information
Name:
Date of Birth

Ralph T Smith
11 November 1957

Child Information
Name:
Date of Birth

Susan B Jones
17 July 1959

E.1.2 ASN.1 description of the record structure

The structure jof every personnel record is formally‘described below using the standard notation for data types.

PersonnelRgcord ::= [APPLICATION 0] IMPEICIT SET

{ Name,
title [0] VisibleString,
number EmployeeNumber,
dateOfHire [1} Date,
nameOfSpouse [2] Name,

children 3] IMPLICIT SEQUENCE OF ChildInformation DEFAULT {}
ChildInformation ::= (SET
{ Name,
dateOfBirtH [0] Date
}
Name ::= [APPLICATION 1] IMPLICIT SEQUENCE
{ givenName VisibleString,
initial VisibleString,
familyName VisibleString
}
EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

Date ::= [APPLICATION 3] IMPLICIT VisibleString-- YYYY MMDD

This example illustrates an aspect of the parsing of the ASN.1 syntax. The syntactic construct "DEFAULT" can only be applied
to an element of a "SEQUENCE" or a "SET", it cannot be applied to an element of a *SEQUENCE OF". Thus the *DEFAULT {
}" in "PersonnelRecord" applies to “children®, not to *Childinformation®.

35

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

The value of John Smith’s personnel record is formally described below using the standard notation for data values.

{ {givenName "John",initial "P",familyName "Smith"} .
title "Director” s
number 51 R
dateOfHire " 19710917" y
nameOfSpouse {givenName "Mary" initial "I"familyName "Smith"} ,
children

{ { {givenName "Ralph"jinitial "T",familyName "Smith"},

dateOfBirth "19571111"},

{ {givenName "Susan"initiai "B"famiiyName "Jones"},
dateOfBirth "19590717"}}}

E.2 Guidelines for use of the notation

The data types nd formal notatlon def ned by this International Standard are flexible, aIIowmg awide range of protocols to be

Aanirmemant s calome PROSUEPIPIVURPIPL JUURPUPIGY PRI I WGPy ApIy PSR Jiy

Gesignea using hem. This uwuuuuy, however, can sometimes lead to confusion, especially when the notation.is afproached for
the first time. This annex attempts to minimise confusion by giving guidelines for, and examples of, the,use of the|notation. For

each of the builtin data types, one or more usage guidelines are offered. The character string types (for'example
and the types dgfined in clauses 32 to 35 are not dealt with here.

, VisibleString)

E.2.1 Boolea
E.2.1 ._1 Use a poolean type to model the values of a logical (that is, two-state) variable/for.example, the answer tp a yes-or-no
question.
EXAMPLE
Enployed ::= BOOLEAN
E.2.1.2 Whenlssigning a reference name to a boolean type, choose'one that describes the true state.
EXAMPLE

Marrfed ::= BOOLEAN

not
MaritpiStatus ::= BOOLEAN

See also E.2.3.

NJ

E.2.2 Integer

E.2.2.1 Use an integer type to modelthe values (for all practical purposes, unlimited in magnitude) of a cardinal of integer vari-

able.
EXAMPLE

CheckingAccountBalance ::= INTEGER
< in cents; negative means overdrawn

E2.2.2 Define the minimum and maximum allowed values of an integer type as distinguished values.

EXAMPLE

DayOfTheMonth ::= INTEGER {first(1),last(31)}

E.2.3 Enumerated

E.2.3.1 Use an enumerated type to model the values of a variable with three or more states. Assign values starting with zero

if their only constraint is distinctness.

36

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

EXAMPLE

DayOfTheWeek ::= ENUMERATED ({sunday(0),monday(1),tuesday(2),
wednesday(3),thursday(4),friday(5),saturday(6)}

E.2.3.2 Use an enumerated type to model the values of a variable that has just two states now but that may have additional
states in a future version of the protocol.

EXAMPLE

MaritalStatus ::= ENUMERATED {single(0),married(1)}

MaritalStatus ::= ENUMERATED ({single(0),married(1),widowed(2)}

E.2.4 Real

E.2.4.1 Usg a real type to model an approximate number.

EXAMPLE

Za V2 ¥

AngleInRadians ::= REAL
pi REAL := {3141592653589793238462643383279, 10, -30}

E.2.5 Bit sfring

E.2.5.1 Usg a bit string type to model binary data whose format and length are unspecified, or specified elsewhere, and whose
length in bits|is not necessarily a muitiple of eight.

