
INTERNATIONAL
STANDARD

ISOIIEC
8824

Second edition
1990-12-15

Information technology - Open Systems
Interconnection - Specification of Abstract
Syntax Notation One (ASN.1)

Technologies de Irin forma tion - lnterconnexion de syst&mes ouveTfs -
Spkifica tion de Ia no ta tion de syn taxe abstraite num&o-7 (AW. 1)

E E - = = -

-@

=
F = = = = = = 5 = I
E g

= z z:
c E
E = G -

Reference number
ISOAEC 8824 : 1990 (EI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Contents

9

10

11

12

13

14

15

16

17

18

scope

Normativereferences

Definitionsl

Abbreviations

Notation used in this International Standard3
5.1 Productions
5.2 The alternative colkions’

.......................... 3

.......................... 4
5.3 Example of a production 4
5.4 Layout4
5.5 Recursion

References to a coilec&‘of sequences
..................

5.6
4
4

5.7 References to an item 4
5.8 Tags

UseoftheASN.1 notation .. .5

The ASN.l Character Set.6

ASN.litems .. .
8.1 General rules 6
8.2 Type references 6
8.3 Identifiers 6
8.4 Value references 6
8.5 Module reference 6
8.6 Comment7
8.7 Emptyitem 7
8.8 Numberitem 7
8.9 Binarystring item 7
8.10 Hexadecimal string item 7
8.11 Character string item 7
8.12 Assignment item 7
8.13 Single Character items 8
8.14 Keyworditems 8
8.15 Range Separator 8
8.16 Ellipsis 8

Moduledefinition .. .

Referencing type and value definitions 10

Assigning types and values I 10

Definition of types and values ... 10

Notation for the boolean type1..12

Notation for the integer type .. .12

Notation for the enumerated type12

Notation for the real type .. .12

Notation for the bitstring type13

Notation for the octetstring type14

0 ISO/IEC 1990
All rights reserved. No patt of this publication may be reproduced or utilized in any form or by any
means, electronie or mechanical, including photocopying and microfilm, without Permission in
writing from the publisher.

ISO/IEC Copyright Office l Case postale 56 l CH-1211 Geneve 20 l Switzerland
Printed in Switzerland

ii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

19 Notation for the null type .14

20 Notation for sequence types .14

21 Notation for sequence-of types15

22 Notation for set types15

23 Notation for set-of types .15

24 Notation for choice types .16

25 Notation for selection types .16

26 Notation for tagged types .17

27 Notationfortheanytype i17

28 Notation for the Object identifier type18

29 Notation for Character string types .19

30 Notation for types defined in clauses 32 - 35 .19

31 Definition of Character string types .20

32 Generalizedtime..22

33 Universaltime..22

34 Theexternaltype ...23

35 The Object descriptor type .24

36 Subtypenotation ...25

37 SubtypeValueSets2 5
37.1 Single Value 25
37.2 Contained Subtype : 26
37.3 Value Range 26
37.4 Size Constraint 26
37.5 Permitted Alphabet 26
37.6 Inner Subtyping 26

Annexes

A The macro notation .. .28
A.l Introduction 28
A.2 Extensions to the ASN.l Character set and items 28

A.2.1 Macroreference 28
A.2.2 Productionreference 28
A.2.3 Localtypereference 28
A.2.4 Localvaluereference 28
A.2.5 Alternation item 28
A.2.6 Definition terminator item 28
A.2.7 Syntactic terminal item 29
A.2.8 Syntactic category keyword items 29
A.2.9 Additional keyword items 29

A.3 Macro definition notation 29
A.4 Use of the new notation 31

B ISO assignment of OBJECT IDENTIFIER component values32

C CCITT assignment of OBJECT IDENTIFIER component values33

D Joint assignment of OBJECT IDENTIFIER component values34

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

E Examplesandhints3 5
E.l Example of a Personne1 record 35

E.l .l Informal Description of Personne1 Record 35
E.1.2 ASN.l description of the record structure 35
E.1.3 ASN.l description of a record value 36

E.2 Guidelines for use of the notation 36
E.2.1 Boolean 36
E.2.2 Integer 36
E.2.3 Enumerated : 36
E.2.4 Real 37
E.2.5 Bitstring 37
E.2.6 Octet string 37
E.2.7 Null 38
E.2.8 Sequence and sequenceof 38
E.2.9 Set 39
E.2.10 Tagged’ : 39
E.2.11 Choice

l 41
E.2.12 Selection type : : 1’ : . 41
E.2.13 Any 42
E.2.14 External 42

E.3 An example of the use of the macro notation 42
E.4 Use in identifying abstract syntaxes 4.3
E.5 Subtypes 44

F Summary of the ASN.l notation .47

iv

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized System for worldwide standardiz-
ation. National bodies that are members of ISO or IEC participate in the development
of International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint
technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting
a vote.

International Standard ISO/IEC 8824 was prepared by Joint Technical Committee
ISOIIEC JTC 1, Information technology.

This second edition cancels and replaces the first edition (ISO 8824 : 19871, which has
been technically revised.

Annexes A, B, C and D form an integral patt of this International Standard. Annexes E
and F are for information only.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

lSO/lEC 8824 : 1990(E)

Introduction

In the lower layers of the Basic Reference Model (See ISO 7498), each User data par-
ameter of a Service primitive is specified as the binary value of a sequence of octets.

In the presentation layer, the nature of user data Parameters changes. Application layer
Standards require the presentation Service user data (See ISO 8822) to carry the value
of quite complex types, possibly including strings of characters from a variety of char-
acter Sets. In Order to specify the value which is carried, they require a defined nota-
tion which does not determine the representation of the value. This is supplemented
by the specification of one or more algorithms called encoding rules which determine
the value of the Session layer octets carrying such application layer values (called the
transfer Syntax). The presentation layer protocol (See ISO 8823) tan negotiate which
transfer syntaxes are to be used.

The purpose of specifying a value is to distinguish it from other possible values. The
collection of the value together with the values from which it is distinguished is called
a type, and one specific instance is a value of that type. More generally, a value or
type tan often be considered as composed of several simpler values or types, together
with the relationships between them. The term datatype is often used as a synonym
for type.

In Order to correctly interpret the representation of a value (whether by marks on Paper
or bits on a communication line), it is necessary to know (usually from the context), the
type of the value being represented. Thus the identification of a type is an important
part of this International Standard.

A very general technique for defining a complicated type is to define a small number
of simple types by defining all possible values of the simple types, then combining
these simple types in various ways. Some of the ways of defining new types are as fol-
lows: .

a) given an (ordered) list of existing types, a value tan be formed as an (ordered)
sequence of values, one from each of the existing types; the collection of all
possible values obtained in this way is a new type; (if the existing types in the list
are all distinct, this mechanism tan be extended to allow omission of some
values from the list);

b) given a list of (distinct) existing types, a value tan be formed as an (unordered)
set of values, one from each of the existing types; the collection of all possible
values obtained in this way is a newtype; (the mechanism tan again be extended
to allow omission of some values);

c) given a Single existing type, a value tan be formed as an (ordered) sequence
or (unordered) set of Zero, one or more values of the existing type; the (infinite)
collection of all possible values obtained in this way is a new type;

d) given a list of (distinct) types, a value tan be Chosen from
the set of all possible values obtained in this way is a new typei

e) given a type, a new type tan be formed as
ture or Order relationship among the values.

a subset of it by using some struc-

Types which are defined in this way are called structured types.

any one of them;

Every type defined using the notation specified in this International Standard is as-
signed a tag. The tag is defined either by this International Standard or by the user of
the notation. .

vi

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

It is common for the same tag to be assigned to many different
type being identified by the context in which the tag is used.

types, the particular

The User of the notation may choose to assign distinct tags to two occurrences of a
Single type, thereby creating two distinct types. This tan be necessary when it is re-
quired to distinguish which choice has been made in situations such as d) above

Four classes of tag are specified in the notation.

The first is the universal class . Universal
in this International Standard, and each

b)

assigned to a Single type; or

class tags are
tag is either

only used as specified with-

assigned to a construction mechanism.

The second class of tag is the application class. Application class tags are assigned
to types by other Standards. Within a particular’ Standard, an application class tag k
assigned to only one type.

The third class is the private class. Private class
tional Standards. Their use is enterprise specific.

The final class of tag is the tontext-specific class. This is freely assigned within any
use of this notation, and is interpreted according to the context in which it is used.

tags are never assigned lnterna-

Tags are mainly intended for machine use, and are not essential for the human nota-
tion defined in this International Standard. Where, however, it is necessary to require
that certain types be distinct, this is expressed by requiring that they have distinct tags.
The allocation of tags is therefore an important part of the use of this notation.

NOTES

1 All types which tan be defined in the notation of this Inter national Standard have
Given any type, the user of the notation tan define a new type with a different tag.

a tag.

2 Encoding rules always carry the tag of atype, explicitly or implicitly, with any representation
of a value of the type. The restrictions placed on the use of the notation are designed to en-
sure that the tag is sufficient to’ unambiguously determine the actual type, provided the ap-
plicable type definitions are available.

This International Standard specifies a notation which both enables complicated types
to be defined and also enables values of these types to be specified. This is done
without determining the way an instance of this type is to be represented (by a se-
quence of octets) during transfer; A notation which provides this facility is called a no-
tation for abstract Syntax definition.

The purpose of this International Standard is to specify a notation for abstract Syntax
definition called Abstract Syntax Notation One, or ASN.l. Abstract Syntax Notation
One is used as a semi-formal tool to define protocols. The use of the notation does
not necessarily preclude ambiguous specifications. lt is the responsibility of the users
of the notation to ensure that their specifications are not ambiguous.

This International Standard is supported by other Standards which specify encoding
rules. The application of encoding rules to the value of a type defined by ASN.1 re-
sults in a complete specification of the representation of values of that type during
transfer (a transfer Syntax).

This International Standard is technically aligned with CCITT Recommendation X.208
(1988).

vii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Clauses 7 to 30 (inclusive) of this International Standard define the simple
types suppotted by ASN.l, and specify the notation to be used for referen-
cing simple types and defining structured types. Clauses 7 to 30 also specify
the notation to be used for specifying values of types defined using ASN.l.

Clause 31 of this International Standard defines additional types (Character
string types) which, by the application of encoding rules for Character Sets,
tan be equated with the octetstring type.

Clauses 32 to 35 (inclusive) of this International Standard define certain struc-
tured types which are considered to be of general Utility, but which require no
additional encoding rules.

NOTE - lt is expected that these clauses will be added to, to encompass other com-
mon datatypes such as diagnostics, authentication information, accounting informa-
tion, security Parameters and so on.

The value notation and semantic definition for types defined in these clauses
are derived from a definition of the type using the ASN.l notation. This type
definition tan be referenced by Standards defining encoding rules in Order to
specify encodings for these types.

Clauses 36 and 37 of this International Standard define a notation which en-
ables subtypes to be defined from the values of a parent type.

Annex A is part of this International Standard, and specifies a notation for ex-
tending the basic ASN.l notation. This is called the macro facility.

Annex B is part of this International Standard, and defines the Object identifier
tree for authorities supported by ISO.

Annex C is part of this International Standard and defines the
fier tree for authorities supported by CCITT.

Object identi-

Annex D is part of this International Standard and defines the
fier tree for joint use by ISO and CCITT.

Object identi-

Annex E is not part of this International Standard, and provides
and hints on the use of the ASN.l notation.

examples

Annex F is not part of this International Standard, and provides
of ASN.l using the notation of clause 5.

a summary

The text of this International Standard, and in
are the subject of joint ISO-CCITT agreement.

particular the annexes B to D,

. . .
VIII

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

INTERNATIONAL STANDARD ISO/IEC 8824 : 1990 (EI

Information technology - Open Systems
Interconnection - Specification of Abstract Syntax
Notation One (ASN.1)

1 Scope

This International Standard specifres a notation for abstract
Syntax definition called Abstract Syntax Notation One
(ASN.l).

This International Standard defines a number of simple
types, with their tags, and specifres a notation for referencing
these types and for specifying values of these types.

This International Standard defines mechanisms for con-
structing new types from more basic types, and specifies a
notation for defrning such structured types and assigning
them tags, and for specifying values of these types.

This International Standard defines Character sets (by ref-
erence to other International Standards) for use within
ASN.l.

This International Standard defines a number of useful types
(using ASN.l), which tan be referenced by users of ASN.1.

The ASN.l notation tan be applied whenever it is necessary
to define the abstract Syntax of information. lt is particularly,
but not exclusively, applicable to application protocols.

The ASN.l notation is also referenced by other presentation
layer Standards which define encoding rules for the simple
types, the structured types, the Character string types and the
useful types defined in ASN.l.

2 Normative references

The following Standards contain provisions which, through
reference in this text, constitute provisions of this Interna-
tional Standard. At the time of publication, the editions indi-
cated were valid. All Standards are subject to revision, and
Parties to agreements based on this International Standard
are encouraged to investigate the possibility of applying the
most recent editions of the Standards indicated below. Mem-
bers of IEC and ISO maintain registers of currently valid In-
ternational Standards.

ISO 2375: 1985, Data processing - Procedure for registra-
tion of escape sequences.

ISO 3166: 1988, Codes for the representation of names of
countries.

ISO 6523: 1984, Data interchange - Structure for identifica-
tion of organkations.

ISO 7498: 1984, lnformatjon processing Systems - Open
Systems lnterconnectjon - Basic Reference Model (see also
CCIT Recommendation X.200).

ISO 8601: 1988, Data elements and interchange formats -
lnforma tion In terchange - Representation of da tes and
times.

ISO 882211988, lnformatjon processing Systems - Open
Systems Interconnection - Connection-oriented presenta-
Gon senke definition.

ISO 8823: 1988, Information processing Systems - Open
Systems lnterconnection - Connection-orjented presenta-
tion protocol specification.

ISOIIEC 8825: 1990, Information technology - Open
Systems In terconnec tion - Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN. 1).

CCITT X.208 (1988), Specification ofAbstract Syntax Nota-
tion One (ASN. 1).

CCITT X. 12 1 (1988)) International numbering plan for pub-
lic data networks.

3 Definitions

For the purposes of this International Standard the defini-
tions given in ISO 7498 and the following definitions apply.

3.1 value: A distinguished member of a set of values.

3.2 type: A named set of values.

3.3 simple type: A type defined by directly specifying the
set of its values.

3.4 structured type: A type defined by reference to one
or more other types.

3.5 component type: One of the types referenced when
defining a structured type.

3.6 tag: A type denotation which is associated with every
ASN.1 type.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 199O(E)

3.7 tagging: Replacing the existing (possibly the default)
tag of a type by a specified tag.

3.8 ASN.l Character Set: The set of characters, specified
in clause 7, used in the ASN.l notation.

3.9 items: Named sequences of characters from the
ASN.1 Character Set, specifred in clause 8, which are used to
form the ASN.l notation.

3.10 type (or value) reference name: A name associ-
ated uniquely with a type (or value) within some context.

NOTE - Reference names are assigned to the types defined in this
International Standard; these are universally available within
ASN.1. Other reference names are defined in other Standards, and
are applicable only in the context of that Standard.

3.11 ASN.l encoding rules: Rules which specify the rep-
resentation during transfer of the value of any ASN.1 type;
ASN. 1 encoding rules enable information being transferred
to be identified by the recipient as a specific value of a spe-
cific ASN.l type.

3.12 Character string type: A type whose values
strings of characters from some defined Character Set.

NOTE - Wheie acompon enttype is ‘declared to be optional, avalue
of the new type need not contain a value of that component type.

3.23 sequence-of type: A structured type, defined by
referencing a Single existing type; each value in the new type
is an ordered list of Zero, one or more values of the existing
type* .

NOTE - Encoding
quence-of value.

rules do not limit the number of values in a se-

3.24 set type: A structured type, defined by referencing
a fixed, unordered, list of distinct types (some of which may
be declared to be optional); each value in the newtype is an
unordered list of values, one from each of the component
types=

NOTE - Whereacomponenttypeisdeclared to beoptional, thenew
type need not contain a value of that component type.

3.25 set-of type: A structured type, defined by referen-
cing a Single existing type; each value in the new type is an
unordered list of zero, one or more values of the existing
type*

3.13 boolean type: A simple type with two distinguished
values.

3.14 true: One of the distinguished values of the boolean
type.

3.15 false: The other distinguished value of the boolean
type=

are
NOTE -
of value.

Encoding rules do not limit the nu mber of values in a set-

3.16 integer type: A simple type with distinguished
values which are the positive and negative whole numbers,
including zero (as a Single value).

