INTERNATIONAL ISO/IEC
STANDARD 5087-1

First edition
2023-08

!

Information technology — City|data
model —

Part 1:
Foundation level concepts

Reference number
ISO/IEC 5087-1:2023(E)

© ISO/IEC 2023

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

ii © ISO/IEC 2023 - All rights reserved

https://www.iso.org
https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Contents Page
FFOT@WOTM.........ccccccovvevee e85 5558558555585 \%
IIMETOUCTION ...t 85558 vi
1
2
3
4
5
6 5
6.1 General...... w5
6.2 Generic properties... w5
6.2.1 General........... w5
6.2.2 Key Properties..... gl 6
6.3 1LY C=I =00 (oY e, 748 o T L 1= o o VOO ORI 4000 YOOI S 6
6.3.1 GENETAl ..o (b .. 6
6.3.2 Key classes and properties......e, 5\ .6
6.3.3 Formallzatlon .. w7
6.4 .8
.8
.8
6.4.3 FOrmaliZation ... Moo 9
6.5 Time Pattern......, 9
6.5.1 General.... .9
6.6 Change pattern .
6.6. 1 GENETAL ... T
6.6.2 Key classes an\i@roperties
6.6.3 Formalizati
6.7 Location pattele)\
6.7.1 General ..
6.7.2 K&ﬁﬂsses and properties
6.7.3 ALIZATIOM e
6.8 Acti itibattern ..
6. GENETAL
Key classes and properties
.3 Formalization....
6 9C) Recurrmg Event pattern...
\<</ 6.9.1 General ...
6.9.2 Key classes and properties
6.9.3 FOIMAlIZATION oot
6.10 Resource pattern
6.10. 1 GEINETAL oo
6.10.2 Key classes and properties
6.10.3 Formalization
6.11 Agent pattern
.11 1 GEINETAL ..o
6.11.2 Key classes and properties
6.11.3 Formalization
6.12 Organization StrUCTUIE PATTOTITL ...t
6.12. 1 GEINETAL.....oooioooeeeeeee e
6.12.2 Key classes and properties
6.12.3 FOrMATIZATION ..ot

© ISO/IEC 2023 - All rights reserved iii

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

6.13

6.14

Agreement pattern
6.13.1 General ...
6.13.2 Key classes and properties
6.13.3 FOrMAlIZATION ..ot
PIOVENANICE PATEETTL. ..o
6.14.1 General
6.14.2 Key classes and properties

6.14.3 FOrMAlIZATION ..ot
Annex A (informative) Implementation alternatives for additional change semantics................ 39
Annex B (informative) Relationship to existing standards ... 41
Annex C (infprmative) Extended recurring event example ... g o 47
Annex D (infprmative) Location of pattern implementations...............c CN Vo 48
BIDLIOZTaAPRY ..o seees B e e 49

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the

work.

The procedures used to develop this document and those intended for its further maintenance

are
need

for the different types of document should be noted. This document! wa

Tscribed in the ISO/IEC Directives, Part 1. In particular, the different appr
e

oval criteria
5 drafted in
directives or

accordlance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iSo-org

WWWw,

iec.ch/members_experts/refdocs).

ISO an
use of
any cl
had n
imple
from {
not be

d IEC draw attention to the possibility that the implementation of this.\document m

himed patent rights in respect thereof. As of the date of publicatiénof this documen
bt received notice of (a) patent(s) which may be required to implément this docum
menters are cautioned that this may not represent the latest ihformation, which ma
he patent database available at www.iso.org/patents andhttps://patents.iec.ch. ISO
held responsible for identifying any or all such patent rights.

Any ti

ade name used in this document is information _given for the convenience of users

constitute an endorsement.

For an explanation of the voluntary nature of “standards, the meaning of ISO specif
exprefsions related to conformity assessment; as well as information about ISO's

orld Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.lso.org/iso/foreword.html. In the IE€;*'see www.iec.ch/understanding-standards.

the

This
A list

Any f
body.