EXAMPL)

83}

G3FacsimilePage ::= BIT STRING
-- a sequence of bits conforming to CCITT
-- Recommendation T.J4.

E.2.5.2 Deflne the first and last meaningful bits of a fixed-length; bit string as distinguished bits.

EXAMPL!

89}

Nibble ::= BIT STRING {first(0),last(3)}

E.2.5.3 Usg a bit string type to model the values'of a bit map, an ordered collection of logical variables indi¢ating whether a
particular conpdition holds for each of a correspondingly ordered collection of objects.

EXAMPL)

[e9)

SunnyDaysOfTheMonth ;=\BIT STRING {first(1),last(31)}
- Day i was sunny/if 'and only if bit i is one

E.2.5.4 Usg a bit string type'with distinguished values to model the values of a collection of related logical vafiables.

EXAMPL)

|89}

PersonalStatus ::= BIT STRING
{marfied(0),employed(1),veteran(2),collegeGraduate(3)}

E.2.6 Octet string

E.2.6.1 Use an octet string type to model binary data whose format and length are unspecified, or specified elsewhere, and
whose length in bits is a multiple of eight.

EXAMPLE
G4FacsimileImage ::= OCTET STRING
-- a sequence of octets conforming to

-- CCITT Recommendations T.5 and T.6

E.2.6.2 Use a character string type in preference to an octet string type, where an appropriate one is available.

37

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 :

EXAMPLE

Surname ::

1990(E)

PrintableString

E.2.6.3 Use an octet string type to model any string of information which cannot be modelled using one of the character string
types. Be sure to specify the repertoire of characters and their coding into octets.

EXAMPLE

PackedBCDString ::

OCTET STRING

-- the digits 0 through 9, two digits per octet,
-- each digit encoded as 0000 to 1001,
-- 11112 used for padding.

E.2.7 Null

Use a null type to indicate the effective absence of an element of a sequence.

EXAMPLE

PatientIdentifi
{name

roomNumb)
{INT]}
NUI
NOTE — The use(
E.2.8 Sequen

E2.8.1 Usea
dictable, and wh

EXAMPLE

NamesOfMen
-- in the o

E.2.8.2 Usea

est, and whose order is significant, provided that the makeup of the collection is unlikely to change from one version

col to the next.

EXAMPLE

Name]
{p1

vi

sd

E2.83 Usea

whose order is gignificant, provided that the makeup of the collection is unlikely to change from one version of th

the next.

EXAMPLE

er CHOICE
EGER,
LL -- if an out-patient --}}

bf "OPTIONAL" provides an equivalent facility.

er ::= SEQUENCE
VisibleString,

ce and sequence-of

ose order is significant.

berNations ::= SEQUENCE OF VisibleString
rder in which they joined

sequence type to model a collection of variables whose types are the same, whose number is kno

sOfOfficers
fesident
cePresident
cretary

1= SEQUENCE
VisibleString,
VisibleString,
VisibleString}

pequence type to.model a collection of variables whose types differ, whose number is known and

Credentials
{userName
password

accountNumber

== SEQUENCE

sequence-of type to model a collection of variables whose types até the same, whose number is lafge or unpre-

wn and mod-
of the proto-

modest, and

e protocol to

VisibleString,
VisibleString,
INTEGER}

E.2.8.4 Ifthe elements of a sequence type are fixed in number but of several types, a reference name should be assigned to
every element whose purpose is not fully evident from its type.

EXAMPLE
File ::= SEQUENCE
{ ContentType,
other FileAttributes,
content ANY}
See also E.2.5.3, E.2.5.4, and E.2.7

38

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

E.2.9 Set

E.2.9.1 Use aset type to model a collection of variables whose number is known and modest and whose order is insignificant.
Identify each variable by context-specifically tagging it.

EXAMPLE

UserName := SET
{personalName [0] IMPLICIT VisibleString,
organisationName [1] IMPLICIT VisibleString,
countryName [2] IMPLICIT VisibleString}

E.2.9.2 Use a set type with "OPTIONAL" to model a collection of variables that is a (proper or improper) subset of another col-
lection of variables whose number is known and reasonably small and whose order is insignificant. Identify each variable by
context-specifically tagging it.

EXAMPLE

UserName {:= SET
{personalName [0] IMPLICIT VisibleString,
organisatipnName [1] IMPLICIT VisibleString OPTIONAL
-- defaplts to that of the local organisation -- ,
countryName [2] IMPLICIT VisibleString OPTIONAL
-- defaplts to that of the local country -- }

E.2.9.3 Use & set type to model a collection of variables whose makeup is likely to change from one version of the protocol to
the next. Identify each variable by context-specifically tagging it.