NOTE - Particular encoding rules limit the range of an integer, but
such limitations are Chosen so as not to affect any user of ASN.1.

3.17 enumerated type: A simple type whose values are
given distinct identifiers as part of the type notation.

3.18 real type: A simple type whose distinguished values
(specified in 16.2) are members of the set of real numbers.

3.19 bitstring type: A simple type whose distinguished
values are an ordered sequence of Zero, one or more bits.

NOTE - Encoding rulesdo not limitthe numberof bitsin a bit-string.

3.20 octetstring type: A simple type whose distin-
guished values are an ordered sequence of Zero, one or
more octets, each octet being an ordered sequence of eight
bits.

NOTE -
string.

Encoding rules do not limit the number of octets in an octet

3.21 null type: A simple type consisting of a Single value,
also called null.

NOTE - The nullvalue iscommonlyused
are possible, but none of them apply.

where several alternatives

3.22 sequence type: A structured type, defined by ref-
erencing a fixed, ordered, list of types (some of which may
be declared to be optional); each value of the new type is an
ordered list of values, one from each component type.

3.26 tagged type: A type defined by referencing a Single
existing type and a tag; the new type is isomorphic to the
existing type, but is distinct from it.

3.27 choice type: A structured type, defined by referen-
cing a fixed, unordered, list of distinct types; each value of
the new type is a value of one of the component types.

3.28 selection type: A structured type, defined by ref-
erence to a component type of a choice type.

3.29 any type: A choice type whose component types
are unspecified, but are restricted to the set of types which
tan be defined using ASN.l.

3.30 external type: A type whose distinguished values
cannot be deduced from their characterisation as external,
but which tan be deduced from the encoding of such a
value; the values may, but need not, be describable using
ASN.l, and thus their encodings may, but need not, conform
to ASN.l encoding rules.

3.31 information Object: A weil-defined piece of informa-
tion, definition, or specification which requires a name in
Order to identify its use in an instance of communication.

3.32 Object identifier: A value (distinguishable from all
other such values) which is associated with an information
Object.

3.33 Object identifier type: A type whose distinguished
values are the set of all Object identifiers allocated in accord-
ante with the rules of this International Standard.

NOTE - The rulesof this International Standard permit awide range
of authorities to independently associate Object identifiers with in-
formation objects.

3.34 Object descriptor type: A type whose distinguished
values are human-readable text providing a brief description
of an information Object.

NOTE - An Object descriptor value is usually, but not always asso-
ciated with a Single information Object. Only an Object identifier
value unambiguously identifies an information Object.

2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

3.35 recursive definitions: A set of ASN.l definitions
which cannot be reordered so that all types used in a con-
struction are defined before the definition of the construction.

b) organization Code; and

C) International Code Designator.

NOTE - Recursive definitions are allowed in ASN.1: the User of the
notation has the responsibility for ensuring that those values (of
the resulting types) which are used have a finite representation.

4 Abbreviations

ASN.l Abstract Syntax Notation One.
UTC Coordinated Universal Time.
ICD International Code Designator.
DCC Data Country Code.
DNIC Data Network Identification Code.
RPOA Recognised Private Operating Agency.

3.36 module: One or more instances of the use of the
ASN.l notation for type and value definition, encapsulated
using the ASN.l module notation (See clause 9).

3.37 production: A part of the formal notation used to
specify ASN.1, in which allowed sequences of items are as-
sociated with a name which tan be used to reference those
sequences in the definition of new sets of allowed sequen-
ces. 5 Notation used in this International Stan-

dard
3.38 Coordinated Universal Time (UTC): The time scale
maintained by the Bureau Internationale de I’Heure (Interna-
tional Time Bureau) that forms the basis of a coordinated dis-
semination of Standard frequencies and time Signals.

The ASN.l notation consists of a sequence of characters
from the ASN.l Character set specified in clause 7.

Esch use of the ASN.l notation contains characters from the
ASN.l Character set grouped into items. Clause 8 specifies
all the sequences of characters forming ASN.l items, and
names each item.

NOTES

1 The Source of this definition is Recommendation 460-2 of the
Consultative Committee on International Radio (CCIR). CCIR has
also defined the acronym for Coordinated Universal Time as UTC.

The ASN.l notation is specified in clause 9 (and following
clauses) by specifying the collection of sequences of items
which form valid instances of the ASN.l notation, and by
specifying the semantics of each sequence.

2 UTC is also referred to as Greenwich Mean Time and appropri-
ate time Signals are regularly broadcast.

3.39 user (of ASN.l): The individual or Organisation that
defines the abstract Syntax of a particular piece of informa-
tion using ASN.l. *

In Order to specify these collections, this International Stan-
dard uses a formal notation defined in the following sub-
clauses.

3.40 subtype (of a parent type): A type whose values are
specified as a subset of the values of some other type (the
parent type). 5.1 Productions

A new (more complex) collection of ASN.l sequences is
defined by means of a production. This uses the names of
collections of sequences defined in this International Stan-
dard and forms a new collection of sequences by specifying
either

3.41 parent
subtype.

tYPe (of 8 subtype): Type used to define a

NOTE - The parenttype may itself be asubtype of some othertype.

3*42 subtype specification: A notation which tan be
used in association with the notation for a type, to define a
subtype of that type.

a) that the new collection of sequences is to consist of
any sequence contained in any of the original collec-
tions; or

3.43 subtype value Set: A notation forming part of a sub-
type specification, specifying a set of values of the parent
type which are to be included in the subtype.

b) that the new collection is to consist of any sequence
which tan be generated bytaking exactly one sequence
from each collection, and juxtaposing them in a speci-
fied Order. 3.5 This International Standard uses the following terms

defined in ISO 8822:
Esch production consists
several lines, in Order:

of the following pam on one or

a) presentation data value; and

b) (an) abstract Syntax; and

c) abstract Syntax name; and

a) a name for the new collection of sequences;

b) the characters

. . - . . - d) transfer Syntax name.

3.6 This International Standard also uses the following term
defined in ISO 8823:

c) one or more alternative collections of sequences,
defined as in 5.2, separated by the Character

presentation context identifier.

3.7 This International Standard also uses the following terms
defined in ISO 6523:

A sequence is present in the new collection if it is present in
one or more of the alternative collections. The new collection
is referenced in this International Standard by the name in a)
above. 4 issuing organization; and

3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Table 1 - Universal class tag assignments

r UNIVERSAL 1
UNIVERSAL 2
UNIVERSAL 3
UNIVERSAL 4
UNIVERSAL 5
UNIVERSAL 6
UNIVERSAL 7
UNIVERSAL 8
UNIVERSAL 9
UNIVERSAL 10
UNIVERSAL 11-15

UNIVERSAL 16
UNIVERSAL 17
UNIVERSAL 18 - 22,25 - 27
UNIVERSAL 23 - 24
UNIVERSAL 28 - . . .

Boolean type .

Integer type
Bitstring type
Octetstring type
Null type
Object identifier type
Object descriptor type
External type
Real type
Enumerated type
Reserved for future editions of
this International Standard
Sequence and Sequence-of types
Set and Set-of types
Character string types
Time types
Reserved for addenda to this
International Standard

NOTE - lf the same sequence appears in more than one alternative,
any semantic ambiguity in the resulting notation is resolved by
other Parts of the complete ASN.l sequence.

5.2 The alternative collections

Esch of the alternative collections of sequences in “one or
more alternative collections of” is specified by a list of names.
Esch name is either the name of an item, or is the name of a
collection of sequences defined by a production in this Inter-
national Standard.

The collection of sequences defined by the alternative con-
sists of all sequences obtained by taking any one of the se-
quences (or the item) associated with the first name, in
combination with (and followed by) any one of the sequen-
ces (or item) associated with the second name, in combina-
tion with (and followed by) any one of the sequences (or item)
associated with the third name, and so on up to and includ-

rative. ing the last name (or item) in the alter ‘t-

5.3 Example of a production

BitStringValue :: =
bstring
hstring I
(IdentXerList}

is a production which associates
Value the following sequences:

with the name BitString-

a) any bstring (an item); and

b) any hstring (an item); and

c) any sequence associated with Identifierlist,
preceded by a { and followed by a }

NOTE-(and }are the names of items containing the Single
characters { and) (see clause 8).

In this example, IdentifierList would be defined by a futther
production, either before or after the production defining Bit-
StringValue.

5.4 Layout

Esch production used in this International Standard is
preceded and followed by an empty line. Empty lines do not
appear within productions. The production may be on a
Single line, or may be spread over several lines. Layout is not
significant.

5.5 Recursion ”

The productions in this International Standard are frequent-
ly recursive. In this case the productions are to be continous-
ly reapplied until no new sequences are generated.

NOTE - In manycases, such reapplication results in an unbounded
collection of allowed sequences, some or all of which may them-
selves be unbounded. This is not an error.

5.6 References to a collection of sequences

This International Standard references a collection of se-
quences (Part of the ASN.l notation) by referencing the first
name (before the ::=) in a production; the name is sur-
rounded by ” to distinguish it from natura1 language text, un-
less it appears as part of a production.

5.7 References to an item

This International Standard references an item by referen-
cing the name of the item; the name is surrounded by ” to
distinguish it from natura1 language text, unless it appears as
part of a production.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

5.8 Tags

A tag is specified by giving its class and the number within
the class. The class is one of

universal
application
private
tontext-specific.

The number is a non-negative integer, specified in decimal
notation.

Restrittions on tags
cified in clause 26.

by the user of ASN.l are spe-

Tags in the universal class are assigned in such a way that,
for structured types, the top-level structure tan be deduced
from the tag, and for simple types, the type tan be deduced
from the tag. Table 1 summarises the assignment of tags in
the universal class which are specified in this International
Standard.

NOTE - Additional tags in the universal class are reserved
signment by future editions of this International Standard.

6 Use of the ASN.l notation

for as-

6.1 The ASN.l notation for atype definition shall be “Type”
(See 12.1).

6.2 The ASN.l notation for avalue of atype shall be “Value”
(see 12.7).

NOTE - lt is not in general possible
without knowledge of the type.

to interpret the value notation

6.3 The ASN.l notation for assigning a type to a type ref-
erence name shall be “Typeassignment” (see 11. V

6.4 The ASN.l notation for assigning a value to a value ref-
erence name shall be “Valueassignment” (see 11.2).

6.5 The notation “Typeassignment” and lValueassign-
ment” shall only be used within the notation “ModuleDefini-
tion” (but see 9.1).

5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

7 The ASN.l Character set

7.1 An ASN.l item shall consist of a sequence of the char-
acters listed in table 2, except as specified in 7.2 and 7.3.

Table 2 - ASN.l characters

A to 2
a to 2
0 to 9

NOTES

1 The additional characters
tion (see annex A).

> and 1 are used in the macro-nota-

2 Where equivalent derivative Standards are developed by na-
tional Standards bodies, additional characters may appear in the
following items (the last five of which are defined in annex A):

typereference (8.2.1)
identifier (8 3) .
valuereference (8 4) .
modulereference (8 5)
macroreference (112 1)
productionreference (A.212)
localtypereference (112.3)
localvaluereference (A.2.4)
astring (A2.7)

When additional characters are introduced to accommodate a lan-
guage in which the distinction between upper-case and lower-case
letters is without meaning, the syntactic distinction achieved by
dictating the case of the first Character of certain of the above ASN. 1
items has to be achieved in some other way.

7.2 Where the notation is used to specify the value of a
Character string type, all characters of the defined Character
set tan appear in the ASN.l notation, surrounded by the
characters ” (see 8.11).

7.3 Additional characters may appear in the “comment” NOTE - The rules concerning hyphen are designed to avoid ambi-

item (See 8.6). guity with (possibly following) comment.

7.4 There shall be no significance placed on the typo-
graphical style, size, colour, intensity, or other display char-
acteristics.

7.5 The upper and lower case letters shall be regarded as
distinct.

8 ASN.l items

8.1 General rules

8.1.1 The following subclauses specify the characters in
ASN.l items. In each case the name of the item is given,
together with the definition of the Character sequences which
form the item.

NOTE
tion.

- Annex Aspecifies additional items used in the macro nota-

8.1.2 Esch item specified in the following subclauses shall
appear on a Single line, and (except for the “comment” item)
shall not contain spaces.

8.1.3 The length of a line is not restricted.

8.1.4 The items in tlie sequences specified by this Interna-
tional Standard (the ASN.l notation) may appear on one line
or may appear on several lines, and may be separated by
one or more spaces or empty lines.

8.1.5 An item shall be separated from a following item by
a space, or by being placed on a separate line, if the initial
Character (or characters) of the following item is a permitted
Character (or characters) for inclusion at the end of the char-
acters in the earlier item.

8.2 Type references

Name of item - typereference

8.2.1 A “typereference” shall consist of an arbitrary number
(one or more) of letters, digits, and hyphens. The initial char-
acter shall be an upper-case letter. A hyphen shall not be the
last Character. A hyphen shall not be immediately followed
by another hyphen.

NOTE - The rules concerning hyphen are designed to avoid ambi-
guity with (possibly following) comment.

8.2.2 A “typereference’ shall not be one of the reserved
Character sequences listed in table 3.

NOTE - SubclauseA.2.9specifiesadditional reserved Character se-
quences when within a macro definition.

8.3 Identifiers

Name of item - identifier

An “identifier” shall consist of an arbitrary number (one or
more) of letters, digits, and hyphens. The initial Character
shall be a lower-case letter. A hyphen shall not be the last
Character. A hyphen shall not be immediately followed by an-
other hyphen.

8.4 Value references

Name of item - valuereference

A “valuereference” shall consist of the sequence of charac-
ters specified for an “identifier” in 8.3. In analysing an instance
of use of this notation, a “valuereference” is distinguished
from an “identifier’ by the context in which it appears.

8.5 Module reference

Name of item - modulereference

A “modulereference’ shall consist of the sequence of char-
acters specified for a ‘typereference” in 8.2. In analysing an
instance of use of this notation, a “modulereference” is dis-
tinguished from a “typereference” by the context in which it
appears.

6

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

Table 3 - Reserved Character sequences

BOOLEAN
INTEGER
BIT
STRING
OCTET
NULL
SEQUENCE
OF
SET
IMPLICIT
CHOICE
ANY
EXTERNAL
OBJECT
IDENTIFIER
OPTIONAL
DEFAULT
COMPONENTS
TRUE
FALSE
BEGIN
END

8.6 Comment

Name of item - comment

8.6.1 A “comment” is not referenced in the definition of the
ASN.l notation. It may, however, appear at anytime between
other ASN.l items, and has no significance.

8.6.2 A “comment” shall commence with a pair of adjacent
hyphens and shall end with the next pair of adjacent hyphens
or at the end of the line, whichever occurs first. A comment
shall not contain a pair of adjacent hyphens other than the
pair which opens it and the pair, if any, which ends it. It may
include characters which are not in the Character set speci-
fied in 7.1 (see 7.3).

8.7 Empty item

Name of item - empty

The “empty” item contains no characters. It is used in the no-
tation of clause 5 when alternative Sets of sequences are spe-
cified, to indicate that absence of all alternatives is possible.

8.8 Number item

Name of item - number

A “number” shall consist of one or more digits. The first
shall not be zero unless the “number” is a Single digit.

digit

A “bstring’ shall consist of an arbitrary number (possibly
Zero) of Zeros and ones, preceded by a Single ’ and followed
by the pair of characters:

‘B

EXAMPLE - ‘01101100’B

8.10 Hexadecimal string item

Name of item - hstring

8.10.1 An “hstring” shall consist of an arbitrary number
(possibly Zero) of the characters

ABCDEF0123456 789

preceded by a Single ’ and followed by the pair of characters

> H

EXAMPLE - ‘AB0196’H

8.10.2 Esch Character is used to denote the
octet using a hexadecimal representation.

value ofa semi-

8.11 Character string item

Name of item - cstring

A “cstring’ shall consist of an arbitrary number (possibly Zero)
of characters from the Character set referenced by a charac-
ter string type, preceded and followed by *. If the Character
set includes the Character *, this Character shall be repre-
sented in the “cstring” by a pair of ‘. The Character set in-
volved is not limited to the Character set listed in table 2, but
is determined by the type for which the “cstring’ is a value
(see 7.2).

EXAMPLE -
” gg&i & fk #Fl

8.12 Assignment item

Name of item - “:: =*

This item shall consist of the sequence of characters

. . - . . -

NOTE - This sequence does not contain anyspace characters (see
8.1.2).