WWWw,

ocument was prepared by Joint Technical Committee ISO/IEC JTC 1, Information tec
pf all parts in the ISO/IEC 5087 series can be found on the ISO and IEC websites.

edback or questions: on this document should be directed to the user’s nation

y involve the

(a) patent(s). ISO and IEC take no position concerning the evidenge) validity or applicability of

L, ISO and IEC
ent. However,
7 be obtained
and IEC shall

and does not

c terms and
hdherence to

hnology.

al standards
brs.html and

A complete listing> of these bodies can be found at www.iso.org/membgq
jec.ch/national:committees.

© ISO/IEC 2023 - All rights reserved

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
http://www.iso.org/patents
https://patents.iec.ch/iec/pa.nsf/pa_h.xsp?v=0
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Introduction

The intended audience for this document includes municipal information systems departments,
municipal software designers and developers, and organizations that design and develop software for
municipalities.

Cities today face a challenge of how to integrate data from multiple, unrelated sources where the
semantics of the data are imprecise, ambiguous and overlapping. This is especially true in a world
where more and more data are being openly published by various organizations. A morass of data
is increasingly becoming available to support city planning and operations activities. In order to be
used effectively, it is necessary for the data to be unambiguously understood so that it can be correctly

combined, ay
assumption,
unique ident
combination
data into som
sort of analys

A common d
execute city t
unambiguoug
requires a cle
another. This
requires sem

To motivate
physical and
smarter, tran|
would be smz
only be accorn
of data that ig
housing, edu
their occupat]

and/or use different aspects of a Househeld, much of the data needs to be shared with each other

Supporting t
of the domai

purpose of thlis document is tosupport the precise and unambiguous specification of city data usi

technology o

roiding data silos. Early successes in data “mash-ups” relied upon an indepen
where unrelated data sources were linked based solely on geospatial locdtion

of datasets with overlapping semantics entail a significantly greater effoft to tran
ething useable. It has become increasingly clear that integrating separate datasets f
is requires an attention to the semantics of the underlying attributes@and their valu

hta model enables city software applications to share information, plan, coordina
asks, and support decision making within and across city services, by providing a p
representation of information and knowledge commonly sHaped across city service
ar understanding of the terms used in defining the data,,as’well as how they relate
requirement goes beyond syntactic integration (e.g. commmon data types and protog
antic integration: a consistent, shared understanding of the meaning of information

the need for a standard city data model, consider the evolution of cities. Cities d
Kocial services that have traditionally operated-as silos. If during the process of bec
sportation, social services, utilities, etc. were to develop their own data models, the
rter silos. To create truly smart cities, data needs to be shared across these silos. Th
nplished through the use of a common\data model. For example, “Household” is a ca
commonly used by city services. Mémbers of Households are the source of transpor
cation and recreation demand. This category represents who occupies a home, the
ions, where they work, their abilities, etc. Though each city service can potentially

his interoperability among city datasets is particularly challenging due to the diy
h, the heterogeneity\of its data sources, and data privacy concerns and regulation

ontologies(t[2] as implemented in the Semantic Webl[2l. By doing so it will:

enable t

interprefation;

remove theindependence assumption, thereby allowing the world of Big Data, open source sof
mobile apps,etc., to be applied for more sophisticated analysis;

e computer representation of precise definitions, thereby reducing the ambigy

dence
or a

fier for a person or organization. More sophisticated analytics projects that)réquire the

sform
br this
P,

e and
ecise,
5. This
Lo one
ols), it

eliver
bming
result
is can
egory
ation,
ir age,
bather

ersity
s. The

Ing the

ity of

ware,

available

from datasets spread across the Semantic Web;

achieve semantic interoperability, namely the ability to access, understand, merge and use data

enable the publishing of city data using Semantic Web and ontology standards, and

enable the automated detection of city data inconsistency, and the root causes of variations.

With a clear semantics for the terminology, it is possible to perform consistency analysis, and thereby
validate the correct use of the document.