EXAMPLE

UserName {= SET
{personalName [0] IMPLICIT VisibleString,
organisatipnName [1] IMPLICIT VisibleString OPTIONAL ,
-- defaplts to that of the local organisation
countryNgme [2] IMPLICIT VisibleString OPTIONAL ,
-- defaplts to that of the local country
-- othef optional attributes are for further study --}

E.2.9.4 Ifthelmembers of a set type are fixed in number, a\reference name should be assigned to every memlbper whose pur-
pose is not fully evident from its type.

EXAMPLE

FileAttributgs ::= SET
{owner [0] IMPLICIT UserName,
sizeOfContentInOctets [1] IMPLICIT INTEGER,

[2] IMPLICIT ‘AccessControls,

}

E.2.9.5 Use 3 set type tomodel a collection of variables whose types are the same and whose order is insignifjcant.

EXAMPLE

Keywords :: =\SET OF VisibleString -- in arbitrary order

See also E.2.5.4 and E.2.13
E.2.10 Tagged

E.2.10.1 Use auniversal tagged type to define - in this International Standard only - a generally useful, application-independent
data type that must be distinguishable (by means of its representation) from all other data types.

EXAMPLE

EncryptionKey ::= [UNIVERSAL 30] IMPLICIT OCTET STR ING
-- seven octets

E.2.10.2 Use an application-wide tagged type to define a data type that finds wide, scattered use within a particular presenta-

tion context and that must be distinguishable (by means of its representation) from all other data types used in the presentation
context.

39

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

EXAMPLE

FileName ::= [APPLICATION 8] IMPLICIT SEQUENCE
{directoryName VisibleString,
directoryRelativeFileName VisibleString}

E.2.10.3 Use context-specific tagged types to distinguish the members of a set. Assign numeric tags starting with zero if their
only constraint is distinctness.

EXAMPLE

CustomerRecord ::= SET

{name [0] IMPLICIT VisibleString,
mailingAddress [1] IMPLICIT VisibleString,
accountNumber [2] IMPLICIT INTEGER,
balanceDue [3] IMPLICIT INTEGER -- in cents --}

E.2.10.4 Where a particula icatinn-wi . i
unless it is (or may be in the future) needed for distinctness. Where the set member has been universally tag
text-specific tag should be used.

ed not be used,
ged,|a further con-

EXAMPLE
ProductRecod ::= SET
{ UniformCode,
descriptio [0] IMPLICIT VisibleString,
inventoryﬂ? [1] IMPLICIT INTEGER,
inventoryllevel [2] IMPLICIT INTEGER}
UniformCod¢ ::= [APPLICATION 13] IMPLICIT INTEGER

E.2.10.5 Usecontext-specific tagged types to distinguish the alternatives of &CHOICE. Assign numeric tags stating with zero
if their only constraint is distinctness.

EXAMPLE

CustomerAttribute ::= CHOICE

{name [0] IMPLICIT VisibleString,
mailingAdgress [1] IMPLICIT VisibleString,
accountNumber [2] IMPLICIT INTEGER,
balanceD [3] IMPLICIT INTEGER -- in cents\--}

E.2.10.6 Where a particular CHOICE alternative.has been defined using an application-wide tagged type, a fyrther context-
specific tag negd not be used, unless it is (or.maybe in the future) needed for distinctness.

EXAMPLE
{ UniformCode,

descriptio! [0] IMPLICIT VisibleString,
inventoryNo [1] IMBLICIT INTEGER}

ProductDesiT\ator 2= CHOICE

UniformCod¢ ::= [APPEICATION 13] IMPLICIT INTEGER
E.2.10.7 Where@aparticular CHOICE alternative has been universally tagged, a further context-specific tag shoul1! be used, un-
less the provisln_of_mme.than.nn&uamemimpe_is the purpose cfthe choice

EXAMPLE

Customerldentifier ::= CHOICE
{name VisibleString,
number INTEGER }

E.2.10.8 Use a private-use tagged type to define a data type that finds use within a particular organisation or country and that
must be distinguishable (by means of its representation) from all other data types used by that organisation or country.

EXAMPLE

AcmeBadgeNumber ::= [PRIVATE 2] IMPLICIT INTEGER

E.2.10.9 These guidelines use implicit tagging in the examples whenever it is legal to do so. This may, depending on the en-
coding rules, result in a compact representation, which is highly desirable in some applications. In other applications, compact-

40

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