8.9 Binary string item

Name of item - bstring

7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

8.13 Single Character items

Names of items -

.
(
)
1
1
- (hyphen)

An item with any of the names listed above shall consist of
the Single Character forming the name.

DEFINED
BY
PLUS-INFINITY
MINUS-INFINITY
TAGS

Items with the above names
characters in the name.

shall consist of the sequence of

NOTES

1 Spates do not occur in these sequences.

2 Where these sequences are not listed as reserved sequences
in 8.2.2, they are distinguished from other items containing the
same characters by the context in which they appear.

8.15 Range separator

NOTES

1 The item ” 1“ is defined in A.2.5.

2 The item > is defined in A.2.6.

Name of item - . .

This item shall consist of the sequence of characters

. .

8.14 Keyword items

Names of items -

BOOLEAN
INTEGER
BIT
STRING
OCTET
NULL
SEQUENCE
OF
SET
IMPLICIT
CHOICE

EXTERNAL
OBJECT
IDENTIFIER
OPTIONAL
DEFAULT ’
COMPONENTS
UNIVERSAL
APPLICATION
PRIVATE
TRUE
FAISE
BEGIN
END
DEFINITIONS
EXPLICIT
ENUMERATED
EXPORTS
IMPORTS
REAL
INCLUDES
MIN

SIZE
FROM
WITH
COMPONENT
PRESENT
ABSENT

NOTE-This sequence does not contain any space characters (see
8.1.2).

8.16 Ellipsis

Name of item - . . .

This item shall consist of the sequence of characters

. . .

NOTE-This sequence does not contain any space characters (see
8.1.2).

9 Module definition

9.1 A “ModuleDefinition” is specified by the following pro-
ductions:

ModuleDeftition :: =
ModuleIdentifier
DEF’INITIONS
TagDefault
11 . . - 11 . . -
BEGIN
ModuleBody
END

ModuleIderUier :: =
modulereference
AssignedIdentifier

AssignedIdentifier :: =
ObjectIdentifierValue 1
empty

TagDefault :: =
EXPLICIT TAGS 1
IMPLICIT TAGS 1
emPty

8

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

NOTE - Clause 26gives the meaning of both “EXPLICITTAGS” and
“IMPLICIT TAGS”.

ModuleBody :: =
Exports
emPty

Imports AssignmentList 1

Exports :: =
EXPORTS SymbolsExported ; 1
empty

9.3 The “modulereference” appearing in the “ModuleDe-
finition’ production is called the module name. Module
names are Chosen so as to ensure consistency and com-
pleteness of all “Assignment” sequences appearing within
the “ModuleBodf of all ‘ModuleDefinition” sequences with
this module name. A set of ‘Assignment’ sequences is con-
sistent and complete if, for every “typereference” or “value-
reference” appearing within it, there is exactly one
“Typeassignment” or ‘Valueassignment” (respectively) asso-
ciating the name with atype or value (respectively), or exact-
ly one ‘SymbolsFromModule’ in which the “typereference”
or ‘valuereference” (respectively) appears as a “Symbol”.

SymbolsExported . . - . . -
SymbolList 1
emPty

Imports :: =
IMPORTS SymbolsImported ; 1
emPty 9.4 Module names shall be used only once (except as spe-

cified in 9.10) within the sphere of interest of the definition of
the module. SymbolsImported :: =

SymbolsFromModuleList 1
NOTE - lt is recommended that modules
should have module names of the form

defined in ISO Standards
emPty

SymbolsFromModuleList :: =
SymbolsFromModule 1
SymbolsFromModuleList

SymbolsFromModule :: =
SymbolList FROM

SymbolList :: =

SymbolsFromModule

Isoxxxx-yyyy

where xxxx is the number of the Standard, and yyyy is a suitable
acronym for the Standard (e.g. JTM, FTAM, or CCR). Asimilar con-
vention tan be applied by other Standards-making bodies.

ModuleIdentifier 9.5 If the “Assignedldentifier” includes an “Objectldentifier-
Value”, the latter unambiguously and uniquely identifies the
module.

Symbol 1 SymbolList , Symbol
NOTE - lt is recommended that an Object identifier be assigned so
that others tan unambiguously refer to the module. Symbol :: =

typereference 1 valuereference
9.6 The “Moduleldentifier” in a “SymbolsFromModule”
shall appear in the “ModuleDefinition” of another module, ex-
cept that if it includes an “ObjectldentifierValue”, the “module-
reference” may differ in the two cases.

AssignrnentList :: =
Assignment 1
AssignmentList Assignment

NOTES
Assignment :: =

TypeAssignment 1 A different “modulereference” from that used in the other mo-
dule should only be used when Symbols are to be imported from
two modules with the same name (the modules being named in
disregard of 9.4). The use of alternative distinct names makes
these names available for use in the body of the module (see 9.8).

1 ValueAssignment

NOTES

1 Annex A specifies a “MacroDefinition” sequence which tan also
appear in the “Assignmentlist”. Notations defined by a macro de-
finition may appear before or after the macro definition, within the
same module.

2 When both a “modulereference” and an “ObjectldentifierValue”
are used in referencing a module, the latter shall be considered de-
finitive.

2 In individual (but deprecated) cases, and for examples and for
the definition of types with universal class tags, the “ModuleBody”
tan be used outside of a “ModuleDefinition”.

9.7 When
selected:

the “Symbols Exported” alternative of “Exports” is

a) each “Symbol” in “SymbolsExported” shall be
defined in the module being constructed: and

3 “Type assignment”
specif ied in clause 11.

and “Valueassignment” productions are

4 The grouping of ASN.1 datatypes into modules does not
necessarily determine the formation of presentation data values
into named abstract syntaxes for the purpose of presentation con-
text definition.

b) every “Symbol” to which reference from outside the
module is appropriate shall be included in the “Symbol-
sExporteda and only these “Symbol% may be ref-
erenced from outside the module; and

5 The value of “Tag Default” for the module definition affects only
those types defined explicitly in the module. lt does not affect the
interpretation of imported types.

c) if there are no such “Symbol”s, then the empty alter-
native of “SymbolsExported” (not of “Exports”) shall be
selected.

6 A
bol”.

“macroreference” (see annex A), tan also appear as a “Sym-
NOTES

1 The “empty”
compatibility.

alternative of ” Exports” is included for backwards 9.2 The “TagDefauIt” is taken as “EXPLICIT TAGS” if it is
“empty”.

2 Every “Symbol” defined in a module where
may be referenced from other modules.

Exports” is “em pty”

9

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

9.8 When the “Symbolslmported” alternative of “Imports” is
selected:

a) each “Symbol” in “SymbolsFromModule” shall be
defined in the module denoted by the “Moduleldentifier”
in “SymbolsFromModule”; and

b) if the ‘SymbolsExported” alternative of “Exports” is
selected in the definition of the module denoted by the
“Moduleldentifier” in “SymbolsFromModule” the “Sym-
bol” shall appear in its “SymbolsExported”; and

c) only those ‘Symbol”s that appear amongst the
‘SymbolList” of a “SymbolsFromModule” may appear
as the “typereference” in any “Externaltypereference” (or
the “valuereference” in any “Externalvaluereference”)
which has the “modulereference” denoted by the “Mo-
duleldentifier” of that “SymbolsFromModule”; and

d) if there are no such “Symbol%, then the “empty” al-
ternative of “Symbolslmported” (not of “Imports”) shall
be selected.

NOTES

1 The “empty” alternative of “Imports” is included for backwards
compatibility.

2 A module where “Imports” is empty may reference “Symbol%
defined in other modules.

9.9 A “Symbol” in a “SymbolsFromModule” may appear in
“Moduleßody” in a “DefinedType” (if it is a “typereference”)
or “DefinedValue” (if it is a “valuereference”). The meaning
associated with the “Symbol” is that which it has in the mo-
dule denoted by the corresponding “Moduleldentifier”.
Where the “Symbol” also appears in an “AssignmentList” (de-
precated), or appears in one or more other instances of
“SymbolsFromModule’, it shall only be used in a “External-
TypeReferttnce” or “ExternalValueReference” whose “mo-
dulereference” is that in “SymbolsFromModule” (see 9.10).
Where it does not so appear, it may be used in a “Defined-
Type” or “DefinedValue” directly.

9.10 Except as specified in 9.9, a “typereference” or “value-
reference” shall be referenced in a module different from that
in which it is defined by using an “Externaltypereference” or
“Externalvaluereference”, specified by the following produc-
tions:

Externaltypereference :: =

Externalvaluereference

10 Referencing type

10.1 The productions

DefmedType :: =

modulereference

iypereference

. . - . . -
modulereference
.
valuereference

and value definitions ’ l

Externakypereference 1
typereference

DefmedValue :: =
Externalvaluereference 1
valuereference

specify the sequences which shall be used to reference type
and value definitions..

10.2 Except as specified in 9.10, the “typereference” and
“valuereference” alternatives shall not be used unless the ref-
erence is within the module in which a type or value is as-
signed (see 11 .l and 11.2) to the typereference or
valuereference.

10.3 The “Externaltypereference” and “Externalvalueref-
erence” shall not be used unless the corresponding “typere-
ference” or “valuereference” has been assigned a type or
value respectively (see 11 .l and 11.2) within the correspond-
ing “modulereference”.

11 Assigning types and values

11 .l A “typereference” shall be assigned a type by the no-
tation specified by the “Typeassignment” production:

Typeassignment :: =
typereference
ff.. - 11 -
Type

The “typereference” shall not be one of the names used to
reference the Character string types defined in clause 32, and
shall not be one of the names used to reference the types
defined in clauses 32-35.

11.2 A “valuereference” shall be assigned a value by the
notation specified by the “Valueassignment” production:

Valueassignment :: =
valuereference
Type II . . - II -
Calue

The “Value” being assigned to the “valuereference’ shall be
a valid notation (see 12.7) for a value of the type defined by
“Type”.

12 Definition of types and values

12.1 A type shall be referenced by one of the sequences
“Type”:

Type ::= BuiltinType 1 DefinedType 1 Subtype
(see 10.1)

10

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

BuiltinType :: =
BooleanType
IntegerType
BitStringType
OctetStringType
NullType
SequenceType
SequenceOfType
SetType
SetOffype
ChoiceType
SelectionType
TaggedType
MvPe
ObjectIdentifierType
CharacterStringType
UsefulType
Enumerated Type
RealType

NOTES

1 A type notation defined in
quence for “Type” (see annex

2 Additional built-in types
this International Standard.

may be defined by future editions of

macro tan also be used as a se-

12.2 The “BuiltinType” notation is specified in the following
clauses.

12.3 The “Subtype” notation is specified in clause 36.

12.4 The type being referenced is the type defined by the
“BuiltinType” or “Subtype” assigned to the “DefinedType”.

12.5 In some notations within which a type is referenced,
the type may be named. In such cases, this International
Standard specifies the use of the notation “NamedType”:

NamedType :: =
identifier Type
Type
SelectionType

The notation “SelectionType’ and the corresponding value
notation is specified in clause 25.

NOTE - The notation “SelectionType”containsan “identifier”which
may form part of the value notation when “SelectionType” is used
as a “NamedType” (see 25.1).

12.6 The “identifier” is not part of the type, and has no ef-
fett on the type. The type referenced by a “NamedType” se-
quence is that referenced bythe contained “Type” sequence.

12.7 The value of a type shall be specified by one of the se-
quences “Value”:

Value :: = BuiltinValue 1 DefmedValue

ISO/IEC 8824 : 1990 (E)

BuiltinValue :: =
BooleanValue 1
IntegerValue I
BitStringValue I
OctetStringValue I
NullValue I
SequenceValue I
SequenceOfValue I
SetValue I
SetOfValue I
ChoiceValue I
SelectionValue I
TaggedValue I
AnyValue I
ObjectIdentifierValue 1
CharacterStringValue 1
EnumeratedValue l
RealValue

NOTE - Avalue notation defined in a macro may also be used as a
sequence for “Value” (see annex A).

12.8 If the type is defined using one of the notations shown
on the left below, then the value shall be specified using the
notation shown on the right below:

Type notation Value notation

BooleanType BooleanValue
IntegerType IntegerValue
BitStringType BitStringValue
OctetStringType OctetStringValue
NullType NullValue
SequenceType SequenceValue
SequenceOfType SequenceOfValue
SetType SetValue
SetOfType SetONalue
ChoiceType ChoiceValue
TaggedType TaggedValue
AnyTYPe AnyValue
ObjectldentifierType Objectldentifiervalue
CharacterStringType CharacterStringValue
EnumeratedType EnumeratedValue
RealType RealValue

NOTE - Addition& value notations may be defined by future edi-
tions of this International Standard.

Where the type is a DefinedType, the value notation shall be
the notation for a type used in producing the DefinedType.

12.9 The value notation for a type defined by the “Useful-
Type” notation is specified in clauses 32-35.

12.10 The “BuiltinValue’ notation is specified in the follow-
ing clauses.

12.11 The value of a type referenced using the “Named-
Type” notation shall be defined by the notation “Named-
Value”:

NamedValue :: =
identifier Value 1
Value

where the “identifier” (if any) is the same as that used in the
“NamedType” notation. 25.2 specifies further restrictions on
the “NamedValue” when the “NamedType” was a “Selection-
Type”.

11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

NOTE - The “identifier” is part of the notation, it does not form part
of the value itself.

12.12 The “identifier” shall be present in the ‘NamedValue’
if and only if it was present in the “NamedType”.

NOTE - An “identifier’ is always present in the case of a “Selection-
Type”.

13 Notation for the boolean type

13.1 The boolean type (see 3.13) shall be referenced by
the notation ‘Booleanfype’:

BooleanType :: = BOOLEAN

13.2 The tag for
class, number 1.

defined by this notation is universal

13.3 The value of a boolean type (see 3.14 and 3.15) shall
be defined by the notation “BooleanValue”:

BooleanValue :: = TRUE 1 FALSE

14 Notation for the integer type

14.1 The integer type (see 3.16) shall be referenced by the
notation “IntegerType”: -

IntegerType :: =
INTEGER
INTEGER

I
{ NamedNumberList

NamedNumberList :: =
NamedNumber I
NamedNumberList,NamedNumber

NamedNumber :: =
identifier(SignedNumber) 1
identifier(DefinedValue)

SignedNumber :: = number 1 -number

14.2 The second alternative of “SignedNumber” shall not
be used if the “numbef is Zero.

14.3 The “NamedNumberList” is not significant in the de-
finition of a type. It is used solely in the value notation speci-
fied in 14.9

14.4 The “DefinedValue” shall be a reference to a value of
type integer, or of a type derived from integer by tagging.

14.5 The value of each “SignedNumber” or “DefinedValue”
appearing in the “NamedNumberList” shall be different, and
represents a distinguished value of the integer type.

14.6 Esch “identifier” appearing in the “NamedNumberList”
shall be different.

14.7 The Order of the “NamedNumber” sequences in the
“NamedNumberList” is not significant.

14.8 The tag for types defined by this notation is universal
class, number 2.

14.9 The value of an integer type shall be defined by the
notation “IntegerValue”:

IntegerValue :: =
SignedNumber 1
identifier

14.10 The “identifier” in “IntegerValue” shall be equal to that
of an “identifief in the “IntegerType’ sequence with which the
value is associated, and shall represent the corresponding
number.

NOTE - When defining an integervaluefor which an “identifier” has
been defined, use of the “identifier” form of “IntegerValue” should
be preferred.

15 Notation for the enumerated type

15.1 The enumerated type (see 3.17) shall be referenced
by the notation “EnumeratedType”:

EnumeratedType :: =
ENUMERATED { Enumeration }

Enumeration :: =
NamedNumber 1
Enumeration, NamedNumber

NOTES

1 Esch value has an identifier which is associated, in this nota-
tion, with a distinct integer. This provides control of the repre-
sentation of the value in Order to facilitate compatible extensions,
but the values themselves are not expected to have any integer se-
mantics.

2 The numeric values inside the “NamedNumber”s in the
“Enumeration” are not necessarily ordered or contiguous.

15.2 For each “NamedNumber”, the “identifier” and the
“SignedNumber” shall be distinct from all other “identifier’ls
and “SignedNumber”s in the “Enumeration”.

15.3 The enumerated type has a tag which is universal
class, number 10.

15.4 The value of an enumerated type shall be defined by
the notation “EnumeratedValue”:

EnumeratedValue :: = identifier

15.5 The “identifier” in “EnumeratedValue” shall be equal to
that of an “identifier” in the “EnumeratedType” sequence with
which the value is associated.