Figure 1 identifies the three levels of the ISO/IEC 5087 series. The lowest level, defined in
ISO/IEC 5087-1 (this document) provides the classes, properties and logical computational definitions
for representing the concepts that are foundational to representing any data. The middle level, defined

vi © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

in ISO/IEC 5087-2:—1, will provide the classes, properties and logical computational definitions for
representing concepts common to all cities and their services but not specific to any service. The top level
provides the classes, properties and logical computational definitions for representing service domain
specific concepts that are used by other services across the city. For example, ISO/IEC TS 5087-3:—2),
will define the transportation concepts. In the future, additional parts will be added to the ISO/IEC 5087
series covering further services such as education, water, sanitation, energy, etc.

Service-level ontologies Serivce domain concepts
Mid-level ontologies City concepts
Foundational ontologies Foundational, commopeoncepts

Figure 1 — Stratification©ficity data model

Figur¢ 2 depicts example concepts for the three lévels.

|
| |
Services-level | | Transportation Trip Public Vehicle Parking :
| Network Transpest |
|
|
|
| [
| |
o . . . |
City-level : Sensor Building Land Use Household City Service Indicator Bylaw |
| |
| |
| . N |
| Contact Péxson Organization City Resident City Contract Infrastructure Transjjortation |
| Infragructure | |
| |
| |
i i |
! Units,of Resource Activity Recurring Agent Agreement |
: Measure Event |
Foundation | [
Common-level | o L |
! Location Time Change Mereology rganization City Units Provenance !
T Structure |
| |

Figure 2 — Example concepts for each level

It is important to distinguish between the ISO/IEC 5087 series and the related, but distinct effort
of ISO/IEC 30145-2. As specified in its Scope, ISO/IEC 30145-2:2020 “specifies a generic knowledge
management framework for a smart city, focusing on creating, capturing, sharing, using and managing
smart city knowledge. It also gives the key practices which are required to be implemented to safeguard the
use of knowledge, such as interoperability of heterogeneous data and governance of multi-sources services
within a smart city.” Figure 3 depicts the smart city knowledge management framework as described
in ISO/IEC 30145-2. The smart city domain knowledge model includes a (cross-domain) core concept
model and several domain knowledge models. This document defines the foundation level of the core
concept model. ISO/IEC 5087-2 is intended to address some of the core concept model and cuts across

1) Under preparation. Stage at the time of publication: ISO/IEC DIS 5087-2:2023.
2) Under preparation.

© ISO/IEC 2023 - All rights reserved vii

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

the domain knowledge models. There is a possibility that subsequent parts of the ISO/IEC 5087 series
(not yet defined) will define knowledge models for the services of citizen livelihood, urban management
and smart transportation illustrated in the Figure 3.

~

wLIoped

JusWadeURy
agpajmouy]
A1) 11ews

\

Smart City Knowledge
Management

[Storage] [Retrieve] [Access]

Knowledge
Acquisition &
Organization

Knowledge Knowledge
Mining & Trustworthiness
Analysis Evaluation

‘ Smart City Knowledge Base

/ [PPOIN 98pajmouy] \ /

ﬁ support @ feedback
1 =i it e et et | \
1[Domain Specific Knowledge Models | f - N\ N
|72 1
=] i Domain Domain Domain 'support § - § =
a5} 1] | Knowledge Model Knowledge Model Knowledge Model ! Qo D O =)
jut i for Citizen for Urban forSmart :<:I ? g _é_ -Ef. _E_ % §
a Livelihood Management Transportation X S E,. g % g ; %
1
g N\ T T T . Ee®m | (5% <%
QO aQ @ o
5 sz = =g
= extend extend extend ®S 9 g5 o @
: =1 55 || ¢
=y ‘ (Cross-domain) Core Concept Model I \ —_—) U J

Figure 3 —

There are ot}

The framework of smart city knowledge management from ISO/IEC 30145-2:2020

ler existing standards that overlap coneeptually with some of the terms presented |n this

document. The relationship between ISO/IEC 508%1 and existing documents that address sim|lar or

related concd

pts is identified in Annex A.

viii

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

INTERNATIONAL STANDARD

ISO/IEC 5087-1:2023(E)

Information technology — City data model —

Part 1:
Foundation level concepts

1 Scope

docu

2 Normative references

The fi

This yiocument is part of the ISO/IEC 5087 series, which specifies a common data mode]-f

ent specifies the foundation level concepts.

llowing documents are referred to in the text in such a way that some or all of

br cities. This

their content

constitutes requirements of this document. For dated references, 0uly the edition cited applies. For

undat
ISO/IH
0OGC

Consofrtium, 10 September 2012. https://www.ogc.org/standards/geospargl

THE (
owl-ti|

PROV-

THE (
vocab

3 T

For the purposes of this-document, the following terms and definitions apply.