16 Notation for the real type

16.1 The real type (see 3.18) shall be referenced by the no-
tation “RealType”:

RealType :: = REAL

16.2 The values of the real type are the values PLUS-IN-
FINITY and MINUS-INFINITY together with the real numbers
capable of being specified by the following formula involving
three integers, M, B and E:

M x BE

where M is called the mantissa, B the base, and E the expo-
nent. M and E may take any integer values, positive or nega-

12

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

lSO/IEC 8824 : 1990 (E)

17.5 The value of each “number” or “DefinedValue” appear-
ing in the ‘NamedBitList” shall be different, and is the num-
ber of a distinguished bit in a bitstring value.

tive, while B tan take the values 2 or IO. All combinations of
M, B and E are permitted.

NOTES
17.6 Esch “identifier” appearing in the “NamedBitList” shall
be different. 1 This type is capable of carrying an exact representation of any

number which tan be stored in typical floating Point hardware, and
of any number with a finite Character decimal representation. NOTE - The Order of the “NamedBit” sequences in the “NamedBit-

List” is not significant.
2 The encoding (of thistype) which is specified in ISO 8825 allows
use of base 2, 8 or 16 with a binary representation of real values,
and base 10 with a Character representation. The choice is a sen-
der’s Option.

17.7 This type has a tag which is universal class, num-
ber 3.

16.3 The real type has a tag which is universal class, num- 17.8 The value of a bitstring type shall be defined by the
ber 9. notation “BitStringValue”:

BitStringValue :: =
bstring I
hstring I
{ IdentifierList} 1
0

16.4 The notation for defining a value of a real type shall
be “RealValue’:

RealValue :: =
NumericRealValue 1 SpecialRealValue

NumericRealValue :: =
{ Mantissa, Base, Exponent } 1 0

IdentifierList :: =
identifier 1
IdentifierList,identifier

Mantissa :: = SignedNumber
17.9 Esch “identifier” in “BitStringValue” shall be the same
as an “identifier” in the “BitStringType” sequence with which
the value is associated.

Base :: = 2 1 10

Exponent . . - . . - SignedNumber
17.10 The user of the notation determines, and tan indi-
cate by comment, whether or not the presence or absence
of trailing zero bits is significant. SpecialRealValue :: =

PLUS-INFINITY 1 MINUS-INFINITY
NOTE - Encoding rules enable
arbi trary length, string of bits.

transfer of an arbitrary Pattern,
The form “0” shall be used for zero values, and the alternate
form for “NumericRealValue” shall not be used for zero
values. 17.11 The “{IdentifierList}” and “{}” notations for “Bit-

StringValue” shall not be used if the presence or absence of
trailing zero bits is significant. This notation denotes a bit-
string value with ones in the bit positions specified by the
numbers corresponding to the “identifier” sequences, and
with all other bits Zero.

17 Notation for the bitstring type

17.1 The bitstring type (see 3.19) shall be referenced by the
notation “BitStringType”: NOTE - The “{}” sequence

contains no one bits.
is used to denote a bitstring value which

BitStringType :: =
BIT STRING
BIT STRING{ NamedBitList}

17.12 In specifying the encoding rules for a bitstring, the
bits shall be referenced by the terms first bit and trailing bit,
as defined above.

NamedBitList :: =
NamedBit 1
NamedBitList,NamedBit

17.13 When using the “bstring” notation, the first bit is on
the left, and the ttailing bit is on the right.

17.14 When using the “hstring” notation, the most signifi-
cant bit of each hexadecimal digit corresponds to the earlier
(leftmost) bit in the bitstring.

NamedBit :: =
identifier(number) 1
identifier(DefinedValue)

NOTE - This notation does not in any way constrain
ing rules place a bitstring into octets for transfer.

the way encod-
17.2 The “NamedBitList” is not significant in the definition
of a type. lt is used solely in the value notation specified
in 17.8. 17.15 The “hstring” notation shall not be used unless either:

a) the
or

bitstring value consists of a multiple of four bits; 17.3 The first bit in a bit string has the number Zero. The
final bit in a bit string is called the trailing bit.

b) the presence
significant.

or absence of zero bits is not NOTE - This terminology
and the encoding rules.

is used in specifying the value notation

17.4 The “DefinedValue” shall be a reference to a non-ne-
gative value of type integer, or of a type derived from integer
by tagging.

13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

SequenceType :: =
SEQUENCE{ ElementTypeList} 1
SEQUENCE{}

EXAMPLE

‘A98A’H

ElementTypeList :: =
-ElementType I
ElementTypeList,ElementType

and _

‘1010100110001010’B

are alternative notations for the same bitstring value. ElementType :: =
NamedType I
NamedType OPTIONAL I
NamedType DEFAULT Value 1
COMPONENTS OF Type

18 Notation for the octetstring type

18.1 The octetstring type (see 3.20) shall be referenced by
the notation ‘OctetStringType”: 20.2 The “Type” in the fourth alternative of the “Element-

Type” shall be a sequence type. The “COMPONENTS OF
Type” notation shall be used to define the inclusion, at this
Point in the “ElementTypeList”, of all the “ElementType” se-
quences appearing in the referenced type.

OctetStringType :: = OCTET STRING

18.2 This type has a tag
ber 4.

which is universal class, num-

NOTE - This transformation is logically completed prio
isfaction of the requirements in the following clauses.

Ir to the sat-
18.3 The value of an octetstring type shall be defined by
the notation ‘OctetStringValue’:

20.3 For each series of one or more consecutive “Element-
Types” marked as OPTIONAL or DEFAULT, the tags of those
“ElementTypes’ and of any immediately following “Element-
Type” shall be distinct. (See clause 26).

OctetStringValue :: =
bstring
hstring

20.4 If “OPTIONAL” or “DEFAULT” are present, the corre-
sponding value may be omitted from a value of the new type,
and from the information transferred by encoding rules.

18.4 In specifying the encoding rules for an octetstring, the
octets are referenced by the terms first octet and trailing
octet, and the bits within an octet are referenced by the terms
most significant bit and least significant bit.

NOTES

18.5 When using the “bstring” notation, the left-most bit
shall be the most significant bit of the first octet. If the “bstring”
is not a multiple of eight bits, it shall be interpreted as if it con-
tained additional zero trailing bits to make it the next multiple
of eight.

1 The value notation may be ambiguous in this case,
“identifier” seq uences are present in each NamedType.

unless

2 Encoding rules ensure that the encoding for a sequence value
in which a “DEFAULT” or “OPTIONAL” element value is omitted is
the same as that for a sequence value of a type in whose type de-
finition the corresponding element was omitted. This feature tan
be useful in defining subsets.

18.6 When using the ‘hstring’ notation, the left-most hex-
adecimal digit shall be the most significant semi-octet of the
first octet. If the ‘hstring” is not an even number of hexadeci-
mal digits, it shall be interpreted as if it contained a Single ad-
ditional trailing zero hexadecimal digit.

20.5 If “DEFAULT” occurs, the omission of a value for that
type shall be exactly equivalent to the insertion of the value
defined by “Value”, which shall be a value specification that
is valid for the type defined by “Type” in the “NamedType”
sequence. 19 Notation for the null type
20.6 The “identifier”s (if any) in all “NamedType” sequen-
ces of the “ElementTypeList” shall be distinct. 19.1 The null type (see 3.21) shall be referenced by the no-

tation “NullType”:
20.7 All sequence
number 1 6.

types have a tag which is universal class,
NullType ::= NULL

19.2 This type has a tag which is universal class, num-
ber 5.

NOTE - Sequence-of types have the same tag (see 21.3).

20.8 The notation for defining the value of a sequence type
shall be “SequenceValue”: 19.3 The value of the null type shall be referenced by the

notation “NullValue”:
SequenceValue :: = { ElementValueList } 1

0 NullValue ::= NULL

ElementValueList :: =
NamedValue I
ElementValueList,NamedValue

20 Notation for sequence types

20.1 The notation for defining a sequence type (See 3.22)
from other types shall be the ‘SequenceType”: 20.9 The “{}” notation shall only be used if:

14

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

a) all “ElementType’ sequences in the “Sequence-
Type” are marked “DEFAULT’ or “OPTIONAL”, and all
values are omitted; or

NOTE - This transformation is logically completed Prior to the sat-
isfaction of the requirements in the following clauses.

22.3 The “ElementType’ types in a set type shall all have
different tags. (See clause 26). b) the type notation was ‘SEQUENCE{}“.

22.4 Sub-clauses 20.4, 20.5 and 20.6 also apply to set
types*

20.10 There shall be one “NamedValue’ for each “Named-
Type” in the “SequenceType” which is not marked OP-
TIONAL or DEFAULT, and the values shall be in the same
Order as the corresponding “NamedType’ sequences. 22.5 All set types have a tag which is universal class, num-

ber 17.
NOTE - The use of “NamedType” sequences which do not contain
an identifier is not prohibited, but tan render the value notation
ambiguous if “OPTIONAL” or “DEFAULT” is used.

NOTE - Set-of types have the same tag (see 23.3).

22.6 There shall be no
of values in a set type.

semantics associated with the Order

21 Notation for sequence-of types
22.7 The notation for defining the value of a set type shall
be ‘SetValue’: 21.1 The notation for defining a sequence-of type (see

3.23) from another type shall be the “SequenceOfType’. SetValue :: = { ElementValueList} 1 { }
SequenceOffype :: =

SEQUENCE OF Type1
SEQUENCE

“ElementValueList’ is specified in 20.8.

22.8 The “SetValue” shall only be “0” if:

21.2 The notation “SEQUENCE’ is synonymous with the
notation “SEQUENCE OF ANY” (see clause 27).

a) all “ElementType” sequences in the “SetType” are
marked “DEFAULT’ or “OPTIONAL”, and all values are
omitted; or

21.3 All sequence-of types have a tag which is universal
class, number 16. b) the type notation was ‘SET{}“.

NOTE - Sequence types have the same tag (see 20.7). 22.9 There shall be one “NamedValue” for each “Named-
Type” in the “SetType” which is not marked “OPTIONAL” or
“DEFAULT”. 21.4 The notation for defining a value of a sequence-of type

shall be the “SequenceOfValue”:

NOTES
SequenceOfValue :: = { ValueList} 1 { }

These “NamedValues” may appear in any Order.

ValueList :: =
Value 1
ValueList,Value

2 The use of “NamedType” sequences which do not contain an
identifier is not prohibited, but tan render the value notation am-
biguous.

The “{}” notation is used when
values in the sequence-of value.

there are no component
23 Notation for set-of types

21.5 Esch “Value” sequence in the “ValueList” shall be the
notation for a value of the “Type” specified in the “Sequen-
ceoff ype”.

23.1 The notation for defining a set-of type (see 3.25) from
another type shall be the “SetOffype”:

SetOffype :: =
SET OF Type 1
SET

NOTE - Semantic
values.

significance on the Order of these

22 Notation for set types 23.2 The notation “SET” is synonymous with the notation
“SET OF ANY” (see clause 27).

22.1 The notation for defining a set type (see 3.24) from
other types shall be the “SetType”: 23.3 All set-of types have a tag which is universal class,

number 17.

SetType :: =
SET{ ElementTypeList} 1
SET0

NOTE - Set types have the same tag (see 22.5).

23.4 The notation for defining a value of a set-of type shall
be the “SetOfValue”:

SetOfValue :: = {ValueList} 1 {}

“ValueList” is specified in 21.4.

The “{}” notation is used when there are no component
values in the set-of values.

“ElementTypeList” is specified in 20.1

22.2 The “Type” in the fourth alternative of the “Element-
Type” (see 20.1) shall be a set type. The “COMPONENTS OF
Type” notation shall be used to define the inclusion of all the
“ElementType” sequences appearing in the referenced type.

15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

23.5 Esch ‘Value’ sequence in the “ValueList” shall be the
notation for a value of the “Type” specified in the ‘Setoffype’.

C l * = CHOICE . .
v Pl NULL,
g Pl N-cJLLI NOTES

3 (INCORRECT)
A :: =CHOICE

ib B,
c cl

1 Semantic
these values.

significance not be placed on the Order of

2 Encoding
values.

tules arc not required to preserve the Order of these

B :: = CHOICE
id Pl ALL,
e [l] NULL}

24 Notation for choice types

24.1 The notation for defining a choice type (See 3.27) from
other types shall be the ‘ChoiceType”: C :: = CHOICE

ff Pl N-ULI+
g Pl N-uLLI ChokeType :: = CHOICE{AlternativeTypeList}

AltemativeTypeList :: =
NamedType 1
AlternativeTypeList?NamedType

24.5 The “identifier”s (if any) in all ‘NamedType” sequen-
ces of the “AlternativeTypeList” shall be distinct.

24.6 Where this type-is used in a place where this Interna-
tional Standard requires the use of “NamedTypes” with dis-
tinct “identifiers”, the “identifier”s (if any) of all “NamedTypes”
in the “AlternativeTypeList” shall differ from those (if any) of
the other “NamedType”s.

NOTES

1 The encoding rules encode the Chosen alternative in a way
which is indistinguishable from a “Type” consisting only of the
“Type” contained in that alternative.

24.7 The notation for defining the value of a choice type
shall be the “ChoiceValue”: 2 Specifying a “ChoiceType” with a Single “NamedType” in the

“AlternativeType List” cannot be distinguished in any encoding of a
value from direct use of the “Type” in the “NamedType”. ChoiceValue :: = NamedValue
24.2 The types defined in the “AlternativeTypeList’ shall all
have distinct tags (See clause 26.) 24.8 If the “NamedValue” contains an “identifier”, it shall be

a notation for a value of that type in the “AlternativeTypeList”
that is named by the same “identifier”. If the “NamedValue”
does not contain an “identifier”, it shall be a notation for a
value of one of those types in the “AlternativeTypeList” that
are not named by an “identifier”.

24.3 The tag of the choice type shall be considered to be
variable. When a value is selected, the tag becomes equal to
the tag of the “Type” in the “NamedType” in the “Alternative-
TypeList” from which the value is taken.

NOTE - Failure to use an “identifier”
the value notation ambig uous.

in the “NamedType” tan make 24.4 Where this type is used in a place where this Interna-
tional Standard requires the use of types with distinct tags
(See 20.3,22.3, and 24.2), the tags of all types defined in the
“AlternativeTypeList” shall differ from those of the other types
(See clause 26). The following examples illustrate this re-
quirement. Examples 1 and 2 are correct uses of the nota-
tion. Example 3 is incorrect, as thetags for types d and f, and
e and g are identical.

25 Notation for selection types

25.1 A “NamedType’ appearing in the “AlternativeTypeL-
ist” of a “ChoiceType” tan be referenced by the notation “Se-
IectionType’:

EXAMPLES
SelectionType :: = identifier c Type

1 A ::= CHOICE
ib B
c NULL}

where “Type” is a notation referencing the “ChoiceType”, and
“identifier’ is the “identifier” in the “NamedType”.

NOTE - ” SelectionType” tan be used either as a “NamedType”, in
which case the “identifier” is used in the value notation, or as a
“Type” within a “NamedType”, in which case its “identifier” is not
used.

B :: = CHOICE
(d Pl N-um
e [l] NULL}

25.2 The notation for a value of a selection type shall be
“SelectionValue”:

A :: = CHOICE
Ib B,
c cl SelectionValue :: = NamedValue

B l * = CHOICE . .
Id Pl NULL,
e [l] NULL}

where the “NamedValue’ contains the identifier that appears
in the corresponding ‘SelectionType” if the “SelectionType”
is used as a “NamedType’, but not othennrise.

16

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

26 Notation for tagged types

A tagged type (see 3.26) is a new type which is isomorphic
with an old type, but which has a different tag. In all encod-
ing schemes a value of the new type tan be distinguished
from a value of the old type. The tagged type is mainly of use
where this International Standard requires the use of types
with distinct tags (see 20.3,22.3,24.2,24.4, and 27.6).

NOTE - Where a protocol determines that values from several da-
tatypes may be transmitted at any moment in time, distinct tags
may be needed to enable the recipient to correctly decode the
value.

26.1 The notation for a tagged type shall be “TaggedType’:

TaggedType :: =
Tag Type
Tag IMPLICIT Type
Tag EXPLICIT Type

Tag :: = [Class ClassNumber]

ClassNumber :: =
number 1
DefinedValue

Class :: =
UNIVERSAL 1
APPLICATION 1
PRIVATE I
emPty

26.2 The “DefinedValue” shall be a reference to a non-ne-
gative value of type integer, or of a type derived from type in-
teger by tagging.

26.3 The new type is isomorphic with the old type, but has
a tag with ‘Class’ class and number ‘ClassNumber”, unless
the ‘Class’ is “empty”, when the tag is tontext-specific class,
number “ClassNumber”.

26.4 The ‘Class’ shall not be “UNIVERSAL” except for
types defined in this International Standard.

NOTE - Use of universal class tags are agreed from time to time by
ISO and CCITT.

26.5 If the “Class” is “APPLICATION”, the same “Tag” shall
not be used again in the same module.

26.6 If the “Class’ is “PRIVATE” the “Tag” is available for
use on an enterprise-specific basis.

26.7 The tagging construction
any of the following holds:

specifies explicit tagging if

a) the “Tag EXPLICIT Type” alternative is used;

b) the “Tag Type” alternative is used and the value of
“TagDefault” for the module is “EXPLICIT TAGS”;

c) the “Tag Type” alternative is used and the value of
“TagDefault’ for the module is “IMPLICIT TAGS”, but the
type defined by “Type” is a choice type or an any type.

The tagging construction specifies implicit tagging other-
wise.

26.8 If the ‘Class” is “empv, there are no restrictions on
the use of “Tag”, other than those implied by the requirement
for distinct tags in 20.3,‘22.3, and 24.2.

26.9 Implicit tagging indicates, for those encoding rules
which provide the Option, that explicit identification of the tag
of the “Type” in the “TaggedType’ is not needed during trans-
fer.

NOTE - lt tan be useful to retain the old tag where this was univer-
sal class, and hence unambiguously identifies the old type without
knowledge of the ASN.l definition of the new type. Minimum trans-
fer octets is, however, normally achieved by the use of IMPLICIT.
An example of an encoding using IMPLICIT is given in ISO 8825.

26.10 The “IMPLICIT’ alternative shall not be used if the
type defined by “Type” is a choice type or an any type.

26.11 The notation for a value of a “TaggedType” shall be
“TaggedValue”:

TaggedValue :: = Value

where “Value” is the notation for a value of the “Type” in the
“TaggedType’.

NOTE - The “Tag” does not appear in this notation.

27 Notation for the any type

27.1 The notation for an any type (see 3.29) is “AnyType”:

AnyType ::= ANY 1
ANY DEFINED BY identifier

NOTE - The use of “ANY” in an ISO Standard or CCITT Recommen-
dation produces an incomplete specification unless it is sup-
plemented by additional specification. The “ANY DEFINED BY”
construct provides the means of specifying in an instance of com-
munication the type which fills the ANY, and a pointer to its seman-
tics. If the following rules for its use are followed, it tan provide a
complete specification. Use of ANY without the DEFINED BY con-
struct is deprecated.

27.2 The “DEFINED BY” alternative shall be used only
when the any type, or a type derived from it by tagging, is
one of the component types of a sequence type or set type
(the containing type).

27.3 The “identifier” in the “DEFINED BY” alternative shall
also appear in a “NamedType” that specifies another, non-
optional, component of the containing type. The “Named-
Type” shall be either an integer type or an Object identifier
tvpe.

27.4 When the “NamedType” is an integer type, the docu-
ment employing the “DEFINED BY” notation shall contain, or
explicitly reference, a Single list which specifies the ASN.l
type to be carried by the ANY for each permitted value of the
integer type. There shall be precisely one such list covering
all instances of communication of the containing type.

27.5 When the “NamedType” is an Object identifier type,
there is a need for registers which, for each allocated Object
identifier value, associate a Single ASN.l type (which may be
a CHOICE type) which is to be carried by the ANY.

NOTES

1 There may be an arbitrary num ber of
Object identifier value.with an ASN.

registers associating
1 type for this purpose.

an

17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

2 Registration of values for open interconnection is expected to
occur within ISO Standards and CCITT Recommendations using
the notation. Where a separate International Registration Authority
is intended for any instance of “ANY DEFINED Br’, this should be
identified in the document using the notation.

3 The main differente between the integer and Object identifier
definers is that the use of integer references a Single list, contained
in the using Standard, whilst the use of Object identifier allows an
open-ended set of types determined by any authority able to allo-
cate Object identifiers.

27.6 This type has an indeterminate tag, and shall not be
used where this International Standard requires distinct tags
(See 20.3,22.3,24.2 and 24.4).

27.7 The notation for the value of an any type shall be
defined using ASN.1, and is “AnyValue”:

AnyValue ::= Type Value

where “Type” is the notation for the Chosen type, and “Value”
is the notation for a value of this type.

28 Notation for the Object identifier type

28.1 The Object identifier type (see 3.33) shall be ref-
erenced by the notation ‘ObjectldentifierType”:

ObjectIdentifierType :: =
OBJECT IDENTIFIER

28.2 This type has a tag which is universal class, number
6.

28.3 The value notation for an Object identifier shall be ‘Ob-
jectldentifierValue’:

ObjectIdentifrerValue :: =
{ ObjIdComponentList} I
{DefmedValue ObjIdComponentList}

ObjIdComponentList :: =
ObjIdComponent I
ObjIdComponent ObjIdComponentList

ObjIdComponent :: = NameForm I
NumberForm I
NameAndNumberForm

28.7 The “number” in the “NumberForm” shall be the
numeric value assigned to the Object identifier component.

28.8 The “identifier” in the “NameAndNumberForm’ shall
be specified when a numeric value is assigned to the Object
identifier component. .

NOTE - The authorities allocating numeric values to Object identi-
fier components are identified in the annexes to this International
Standard.

28.9 The semantics of an Object identifier value are defined
by reference to an Object identifier tree. An Object identifier
tree is a tree whose root corresponds to this International
Standard and whose vertices correspond to administrative
authorities responsible for allocating arcs from that vertex.
Esch arc of the tree is labelled by an Object identifrer compo-
nent which is a numeric value. Esch information Object to be
identified is allocated precisely one vertex (normal!y a leaf),
and no other information Object (of the same or a different
type) is allocated to that same vertex. Thus an information
Object is uniquely and unambiguously identified by the se-
quence of numeric values (Object identifier components) la-
belling the arcs in a path from the root to the vertex allocated
to the information Object.

NOTE - Object identifier values contai n at least
components, as specified in annexes B to D.

tW0 Object identifier

28.10 An Object identifier value is semantically an ordered
list of Object identifier component values. Starting with the
root of the Object identifier tree, each Object identifier com-
ponent value identifies an arc in the Object identifier tree. The
last Object identifier component value identifies an arc lead-
ing to a vertex to which an information Object has been as-
signed. lt is this information Object which is identified by the
Object identifier value. The significant part of the Object ident-
ifier component is the “Nameform” or “NumberForm” which
it reduces to, and which provides the numeric value for the
Object identifier component.

NOTE - In general, an information Object is a class of information
(for example, a file format), rather than an instance of such a class
(for example, an individual file). lt is thus the class of information,
(defined by some referencable specification), rather than the piece
of information itself, that is assigned a place in the tree.

28.11 Where the “ObjectldentifrerValue” includes a “De-
finedvalue’, the list of Object identifier components to which
it refers is prefixed to the components explicitly present in the
value.

EXAMPLES
NameForm :: = identifier

With identifiers assigned as specified in annex B, the values

NumberForm :: = number 1 DefmedValue

NamehdNumberForm :: =
identifier(NumberForm)

28.4 The “DefinedValue’ in “NumberForm” shall be a ref-
erence to a value of type integer, or of a type derived from
integer by tagging.

28.5 The “DefinedValue’ in ‘ObjectldentifierValue’ shall be
a reference to a value of type Object identifier, or of a type
derived from Object identifier by tagging.

28.6 The ‘NameForm’ shall be used only for those Object
identifier components whose numeric value and identifier are
specified in annexes B to D, and shall be one of the ident-
ifiers specified in annexes B to D.

{iso Standard 8571 pci (1))

and

{ 1 0 8571 1 }

would each identify an Object, “pci”, defined in ISO 8571.

With the following additional definition:

ftam OBJECT IDENTIFIER ::=
{ iso Standard 8571)

the following value is also equivalent to those above

{ftam pci (1))

18

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

NOTE - lt is recommended that, whenever a CCITT Recommenda-
tion, International Standard or other document assigns values of
type OBJECT IDENTIFIER to information objects there should be
an appendix or annex which summarises the assignments made
therein. lt is also recommended that an authority assigning values
of type OBJECT IDENTIFIER to an information Object should also
assign values of type ObjectDescriptor to that information Object.

29 Notation for Character string types

29.1 The notation for referencing a Character string type
(See 3.12 and clause 31) shall be

CharacterStringType :: = typereference

where “typereference” is one of the
names listed in clause 31.

Character string tvpe

29.2 The tag of each Character string type is specified in
clause 31.

29.3 The notation for a Character string value shall be

CharacterStringValue :: = cstring

The definition of the Character string
characters appearing in the “cstring”.

type determines the

30 Notation for types defioed in clauses 32,
35

30.1 The notation for referencing a type defined in clauses
32-35 three of this International Standard shall be

UsefulType :: = typereference

where “typereference” is one of those defined in clauses 32-
35 using the ASN.1 notation.

30.2 The tag of each “UsefulType” is specified in clauses
32-35.

30.3 The notation for a value of a “UsefulType” is specified
in clauses 32-35.

19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

31 Definition of Character string types

This clause defines types whose distinguished values are se-
quences of Zero, one or more characters from some charac-
ter Set.

Table 4 - NumericString

31 .l The type is defined by specifying: / Na&]Graphic

a) the tag assigned to the type; and

b) a name by which the type definition tan be ref-
erenced; and

c) the characters in the Character set used in defining
the type, either by reference to a table listing the charac-
ter graphics or by reference to a registration number in
the International Register of Coded Character Sets to be
used with Escape Sequences.

The name in b) above may be used as a “typereference” in
the ASN.l notation (see clause 29).

31.2 Table 6 lists the name by which each of these type de-
finitions tan be referenced, the number of the universal class
tag assigned to the type, the defining registration numbers
or following table, and, where necessary, identification of a
NOTE relating to the entry in the table. Where a synonymous
name is defined in the notation, this is listed in parentheses.

NOTE - The tag assigned to Character string types unambiguously
identifies the type. Note, however, that if ASN.l is used to define
new types from this type (particularly using IMPLICIT), it may be
impossible to recognise these types without knowledge of the
ASN.l type definition.

31.3 Table 4 lists the characters which tan appear in the
NumericString type.

31.4 Table 5 lists the characters which tan appear in the
PrintableString type.

31.5 The notation for these types shall be “cstring’.

NOTE - This notation tan only be used on amedium capable of dis-
playing the characters which are present in the value. The notation
for the value in other cases is not defined.

Digits 0, 1, . . . 9

Spate (space)

Table 5 - PrintableString

Name Graphit

Capital letters
Small letters
Digits
Spate
Apostrophe
Left Parenthesis
Right Parenthesis
Plus sign
Comma
Hyphen
Full stop
Solidus
Colon
Equal sign
Question mark

A, B, . . . 2
a, b, . . . z
0, 1, .*. 9

(space)

(
1
+

=

31.6 In all cases, the range of permitted characters may be
restricted by a comment, but shall not be extended.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Table 6- List of Character string types

Name for Universal
referencing class
the type number

NumericString 18

PrintableString 19
TeletexString 20
(TSI String)

VideotexString 21

VisibleString
(IS0646Stnng) 26

IASString 22

GraphicString 25

GeneralString 27

Defining registration numbers
(see ISO 2375) or table number

Table 4

Table 5
87,102, 103, 106, 107

+ SPACE + DELETE

1, 72, 73, 102, 108, 128, 129
+ SPACE + DELETE

2 + SPACE

1, 2 + SPACE + DELETE

All G sets + SPACE

All G and all C sets
+ SPACE + DELETE

Notes

(1)

(1)

(2)

(3)

NOTES

1 The type-style, size, colour, intensity, or other display characteristics are not

significant.

2 The entries corresponding to these registration numbers reference CCITT

Recommendation T.61 for rules concerning their use.

3 The entries corresponding to these registration numbers provide the functionality

of CCIlT Recommendations T.100 and T.101.

21

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

32 Generalized time

32.1 This type shall be referenced by the name

GeneralizedTime

32.4 The tag shall be as defined in 32.3

32.5 The value notation shall be the value notation for the
“VisibleString’ defined in 32.3.

33 Universal tihe 32.2 The type consists of values representing

33.1 This type shall be referenced by the name a) a calendar date, as defined in ISO 8601; and

b) a time of day, to any of the precisions defined in ISO
8601, except for the hours value 24 which shall not be
used; and

UTCTime

33.2 The type consists of values representing:

c) the local time differential factor as defined in ISO
8601.

a calendar date; and

b) a time to a
and

precision of one minute or one second;
32.3 The type tan be defined, using ASN.l, as follows:

GeneralizedTime :: =
[UNIVERSAL 241 IMPLICIT VisibleString

c) (optionally) a local
nated universal time.

time differential from coordi-

33.3 The type tan be defined, using ASN.l, as follows: with the values of the “VisibleString’ restricted to strings of
characters which are either

UTCTime ::=
[UNIVERSAL 23lIMPLICIT VisibleString a) a string representing the calendar date, as specified

in ISO 8601, with a four-digit representation of the year,
a two-digit representation of the month and a two-digit
representation of the day, without use of separators, fol-
lowed by a string representing the time of day, as spe-
cified in ISO 8601, without separators other than decimal
comma or decimal period (as provided for in ISO 8601),
and with no terminating Z (as provided for in ISO 8601);
or

with the values of the “VisibleString” restricted to strings of
characters which are the juxtaposition of

a) the six digits YYMMDD where YY is the two low-
Order digits of the Christian year, MM is the month
(counting January as Ol), and DD is the day of the month
(01 to 31); and

b) either b) the characters
kase letter Z; or

in a) followed by an upper-

1) the four digits hhmm where hh is hour (00 to
23) and mm is minutes (00 to 59); or c) the characters in a) above followed by a string rep-

resenting a local time differential, as specified in ISO
8601, without separators. 2) the six digits hhmmss where hh and mm are as

in 1) above, and SS is seconds (00 to 59); and
In case a), the time shall represent the local time. In case b),
the time shall represent UTC time. In case c), the patt of the
string formed as in case a) represents the local time (t,), and
the time differential (t2) enables UTC time to be determined
as follows:

c) either

the Character Z; or

2) one of the characters + or -, followed
wh ere hh is hour and mm is minutes.

bY hhmm,
UTC time is tl - t2

The alternatives in b) above
specification of the time.

allow varying precisions in the EXAMPLES

Case a) In alternative c)l), the time is UTC time. In alternative c)2),
the time (tr) specified by a) and b) above is the local time;
the time differential (t2) specified by c)2) above enables the
UTC time to be determined as follows:

19851106210627.3
local time 6 minutes, 27.3 seconds
after 9 pm on 6 November 1985.

UTC time is tl - t2
Case b)

EXAMPLE - If local time is 7am on 2 January and coordinated
universal time is 12 noon on 2 January, the value is either of 19851106210627.32

UTC time as above. UTCTime “82010212002”
UTCTime “8201020700-0500” Case c)

33.4 The tag shall be as defined in 33.3. 19851106210627.3-0500
Local time as in example a), with
local time 5 hours retarded in
relation to UTC time.

33.5 The value notation shall be the value notation for the
“VisibleString’ defined in 33.3.

22

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

34 The external type

34.1 The notation for an external type (see 3.30) is “Exter-
nalType”:

ExterndType:: = EXTERNAL

34.2 The type consists of values representing

a) an encoding of a
need not, be the value

Single data value
of a Single ASN.l

that may,
datatype;

b) identification information which
mantics and encoding rules; and

but
and

Cl (optionally)
the Object.

an Object descriptor which describes

determines the se-

The optional Object descriptor shall not be present unless ex-
plicitly permitted by comment associated with the use of the
EXTERNAL notation.

34.3 Type EXTERNAL permits the inclusion of any data
value from an identified set of data values.

NOTES

1 The specification of this set of data values, their semantics, the
assignment of an Object identifier and (optionally) an Object de-
scriptor, and the dissemination of this information to all communi-
cating Parties is called a ustract svw This
Operation tan be performed by any authority entitled to aliocate
an OBJECT IDENTIFIER value, as specified in annexes B to D.

2 A set of data values registered as an abstract Syntax (with as-
sociated encoding rules) is not weil-formed unless the encoding of
each data value is self-identifying within the set of data value en-
codings. When ASN.l is used to define an abstract Syntax, tagging
is used to provide self-identification. Where an abstract Syntax is
not weil-formed, use of the communications channel is either con-
textsensitive or leads to ambiguity.

34.4 The EXTERNALtype tan be defined, using ASN.l, as
follows:

EXTERNAL l *- . . - [UNIVERSAL 81 IMPLICIT SEQUENCE
{ direct-reference OBJE(nr IDENTIFIER OPTIONAL,
indirect-reference INTEGER OPTIONAL,
data-valuedescriptor ObjectDescriptor OPTIONAL,
encoding CHOICE

{ Single-ASNl-type Pl Am
octet-aligped [l] IMPLICIT OCITET STRING,
arbitrary [2] IMPLICIT BIT STRING}}

34.5 When presentation layer negotiation of encoding
rules is not in use (Prior agreement of transfer Syntax) for the
value of this EXTERNAL, the “direct-reference OBJECT
IDENTIFIER’ shall be present. In this case the identifier of the
set of data values is an Object identifier which directly referen-
ces an abstract Syntax and fills the “direct-reference OBJECT
IDENTIFIER’ field of the “EXTERNAL”. In this case, the ab-
stract Syntax registration also defines the encoding rules
(transfer Syntax) for the data value and the “indirect-reference
INTEGER” shall not be included.

34.6 When presentation layer negotiation is in use for the
value of this EXTERNAL, the “indirect-reference INTEGER”
shall be present. In this case the identifier of the set of data
values is an integer which references an instance of use of
an abstract Syntax. The integer is called a presentation con-
text identifier and fills the “indirect-reference INTEGER” field
of the “EXTERNAL”. If presentation layer negotiation has

been completed, the presentation context identifier also
identifies the encoding rules (transfer Syntax) for the data
value and the “direckreference OBJECT IDENTIFIER” shall
not be included.. lf presentation layer negotiation is not com-
plete, an Object identifier value is also needed which ident-
ifies the encoding rules (transfer Syntax) used for the
encoding. Where presentation layer negotiation is in use,
and where the “direct-reference OBJECT IDENTIFIER” ele-
ment is allowed or required to carry such a value, this shall
be identified by comment associated with the use of the “EX-
TERNAL” notation, otherwise the field shall be absent.

NOTES

1 The effect of 34.5 and 34.6 is to make the presence of at least
one of the “direct-reference” and the “indirect-reference” manda-
tofy.

2 Both references are present
tion is in use but incomplete.

presentation layer negotia-

34.7 If the data value is the value of a Single ASN.l data-
type, and if the encoding rules for this data value are the same
as those for the complete “EXTERNAL” datatype, then the
sending implementation shall use any of the “Encoding”
choices:

Single-ASNl-type
octet-aligned
arbitrary

as an implementation Option.

34.8 If the encoding of the data value, using the agreed or
negotiated encoding, is an integral number of octets, then
the sending implementation shall use any of the “Encoding”
choices:

octet-aligned
arbitrary

as an implementation Option.

NOTE - A datavalue which is a series of ASN. 1 types, and for which
the transfer Syntax specifies simple concatenation of the octet
strings produced by applying the ASN.l Basic Encoding Rules to
each ASN.l type, falls into this category, not that of 34.7.

34.9 If the encoding of the data value, using the agreed or
negotiated encoding, is not an integral number of octets, the
“Encoding” choice shall be

arbitrary

34.10 If the “Encoding” choice is Chosen as “Single-ASN l-
type”, then the ASN.l type shall replace the “ANY”, with a
value equal to the data value to be encoded.

NOTE - The range of values which mig ht occur in the “ANY” is deter-
mined by the registration of the Object identifier value associated
with the “direct-reference”, and/or the integer value associated with
the “indirect-reference”.

34.11 If the “Encoding” choice is Chosen as “octet-aligned”,
then the data value shall be encoded according to the agreed
or negotiated transfer Syntax, and the resulting octets shall
form the value of the octetstring.

34.12 If the “Encoding” choice is Chosen as “arbitrary”, then
the data value shall be encoded according to the agreed or
negotiated transfer Syntax, and the result shall form the value
of the bitstring.

23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : lQQO(E)

34.13 The tag shall be as defined in 34.4.

34.14 The value notation shall be the value notation of the
type defined in 34.4.

35 The Object descriptor type

35.1 This type shall be referenced by the name

ObjectDescriptor

35.2 The type consists of human-readable text which ser-
ves to describe an information Object. The text is not an un-
ambiguous identification of the information Object, but
identical text for different information objects is intended to
be uncommon.

NOTE - ltisrecommendedthatanauthorityassigningvaluesoftype
“OBJECT IDENTIFIER” to an information Object should also assign
values of type “ObjectDescriptor” to that information Object.

35.3 Thetype tan be
follows:

defined, using the ASN.l notation, as

ObjectDescriptor :: =
[UNIVERSAL 71 IMPLICIT GraphicString

The “GraphicString” contains the text describing the informa-
tion Object.

35.4 The tag shall be as defined in 35.3.

35.5 The value notation shall be the value notation for the
‘GraphicString” defined in 35.3.

24

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

36 Subtype notation SubtypeSpec :: =
(SubtypeValueSet SubtypeValueSetList)

36.1 A subtype is defined by the notation for a parent type
followed by an appropriate subtype specification. The sub-
type specification notation is made up of subtype value Sets.
The values in the subtype are determined as specified in 36.7
by taking the Union of all the subtype value Sets.

SubtypeValueSetList :: =
11 11 I
SubtypeValueSet SubtypeValueSetList 1
emPtY

36.2 The subtype notation shall not be used so as to pro-
duce a subtype with no values.

36.3 The notation for a subtype shall be “Subtype’:

Subtype ::= /
ParentType SubtypeSpec I
SET SizeConstraint OF Type 1
SEQUENCE SizeConstraint OF Type

36.7 Esch “SubtypeValueSet” specifies a number (possibly
zero) of values of the parent type, which are then included in
the subtype. A value of the parent type is a value of the sub-
type if and only if it is included by one or more of the subtype
value Sets. The subtype is thus formed from the set Union of
the values included by the subtype value Sets.

ParentType :: = Type

36.8 A number of different forms of notation for ‘Subtype-
ValueSet’ are provided. They are identified below, and their
Syntax and semantics is defined in clause 37 As specified in
clause 37, and summarized in table 7, some notations tan
only be applied to particular parent types.

36.4 When the “SubtypeSpec’ notation follows the “Selec-
tionType” notation, the parent type is the “SelectionType”, not
the “Type” in the “SelectionType” notation.

36.5 When the ‘SubtypeSpec” notation follows a set-of or
sequence-of type notation, it applies to the “Type” in the set-
of or sequence-of notation, not to the set-of or sequence-of
VPe-

SubtypeValueSet :: =
SingleValue I
ContainedSubtype 1
ValueRange I
PermittedAlphabet 1
SizeConstraint 1
InnerTypeConstraints

NOTE - The special notation “SET SizeConstraint OF” and “SE-
QUENCE SizeConstraint OP is used to provide an alternative
mechanism (which is more readable than the general case nota-
tion) for simple cases. More complex cases require the general
mechanism.

37 Subtype Value Sets

36.6 The subtype specification notation shall be “Subty-
peSpec*:

37.1 Single Value

37.1.1 The “SingleValue” notation shall be:

SingleValue :: = Value

ISO/IEC 8824 : 1 QQO(E)

where “Value” is the value notation for the parent type.

37.1.2 A ‘SingleValue’ value set is the Single value of the
parent type specified by “Value”. This notation tan be applied
to all parent types.

Table 7 - Applicability of subtype value sets

Type (or derived from
such a type by tagging)

Boolean

Integer

Enumerated

Real

Object Identifier

Bit String

Octet String

Character String Types

Sequence

Sequence-of

Set

Set-of

, AnY

Choice

Single Zontained Value Size Alphabet Inner
Value Subtype Range h9e Limitation Su btyping

Yes Yes No No No No

Yes Yes Yes No No No

Yes Yes No No No No

Yes Yes Yes No No No

Yes Yes No No No No

Yes Yes No Yes No No

Yes Yes No Yes No No

Yes Yes No Yes Yes No

Yes Yes No No No Yes

Yes Yes No Yes No Yes

Yes Yes No No No Yes

Yes Yes No Yes No Yes

Yes Yes No No No No

Yes Yes No No No Yes

25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : lQQO(E)

37.2 Contained Subtype

37.2.1 The ‘ContainedSubtype” notation shall be:

ContainedSubtype :: = INCLUDES Type

37.2.2 A ‘ContainedSubtype’ value set consists of all the
values of the “Type”, which is itself required to be a subtype
of the parent type. This notation tan be applied to all parent
types.

37.4.4 The unit of measure depends on the parent type, as
follows:

Unit of measure Type

bit string
octet string ’
Character string
set-of
sequence-of

bit
octet
Character
component value
component value

37.3 Value Range

37.3.1 The ‘ValueRange’ notation shall be: 37.5.1 The “PermittedAlphabet” notation shall be:

ValueRange :: =
LowerEndpoint . . UpperEndpoint

37.3.2 A “ValueRange’ value set consists of all the values
in a range of values which are designated by specifying the
numerical values of the endpoints of the range. This notation
tan only be applied to integer types, real types and types
derived from those types by tagging.

NOTE - Forthe purpose of subtyping, “PLUS4NFINITY”exceedsall
“Numerickal” values and “MINUS-INFINITY” is less than all “Nu-
mericReal” values.

37.5 Permitted Alphabet

PermittedAlphabet :: = FROM SubtypeSpec

37.5.2 A “PermittedAlphabet” value set consists of all
values which tan be constructed using a sub-alphabet of the
parent string. This notation tan only be applied to Character
string types, or to types formed from them by tagging.

37.5.3 The “SubtypeSpec’ specifies the characters which
may appear in the Character string, and is any subtype spe-
cification which tan be applied to the subtype obtained by
applying the subtype specification “SIZE(1)” to the parent
type=

37.3.3 Esch endpoint of the range is either closed (in which
case that endpoint is included in the value Set) or open (in
which case the endpoint is not included). When open, the
specification of the endpoint includes a less-than Symbol
(“q:

37.6 Inner Subtyping

37.6.1 The “InnerTypeConstraints” notation shall be:

InnerTypeConstraints :: =
WI’kH COMPONENT SingleTypeConstraint 1
WITH COMPONENTS MultipleTypeConstraints

LowerEndpoint :: =
LowerEndValue 1 LowerEndValue <

UpperEndpoint :: =
UpperEndValue 1 < UpperEndValue

37.3.4 An endpoint may also be unspecified, in which case
the range extends in that direction as far as the parent type
allows:

LowerEndValue ::= Value 1 MIN

UpperEndValue ::= Value 1 MAX

37.4 Size Constraint

37.4.1 The ‘SizeConstraint” notation shall be:

37.6.2 An “InnerTypeConstraints” includes in the value set
only those values which satisfy a collection of constraints on
the presence and/or values of the components of the parent
type. A value of the parent type is not included in the subtype
unless it satisfies all of the constraints expressed or implied
(see 37.6.6). This notation tan be applied to the set-of, se-
quence-of, Set, sequence and choice types, or types formed
from them by tagging.

37.6.3 For the types which are defined in terms of a Single
other (inner) type (Set-of, sequence-of and types derived
from them by tagging), a constraint taking the form of a sub-
type value specification is provided. The notation for this is
‘SingleTypeConstraint”:

SingleTypeConstraint:: = SubtypeSpec

37.4.2

SizeConstraint :: =

A ‘SizeConstraint” tan only be applied to bitstring

SIZE SubtypeSpec

types, octetstring types, Character string types, set-of types
or sequence-of types, or types formed from any of those
types by tagging.

The “SubtypeSpec” defines a subtype of the Single other
(inner) type. A value of the parent type is a member of the
subtype value set if and only if each inner value belongs to
the subtype obtained by applying the “SubtypeSpec” to the
inner type.

37.4.3 The ‘SubtypeSpec” specifies the permitted integer
values for the length of the members of the value Set, and
takes the form of any subtype specification which tan be ap-
plied to the following parent type:

37.6.4 For the types which are defined in terms of multiple
other (inner) types (choice, set, sequence, and types derived
from them by tagging), a number of constraints on these
inner types tan be provided. The notation for this is “Multi-
pleTypeConstraints”:

INTEGER (O..MAX)

26

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

MultipleTypeConstraints :: = 37.6.8 A constraint on the value of an inner type is ex-
FullSpecification 1 PartialSpecification pressed by the notation ‘ValueConstraint’:

FullSpecification :: = {TypeConstraints }

PartialSpecification : = {... , TypeConstraints }

TypeConstraints :: =
NamedConstraint 1
NamedConstraint, TypeConstraints

NamedConstraint :: =
identifier Constraint 1 Constraint

37.6.5 The ‘TypeConstraints’ contains a list of constraints
on the component types of the parent type. For a sequence
type, the constraints must appear in Order. The inner type to
which the constraint applies is identified by means of its ident-
ifier, if it has one, or by its Position, in the case of sequence
types.

NOTE - VVhere the inner type has no identifier, the notation tan be
am biguous.

37.6.6 The “MuItipIeTypeConstraints” comprises either a
“FullSpecification” or a “PartialSpecification”. Where “Full-
Specification’ is used, there is an implied presence constraint
of “ABSENT” on all inner types not explicitly listed (see
37.6.9), and each inner type which is not marked “OP-
TIONAL” or “DEFAULT” in the parent type shall be explicitly
Iisted. Where ‘PartialSpecification” is employed, there are no
implied constraints, and any inner type tan be omitted from
the list.

37.6.7 A particular inner type may be constrained in terms
of its presence (in values of the parenttype), its value, or both.
The notation is “Constraint”:

Constraint :: =
ValueConstraint Presenceconstraint

ValueConstraint :: = SubtypeSpec 1 empty

The constraint is satisfied by a value of the parent type if and
only if the inner value belongs to the subtype specified by the
‘SubtypeSpec’ applied to the inner type.

37.6.9 A constraint on the presence of an inner type shall
be expressed by the notation “PresenceConstraint’:

PresenceConstraint . . - . . -
PRESENT 1 ABSENT 1 OPTIONAL 1
empty

The meaning of these alternatives, and the situations in
which they are permitted are defined in 37.6.9.1 to 37.6.9.3.

37.6.9.1 If the parent type is a sequence or set, an element
type marked “OPTIONAL” may be constrained to be “PRES-
ENT” (in which case the constraint is satisfied if and only if
the corresponding element value is present) or to be “AB-
SENT” (in which case the constraint is satisfied if and only if
the corresponding element value is absent) or to be “OP-
TIONAL” (in which case no constraint is placed upon the
presence of the corresponding element value).

37.6.9.2 If the parent type is a choice, a component type
tan be constrained to be “ABSENT”, in which case the con-
straint is satisfied if and only if the corresponding component
type is not used in the value.

37.6.9.3 The meaning of an empty “PresenceConstraint”
depends on whether a “FullSpecification’ or a “PartialSpeci-
fication” is being employed:

a) in a “FuIISpecification”, this is equivalent to a con-
straint of “PRESENT”;

b) in a “PartialSpecification”, no constraint is imposed.

27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : lSSO(E)

Annex A

(Normative))

The macro notation ’

AW1 Introduction

A mechanism is provided within ASN.l for the User of ASN.1
to define a new notation with which he tan then construct
and reference ASN.l types or specify values of types. The
new notation is defined using the notation “MacroDefinition”.
A “MacroDefinition” simultaneously specifies a new notation
for constructing and referencing a type and also a new nota-
tion for specifying a value. (See clause E.3 for an illustration
of the use of the macro notation).

With a “MacroDefinition’ the ASN.l user specifies the new
notation by means of a set of productions in a manner simi-
lar to that of this International Standard. The writer of the
macro definition:

a) specifies the complete Syntax to be used for defin-
ing all types supported by the macro; (this Syntax spe-
cification is invoked for Syntax analysis by any
occurrence of the macro name in the ASN.l type nota-
tion); and

b) specifies the complete Syntax to be used for a value
of one of these types; (this Syntax specification is in-
voked for Syntax analysis whenever a value of the macro
type is expected); and

c) specifies, as the value of a Standard ASN.l type (of
arbitrary complexity), the resulting type and value for all
instances of the macro value notation.

An instance of the Syntax defined by the macro definition tan
contain instances of types or values (using the Standard
ASN.l notation). These types or values (appearing in the use
of the macro notation) tan be associated, for the duration of

\ the Syntax analysis, with a local type reference or a local
value reference by appropriate Statements in the macro de-
finition. lt is also possible to embed, within the macro defini-
tion, Standard ASN.1 type assignments. These assignments
become active when the associated syntactic category is
matched against an item or items in the instance of the new
notation being analysed. Their lifetime is limited to that of the
analysis.

When analysing a value in the new notation, assignments
made during analysis of the corresponding type notation are
available. Such analysis is considered to logically precede
analysis of every instance of the value notation.

The resulting type and value of an instance of use of the new
value notation is determined by the value (and the type of the
value) finally assigned to the distinguished local value ref-
erence identified by the keyword item VALUE, according to
the processing of the macrodefinition for the new type nota-
tion followed by that for the new value notation.

Esch “MacroDefinition’ defines a notation (a Syntax) for type
definition and a notation (a Syntax) for value definition. The
ASN.l type which is defined by an instance of the new type
notation may, but need not, depend on the instance of the
value notation with which the type is associated. To this ex-

tent, the use of the new type notation is similar to a CHOICE
- the tag is indeterminate. Thus the new notation cannot in
this case be used in places where a known tag is required,
nor tan it be implicitly tagged.

A.2 Extensions to the ASN.l Character set and
items

The characters 1 and > are used in the macro notation.

The items specified in the following subclauses are also
used.

A.Z.1 Macroreference

Name of item - macroreference

A “macroreference” shall consist of the sequence of charac-
ters specified for a “typereference” in 8.2, except that all char-
acters shall be in upper-case: Within a Single module, the
same sequence of characters shall not be used for both aty-
pereference and a macroreference.

A.2.2 Productionreference

Name of item - productionreference

A “productionreference” shall consist of the sequence of
characters specified for a “typereference” in 8.2.

A.2.3 Localtypereference

Name of item - localtypereference

A “localtypereference” shall consist of the sequence of char-
acters specified for a “typereference” in 8.2. A “localtypere-
ference” is used as an identifier for types which arc
recognised during Syntax analysis of an instance of the new
type or value notation.

A.2.4 Localvaluereference

Name of item - localvaluereference

A “localvaluereference” shall consist of the sequence of char-
acters specified for a “typereference” in 8.2. A “localvalueref-
erence” is used as an identifier for values which are
recognised during Syntax analysis of an instance of the new
type or value notation.

NOTE - AYocalvaluereference” Starts with an upper-case letter.

A.2.5 Alternation item

Name of item - ” 1”

This item shall consist of the Single Character 1.

A.2.6 Definition terminator item

Name of item - >

28

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Table A.l - Sequence specified by items

kern name

“string” any sequence of characters
“identifier” 8.3 - Identifiers
“number” 8.8 - Numbers
“empty” 8.7 - Empty

Defining clause

This item shall consist of the Single Character >.

NOTE - The item < for the Start of definitions is defined in clause
8.13.

A.2.7 Syntactic terminal item

Name of item - astring

An “astring” shall consist of an arbitrary number (possibly
zero) of characters from the ASN.1 Character set (See clause
7), surrounded by “. The Character ” shall be represented in
an ‘astring” by a pair of *.

NOTE - Use of “astring” in the macronotation specifies the occur-
rence, at the corresponding Point in the Syntax being analysed, of
the characters enclosed in quotation marks (“).

A.2.8 Syntactic category keyword items

Names of items -
“string”
“identifier”
“number”
“emp ty”

Items with the above names shall consist (in the macronota-
tion) of the sequences of characters in the name, excluding
the quotation Symbols (“). These items are used in the macro
notation to specifythe occurrence, in an instance of the new
notation, of certain sequences of characters. The sequences
in the new notation specified by each item are given in table
A.l by reference to a clause in this International Standard
which defines the sequence of characters appearing in the
new notation.

NOTE - The macro notation does not support the distinction be-
tween identifiers and references based on the case of the initial let-
ter. This is for historical reasons.

A.2.9 Additional keyword items

Names of items -
MACRO
TYPE
NOTATION
VALUE
value
type

Items with the above names shall consist of the sequence of
characters in the name.

The items specified in clauses A.2.2 to A.2.4 inclusive shall
not be one of the A.2.9 sequences, except when used as spe-
cified below.

The keyword ‘MACRO’ shall be used to introduce a macro
definition. The keyword “TYPE NOTATION” shall be used as
the name of the production which defines the new type no-
tation. The keyword “VALUE NOTATION” shall be used as
the name of the production which defines the new value no-
tation. The keyword “VALUE” shall be used as the “localva-
Iuereference” to which the resulting value is assigned. The
keyword “value” shall be used to specify that each instance
of the new notation contains at this Point, using Standard
ASN.l notation, some value of atype (specified in the macro
definition). The keyword “type” shall be used to specify that
each instance of the new notation contains at this Point, using
Standard ASN. 1 notation, some “Type”.

A.3 Macro definition notation

A.3.1 A macro shall be defined using the notation “Mac-
roDefinition”:

MacroDefinition :: =
macroreference
MACRO
11 . . - 11

. . -

MacroSubstance

MacroSubstance :: =
BEGIN MacroBody END
macroreference
Externalmacroreference

MacroBody :: =
TypeProduction
ValueProduction
SupportingProductions

TypeProduction l * - . . -
TYPE NOTATION
‘1.. - 1’ -
MacroAlternativeList

ValueProduction :: =
VALUE NOTATION
11 . . - 11

-

Pl;acroAlternativeList

SupportingProductions :: =
ProductionList 1
empty

ProductionList :: =
Production 1
ProductionList Production

29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Production :: =
productionreference 11 . . - 11 -
MacroAlternativeList

Externahacroreference :: =
modulereference 5. macroreference

A.3.2 If the “macroreference’ alternative of ‘MacroSub-
stance” is Chosen, then the module containing the macro de-
finition shall either:

a) contain another macro definition defining that “mac-
roreference’; or

b) contain the “macroreference’ in its ‘Symbolslm-
ported”.

A.3.3 If the “Externalmacroreference’ alternative of “Macro-
Substance’ is Chosen, then the module denoted by “module-
reference” shall contain a macro definition defining the
“macroreference”. The associated definition is then also as-
sociated with the *macroreference” being defined.

A.3.4 The chain of definitions which tan arise from re-
peated applications of the rules of A.3.2 to A.3.3 shall termi-
nate with a ‘MacroDefinition’ which uses the “BEGIN
MacroBody END’ alternative.

A.3.5 Esch ‘productionreference” which occurs in a “Sym-
bolDefn” (See A.3.9) shall occur exactly once as the first item
in a “Production”.

A.3.6 Esch instance of the new type notation shall com-
mence with the sequence of characters in the ‘macroref-
erence”, followed by one of the sequences of characters
referenced by “TYPE NOTATION” after applying the produc-
tions specified in the macro definition.

A.3.7 Esch instance of the new value notation shall consist
of one of the sequences of characters referenced by “VALUE
NOTATION” after applying the productions specified in the
macro definition.

A.3.8 The “MacroAlternativeList” in a production specifies
the possible Sets of Character sequences referenced by that
production. lt is specified by:

MacroAlternativeList :: =
MacroAlternative 1
MacroAlternativeList ” 1” MacroAlternative

The set of Character sequences referenced by the “MacroAl-
ternativelist” consists of all the Character sequences which
are referenced by any of the “MacroAlternative’ productions
in the “MacroAlternativeList’.

A.3.9 The notation for a “MacroAlternative’ shall be:

MacroAlternative :: = SymbolList

SymbolList :: =
SymbolElement 1
SymbolList SymbolElement

SymbolElement :: =
SymbolDefn I
EmbeddedDeftitions

SymbolDefn :: =
astring
productionreference
“string”
“identifier”
“number”
“emp ty”
type
type(localtypereference)
value(MacroType)
value(localvaluereference MacroType)
value(VALUE MacroType)

MacroType :: = localtypereference 1
Type

NOTE - When in a macro, any “MacroType” defined in that macro
tan appear at any Point in which ASN.l specifies a “Type”.

A “MacroAlternative” references all Character strings which
are formed by taking any of of the Character strings ref-
erenced by the first “SymbolDefn” in the “SymbolList”, fol-
lowed by any one of the Character strings referenced by the
second ‘SymbolDefn” in the “SymbolList”, and so on, up to
and including the last “SymbolDefn” in the “SymbolList”.

NOTE - The “EmbeddedDefinitions”
determining these strings.

(it any) play no direct part in

A.3.10 An “astring” references the sequence of characters
in the “astring” without the enclosing pair of *.

A.3.11 A “productionreference” references any sequence
of characters specified by the “Production” it identifies.

A.3.12 The sequences of characters referenced by the next
four alternatives for “SymboIDefn” are specified in table A.1.

NOTE - The sequences of characters referenced by the “string”
should be terminated in an instance of the macro notation by the
appearance of a sequence referenced by the next “SymbolDefn”
in the “Symbollist.” i

A.3.13 A “type” references any sequence of Symbols which
forms a “Type” notation as specified in 12.1.

NOTE - The “DefinedType” of 12.1 may in this case contain a “local-
typereference” referencing a type defined in the macro notation.

A.3.14 A “type(localtypereference)” references any se-
quence of Symbols which forms a “Type” as specified in 12.1,
but in addition assigns that type to the “localtypereference”.
A later assignment may occur to the same “localtypere-
ference”.

A.3.15 A “value(MacroType)” references any sequence of
Symbols which forms a “Value” notation (as specified in 12.7)
for the type specified by “MacroType”.

A.3.16 A “value(localvaluereference MacroType)” referen-
ces any sequence of Symbols which forms a “Value” notation
(as specified in 12.7) for the type specified by “MacroType”,
but in addition assigns the value specified by the value nota-
tion to the ‘localvaluereference”. A later assignment may
occur to the “localvaluereference”.

A.3.17 A “value(VALUE MacroType)” references any se-
quence of Symbols which forms a “Value” notation (as spe-
cified in 12.7) for the type specified by “MacroType”, but in
addition returns the value as the value specified by the value

30

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

notation. The type of the value retumed is the type referenced
by MacroType.

A.3.18 Precisely one assignment to VALUE (as specified in
A.3.17 or in A.3.19) occurs in the analysis of any correct in-
stance of the new notation.

A.3.19 The notation for an ‘EmbeddedDefinitions” shall be:

EmbeddedDeftitions :: =
< EmbeddedDeftitionList >

EmbeddedDeftitionList :: =
EmbeddedDeftition 1
EmbeddedDeftitionList
EmbeddedDefinition

EmbeddedDeftition :: =
LocalTypeassignment 1
LocalValueassignment

LocalTypeassignment :: =
localtypereference
11 . . - 11 . . -
MacroType

LocalValueassignment :: =
localvaluereference
MacroType
11.. - 11 -
MacroValue

MacroValue :: =
Value I
localvaluereference

The assignment of a “MacroType” to a “Iocaltypereference”
(or of a “MacroValue’ to a “localvaluereference”) within an
“EmbeddedDefinitions” takes effect during the Syntax ana-

ISO/IEC 8824 : lQQO(E)

lysis of an instance of the new notation at the time when the
“EmbeddedDefinitions” is encountered, and persists until
redefinition of the ‘localtypereference’ or “localvalueref-
erence” occurs..

NOTES

1 The use of the associated “localtypereference” or “localvalue-
reference” elsewhere in the “Alternative” implies assumptions on
the nature of the parsing algorithm. Such assumptions should be
indicated by comment. For example, use of the “localtypere-
ference” textually following the “EmbeddedDefinitions” implies a
left to right Parse.

2 The Yocalvaluere?erence” “VALUE” may be assigned a value
either by the “value (VALUE MacroType)” construct or by an “Em-
beddedDefinition”. In both cases, the value is returned, as speci-
fied in A.3.17.

A.4 Use of the new notation

Whenever a “Type” (or “Value”) notation is called for by this
International Standard, an instance of the type notation (or
value notation) defined by a macro may be used, provided
that the macro is either:

a) defined within the same module; or

b) imported into the module, by means of the appear-
ante of the “macroreference” in the “Symbolslmported”
of the module.

To allow the Iatter possibility, a “macroreference’ tan appear
as a “Symbol” in 9.1.

NOTES

1 This extension to the Standard ASN.1 notation is not shown in
the body of this International Standard.

2 lt is possible to construct modules including sequences of type
assignment and macro definitions which make parsing of the value
Syntax in DEFAULT values arbitrarily complex.

31

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex B

(Normative)

ISO assignment of OBJECT IDENTIFIER component values

B.l Three arcs are specified from the root node. The as-
signment of values and identifiers, and the authority for as-
signment of subsequent component values, are as follows:

Value Identifier
Authority for
subsequent
assignments

0 ccitt CCITT
1 iso ISO
2 joint-iso-ccitt See annex D

NOTE - The remainder of this annex concerns itself only with ISO
assignment of values.

8.2 The identifiers “ccitt’, “iso” and “joint-iso-ccitt”, as-
signed above, may each be used as a “NameForm”.

8.3 Four arcs are specified from the node identified by
“iso”. The assignment of values and identifiers is

Value Identifier
Authority for
subsequent
assignments

0 Standard See clause B.4
1 registration-authority See clause BS
2 member-body See clause B.6
3 identified-Organkation See clause B.7

These identifiers may be used as a “NameForm”.

B.4 The arcs below “Standard” shall each have the value of
the number of an International Standard. Where the Interna-
tional Standard is multi-part, there shall be an additional arc
for the part number, unless this is specifically excluded in the
text of the International Standard. Further arcs shall have
values as defined in that International Standard.

NOTE - lf a non-multipart International Standard allocates Object
identifiers, and subsequently becomes a multipart International
Standard, it shall continue to allocate Object identifiers as if it were
a Single part International Standard.

B.5 The arcs below “registration authorii are reserved for
an addendum to this International Standard which will be

progressed alongside the establishment of procedures for
the identification of specific OSI Registration Authorities.

B.6 The arcs immediately below ‘member-body” shall have
values of a three digit numeric country Code, as specified in
ISO 3166, that identifies the ISO Member Body in that country
(see the NOTE). The “NameForm” of Object identifier com-
ponent is not permitted with these identifiers. Arcs below the
‘country Code’ are not defined in this International Standard.

NOTE - The existente of a country code in ISO 3166 does not
necessarily imply that there is an ISO Member ,Body representing
that countty or that the ISO Member Body for that country admin-
isters a scheme for the allocation of Object identifier components.

B.7 The arcs immediately below “identified-Organkation”
shall have values of an International Code Designator (ICD)
allocated by the Registration Authority for ISO 6523 that
identify an issuing Organkation specifically registered by that
author’ty as allocating Object identifier components (see
NOTES 1 and 2). The arcs immediately below the ICD shall
have values of an “Organkation Code” allocated by the is-
suing organization in accordance with ISO 6523. Arcs below
“organization Code” are not defined by this International
Standard (see NOTE 3).

NOTES

1 The requirement that issuing organizations are recorded by the
Registration Authority for ISO 6523 as allocating organization
Codes for the purpose of Object identifier components ensures that
only numerical values in accordance with this International Stan-
dard are allocated.

2 The declaration that an issuing organization allocates organiz-
ation Codes for the purpose of Object identifier components does
not preclude the use of these Codes for other purposes.

3 lt is assumed that the organizations identified by the “organiz-
ation Code” will define further arcs in such a way as to ensure allo-
cation of unique values.

4 The effect of clause B.7 is that any organization tan obtain an
organization code from an appropriate issuing organization, and
tan then assign OBJECT IDENTIFIER values for its own purposes,
with the assurance that those values will not conflict with values as-
signed by other organizations. By this means, a manufacturer
could, for example, assign an OBJECT IDENTIFIER to its own pro-
prietary information formats.

32

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex C

(Normative)

CCIlT assignment of OBJECT IDENTIFIER component values

C.l Three arcs are specified from the root node. The as-
signment of values and identifiers, and the authority for as-
signment of subsequent component values are as follows:

Value Identifier
Authority for
subsequent
assignments

0 ccitt CCITT
1 iso ISO
2 joint-iso-ccitt See annex D

NOTE - The remainder
assignment of values.

of thisannexconcems itself only CCITT

C.2 The identifiers “ccitt”, “iso” and “joint-iso-ccitt”, as-
signed above, may each be used as a “Nameform”.

C.3 Four arcs are specified from the node identifi
“ccitt”. The assignment of values and identifiers is

Value Identifier
Authority for
subsequent
assignments

0 recommendation See clause C.4
1 question See clause CS
2 administration See clause C.6
3 network-Operator See clause C.7

ed by

These identifiers may be used as a “Nameform”.

C.4 The arcs below “recommendation” have the value 1 to
26 with assigned identifiers of a to z. Arcs below these have
the numbers of CCITT Recommendations in the series ident-
ified by the letter. Arcs below this are determined as necess-
ary by the CCITT Recommendation. The identifiers a to z may
be used as a “NameForm”.

C.5 The arcs below “question” have values corresponding
to CCITT Study Groups, qualified by the Study Period. The
value is computed by the formula:

study group number + (Period * 32)

where “Period” has the value 0 for 1984-1988, 1 for 1988-
1992, etc., and the multiplier is 32 decimal.

The arcs below each study group have the values corre-
sponding to the questions assigned to that study group. Arcs
below this are determined as necessary by the group (e.g.
working Party or special rapporteur group) assigned to study
the question.

C.6 The arcs below “administration” have the values of
X.121 DCCs. Arcs below this are determined as necessary
by the Administration of the country identified by the X.121
DCC.

C.7 The arcs below “network-Operator” have the value of
X.121 DNICs. Arcs below this are determined as necessary
by the Administration or RPOA identified by the DNIC.

33

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex D

(Normative)

Joint assignment of OBJECT IDENTIFIER cotiponent values

D.l Three arcs are specified from the root node. The as-
signment of values and identifiers, and the authority for as-
signment of subsequent component values are as follows:

Value Identifier
Authority for D.4 The arcs beneath each arc identified by the mechan-
subsequent isms of clause 0.3 shall be allocated in accordance with

assignments mechanisms established when the arc is allocated.

0 ccitt
1 iso
2 joint-iso-ccitt

CCITT
ISO
See below _

NOTE - The remainder of this annex concerns itself only with joint
ISO-CCITT assignment of values.

D.2 The identifiers “ccitt”, “iso” and “joint-iso-ccitt’, as-
signed above, may each be used as a “NameForm”.

D.3 The arcs below “joint-iso-ccitt” have values which are
assigned and agreed from time to time by ISO and CCITT to

identify areas of joint ISO-CCITT Standardisation activity, in
accordance with the “Procedures for assignment of Object
identifier component values for joint ISO-CCITT use” 1

NOTE - lt is expected that this will involve delegation of authority to
the joint agreement of CCITT and ISO Rapporteurs for the joint area
of work.

D.5 Initial International Standards and CCITT Recommen-
dations in areas of joint ISO-CCITT activity require to allocate
OBJECT IDENTIFIERS in advance of the establishment of
the procedures of D.3, and hence allocate in accordance with
annexes B or C. Information objects identified in this way by
International Standards or CCITT Recommendations shall
not have their OBJECT IDENTIFIERS changed when the pro-
cedures of clause D.3 are established.

1 The Registration Authority for the assignment of Object identifier component values for joint ISO-CCITT use is the American National
Standards Institute (ANSI), 1430 Broadway, New York, NY 10018, USA.

34

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex E

(Informative)

Examples and hints

This annex contains examples of the use of ASN.1 in the description of (hypothetical) data structures. lt also contains hints, or
guidelines, for the use of the various features of ASN.1.

E.1 Example of a Personne1 record

The use of ASN.1 is illustrated by means of a simple, hypothetical personnel record.

E.l.l Informal Description of Personne1 Record

The structure of the personnel record and its value for a particular individual are shown below.

Name: John P Smith
Title:
Employee Number:
Date of Hire:
Name of Spouse:
Number of Children:

Director
51
17 September 1971
Mary T Smith
2

Child Information
Name:
Date of Birth

Ralph T Smith
11 November 1957

Child Information
Name:
Date of Birth

Susan B Jones
17 July 1959

E.1.2 ASN.l description of the record structure

The structure of every personnel record is formally described below using the Standard notation for data types.

PersonnelRecord :: = [APPLICATION 0] IMPLICIT SET
{ Name,

title Pl VisibleString,
number EmployeeNumber,
dateOfHire Pl
nameOfSpouse [2]
children Pl

Date,
Name,
IMPLICIT SEQUENCE OF ChildInformation DEFAULT {}

1
ChildInformation :: = SET
1 Name,
dateOfI3irth 101 Date
1

Name ::= [APPLICATION l] IMPLICIT SEQUENCE
{ givenName VisibleString,

initial VisibleString,
familyName VisibleString

EmployeeNumber :: = [APPLICATION 21 IMPLICIT INTEGER

Date :: = [APPLICATION 31 IMPLICIT VisibleString- YYYY MMDD

This example illustrates an aspect of the parsing of the ASN.1 Syntax. The syntactic construct “DEFAULT” tan only be applied
to an element of a “SEQUENCE” or a “SET”, it cannot be applied to an element of a “SEQUENCE OF”. Thus the “DEFAULT {
}” in “PersonnelRecord” applies to ‘children”, not to “Childlnformation’.

35

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

E.1.3 ASN.l description of a record value

The value of John Smith’s Personne1 record is formally described below using the Standard notation for data values.

1 {givenName “John”,initial “P”,familyName “Smith”} 9
title “Director” 2
number 51

.
9

dateOfHire ” 19710917” 9
nameOfSpouse (givenName “Mary”,initial “‘I?,familyName “Smith”} ,
children

{ { {givenName “Ralph”,initial T,familyName “Smith”} ,
dateOfBirth “19571111”},

{ { givenName “Susan”,initial “B”,familyName “Jenes”} ,
dateOfBirth “19590717”)))

E.2 Guidelines for use of the notation

The data types and formal notation defined by this International Standard are flexible, allowing a wide range of protocols to be
designed using them. This flexibility, however, tan sometimes lead to confusion, especially when the notation is approached for
the first time. This annex attempts to minimise confusion by giving guidelines for, and examples of, the use of the notation. For
each of the built-in data types, one or more usage guidelines are offered. The Character string types (for example, VisibleString)
and the types defined in clauses 32 to 35 are not dealt with here.

E.2.1 Boolean

E.2.1.1 Use a boolean type to model the values of a logical (that is, two-state) variable, for example, the answer to a yes-or-no
question.

EXAMPLE

Employed :: = BOOLEAN

E.2.1.2 When assigning a reference name to a boolean type, choose one that describes the true state.

EXAMPLE

Married ::= BOOLEAN

MaritalStatus :: = BOOLEAN

See also E.2.3.2

E.2.2 Integer

E.2.2.1
able.

Use an integer type to model the values (for all practical purposes, unlimited in magnitude) of a cardinal or integer vari-

EXAMPLE

CheckingAccountBalance :: = INTEGER
IW in cents; negative means overdrawn

E.2.2.2 Defrne the minimum and maximum allowed values of an integer type as distinguished values.

EXAMPLE

DayOlTheMonth :: = INTEGER {first(l),last(31)}

E.2.3 Enumerated

E.2.3.1 Use an enumerated type to
if their only constraint is distinctness.

model the ofa with three or more states. Assign values starting with zero

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

EXAMPLE

E.2.3.2 Use an enumerated type to model
states in a future Version of the protocol.

DayOiTheWeek . . - . . - ENUMERATED (sunday(0) ,monday(l),tuesday(2),
wednesday(3),thursday(4),friday(S),saturday(6)}

the values of a variable that has just two now but that maY have additional

EXAMPLE

MaritalStatus :: = ENUMERATED {single(O),manied(l)}

in anticipation of

MaritalStatus :: = ENUMERATED {single(O),married(l),widowed(2)}

E.2.4 Real

E.2.4.1 Use a real type to model an approximate number.

EXAMPLE

AngleInRadians :: = REAL
pi REAL :: = (3141592653589793238462643383279, 10, -30)

E.2.5 Bit string

E.2.5.1 Use a bit string type to model binary data whose format and length are unspecified, or specified elsewhere, and whose
leng-th in bits is not necessarily a multiple of eight.

EXAMPLE

G3FacsimilePage :: = BIT STRING
-- a sequence of bits conforming to CCI’IT
-- Recommendation T.4.

E.2.5.2 Define the first and last meaningful bits of a fixed-length bit string as distinguished bits.

EXAMPLE

Nibble :: = BIT STRING {first(O),last(3)}

E.2.5.3 Use a bit string type to model the values of a bit map,
particular condition holds for each of a correspondingly ordered

of an ordered collection
collection of objects.

logical variables indicating whether a

EXAMPLE

SunnyDaysOfI’heMonth :: = BIT STRING { first(l),last(31)}
-- Day i was sunny if and only if bit i is one

E.2.5.4 Use a bit string type with distinguished values to model the values of a collection of related logical variables.

EXAMPLE

Personalstatus :: = BIT STRING
{ married(O),employed(l),veteran

E.2.6 Octet string

E.2.6.1 Use an octet string type to mod
whose length in bits is a multiple of eight.

el binary

(2),collegeGraduate(3)}

EXAMPLE

G4FacsimileImage :: = OCIET STRING
-- a sequence of octets conforming to
-- CCI’IT Recommendations TJ and T.6

whose format and length are unspecified, or specified elsewhere, and

E.2.6.2 Use a Character string type in preference to an octet string type, where an appropriate one is available.

37

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 199O(E)

Sumame :: = PrintableString

E.2.6.3 Use an octet string type to model any string of information which cannot be
types. Be sure to specify the repertoire of characters and their coding into octets.

EXAMPLE

PackedBCDString ::= OCTET STRING
-- the digits 0 through 9, two digits p er octet,
-- each digit encoded as 0000 to 1001,
-- 11112 used for padding.

E.2.7 Null

Use a null type to indicate the effective absence of an element of a sequence.

EXAMPLE

PatientIdentifier :: = SEQUENCE
{name VisibleString,
roomNumber CHOICE

{INTEGER,
NULL -- if an out-patient --}}

NOTE - The use of “OPTIONAL” provides an equivalent facility.

E.2.8 Sequence and sequence-of

E.2.8.1
dictable,

Use a sequence-of
and whose Order is

type to model
significant.

modelled using one of the Character string

a collection of variables whose types are the Same, whose number is large or unpre-

EXAMPLE

NamesOfMemberNations :: = SEQUENCE OF VisibleString
-- in the Order in which they joined

E.2.8.2 Use a sequence type to model a collection of variables whose types are the Same, whose number is known and mod-
est, and whose Order is significant, provided that the makeup of the collection is unlikely to Change from one Version of the proto-
col to the next.

.

EXAMPLE

NamesOfOfficers :: = SEQUENCE
{president VisibleString,
vicepresident VisibleString,
secretary VisibleString}

E.2.8.3 Use a sequence type to model a collection of variables whose types differ, whose number is known and modest, and
whose Order is significant, provided that the makeup of the collection is unlikely to Change from one Version of the protocol to
the next.

EXAMPLE

Credentials :: = SEQUENCE
{userName VisibleString,
password VisibleString,
accountNumber INTEGER}

E.2.8.4 If the elements of a sequence type are fixed in number but of several types, a reference name should be assigned to
every element whose purpose is not fully evident from its type.

EXAMPLE

File :: = SEQUENCE
1

other
content

ContentType,
FileAttributes,
AW

See also E.2.5.3, E.2.5.4, and E.2.7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

E.2.9 Set

E.2.9.1 Use a set type to model a collection of variables whose number is known and modest and whose Order is insignificant.
Identify each variable by tontext-specifically tagging it.

EXAMPLE

UserName ::= SET
{personalName
OrganisationName
countryName

[0] IMPLICIT VisibleString,
[l] IMPLICIT VisibleString,
[2] IMPLICIT VisibleString}

E.2.9.2 Use a set type with “OPTIONAL” to model a collection of variables that is a (proper or improper) subset of another col-
lection of variables whose number is known and reasonably small and whose Order is insignificant.
tontext-specifically tagging it.

Identify each variable by

EXAMPLE

UserName ::= SET
{personalName [0] IMPLICIT VisibleString,
OrganisationName [l] IMPLICIT VisibleString OPTIONAL

-- defaults to that of the local Organisation -- ,
countryName [2] IMPLICIT VisibleString OPTIONAL

-- defaults to that of the local country -- }

E.2.9.3
I the next.

Use a set type
Identify each

to model a
variable by

is collection of variables whose makeup
tontext-specifically tagging it.

likely to Change from one Version of the protocol t0

EXAMPLE

UserName ::= SET
{personalName [0] IMPLICIT VisibleString,
OrganisationName [l] IMPLICIT VisibleString OPTIONAL ,

-- defaults to that of the local Organisation
countryName [2] IMPLICIT VisibleString OPTIONAL ,

-- defaults to that of the local country
-- other optional attributes are for f urther study --}

E.2.9.4 If the members of a set type
pose is not fully evident from its type.

are fixed in number, a reference name should be assigned to evety member whose pur-

EXAMPLE

FileAttributes :: = SET
{ owner [0] IMPLICIT UserName,
sizeOfContentInOctets [l] IMPLICIT INTEGER,

[2] IMPLICIT AccessControls,
. . . 1

E.2.9.5 Use a set type to model a collection of variables whose types are the same and whose Order is insignificant.

EXAMPLE

Keywords :: = SET OF VisibleString -- in arbitrary Order

See also E.2.5.4 and E.2.13

E.2.10 Tagged

E.2.10.1 Use a universal tagged type to define - in this International Standard only - a generally useful, application-independent
data type that must be distinguishable (by means of its representation) from all other data types.

EXAMPLE

EncryptionKey :: = [UNIVERSAL 301 IMPLICIT OCIET STRING
-- seven octets

E.2.10.2 Use an application-wide tagged type to define a data type that finds wide, scattered use within a particular presenta-
tion context and that must be distinguishable (by means of its representation) from all other data types used in the presentation
context.

39

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

lSO/lEC 8824 : 1990(E)

FileName :: = [APPLICATION 81 IMPLICIT SEQUENCE
{directoryName VisibleString,
directoryRelativeFileName VisibleString}

E.2.10.3 Use tontext-specific tagged
only constraint is distinctness.

types to distinguish the members of a Set. Assigri numeric tags starting with zero if their

EXAMPLE

CustomerRecord :: = SET
{name [0] IMPLICIT VisibleString,
mailineddress [l] IMPLICIT VisibleString,
accountNumber [2] IMPLICIT INTEGER,
balanceDue [3] IMPLICIT INTEGER -- in cents --}

E.2.10.4 Where a particular set member has been application-wide tagged, a further tontext-specific tag need not be used,
unless it is (or may be in the future) needed for distinctness.
text-specific tag should be used.

Where the set member has been universally tagged, a furthor con-

EXAMPLE

ProductRecord :: = SET
1 UniformCode,
description [0] IMPLICIT VisibleString,
inventoryNo [l] IMPLICIT INTEGER,
inventoryLeve1 [2] IMPLICIT INTEGER}

UniformCode :: = [APPLICATION 131 IMPLICIT INTEGER

E.2.10.5 Use tontext-specific tagged types to distinguish the alternatives of a CHOICE.
if their only constraint is distinctness.

Assign numeric tags starting with zero

EXAMPLE

CustomerAttribute :: = CHOICE
{ name [0] IMPLICIT VisibleString,
mailingAddress [l] IMPLICIT VisibleString,
accountNumber [2] IMPLIClT INTEGER,
balanceDue [3] IMPLICIT INTEGER -- in cents --}

E.2.10.6 Where a particular CHOICE alternative has been defined using an application-wide tagged type, a further context-
specific tag need not be used, unless it is (or maybe in the future) needed for distinctness.

EXAMPLE

ProductDesignator :: = CHOICE
{ UniformCode,
description [0] IMPLICIT VisibleString,
inventoryNo [l] IMPLICIT INTEGER}

Uniformtide :: = [APPLICA’ITON 131 IMPLICIT INTEGER

E.2.10.7 Where a particular CHOICE alternative has been universally tagged, a further tontext-specific tag should be used, un-
less the Provision of more than one universal type is the purpose of the choice.

EXAMPLE

CustomerIdentifier :: = CHOICE
{ name VisibleString,
number IIWEGER 1

E.2.1 0.8 Use a private-use wwd type to define a data type
be

that finds use within a particular
must distinguishable (by means of its representation) from all other data types used by that

EXAMPLE

AcmeBadgeNumber :: = [PRIVATE 21 IMPLICIT INTEGER

E.2.10.9 These guidelines use implicit tagging in the examples whenever it is legal to do so.
coding rules, result in a compact representation,

This may, depending
which is highly desirable in I some applications. In other applications

Organisation or country and
Organisation or country.

that

on the en-
‘, compact-

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

:19
90

https://iecnorm.com/api/?name=e6d585885d4792335847dee6356e97d9