ISO an

bd references, the latest edition of the referenced document/(including any amendm
C 21972, Information technology — Upper level ontology.for smart city indicators

FEOSPARQL, A Geographic Query Language for-RDF Data, OGC 11-052r4, Ope

bnts) applies.

n Geospatial

NTOLOGY IN OWL, W3C Candidate Recommendation 26 March 2020, https://www.w3.org/TR/

e/
0. THE PROV ONTOLOGY, W3C Recommendation 30 April 2013, https://www.w3.org

TR /prov-o/

y.w3.org/TR/

RGANIZATION ONTOLOGY, W3C Recommendation 16 January 2016, https://wwy

prg/

brms and definitions

d IEC maintain'terminology databases for use in standardization at the following ad

0 Online-btowsing platform: available at https://www.iso.org/obp

C Electropedia: available at https://www.electropedia.org/

[dresses:

3.1

cardinality
number of elements in a set

[SOURCE: ISO/TS 21526:2019, 3.11]

3.2

description logic

DL

family of formal knowledge representation languages that are more expressive than propositional logic
but less expressive than first-order logic

[SOURCE: ISO/IEC 21972:2020, 3.2]

© ISO/IEC 2023 - All rights reserved

https://www.ogc.org/standards/geosparql
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/prov-o/
https://www.w3.org/TR/vocaborg/
https://www.w3.org/TR/vocaborg/
https://www.iso.org/obp/ui
https://www.electropedia.org/
https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

3.3
manchester

syntax

compact, human readable syntax for expressing Description Logic descriptions

[SOURCE: https://www.w3.org/TR/owl2-manchester-syntax/ (Copyright © 2012. World Wide Web

Consortium. https://www.w3.org/Consortium/Legal/2023/doc-license).]

3.4
measure

value of the measurement (via the numerical_value property) which is linked to both Quantity and
Unit_of_measure

[SOURCE: ISC

3.5
namespace
collection of
and attribute

Note 1 to entr)
[SOURCE: ISC

3.6
ontology
formal repre
definitions a
interrelation

[SOURCE: ISC

3.7
ontology we
ontology lang

Note 1 to enty
Semantic Web

[SOURCE: ht

/1EC 21972:2020, 3.4

hames, identified by a URI reference, that are used in XML documents as-element
names

r: Names may also be identified by an IRI reference.

/IEC 21972:2020, 3.5, modified — Note 1 to entry has been added.]

entation of phenomena of a universe of discourse with an underlying vocabulary inc
nd axioms that make the intended meaning explicit and describe phenomena anc
Ships

19101-1:2014, 4.1.26]

b language
uage for the Semantic Web with formally defined meaning

y: OWL 2 ontologies provide classes, properties, individuals, and data values and are std
documents.

ps://www.w3.org/TR/owl2-overview/ (Copyright © 2012. World Wide Web Conso

https://wwwj

.w3.org/Consortiutny/l.egal/2023/doc-license).]

3.8
quantity
property of
expressed by

Note 1 to entr)

h phenoménon, body, or substance, where the property has a magnitude that d
means-6fa number and a reference

rQuantities can appear as base quantities or derived quantities.

lames

uding
their

red as

Ftium.

an be

EXAMPLE 1
EXAMPLE 2

Length, mass, electric current (ISQ base quantities).

Plane angle, force, power (derived quantities).

[SOURCE: ISO 80000-1:2009, 3.1, modified — NOTEs 1 to 6 have been removed; new Note 1 to entry and

two EXAMPL
39

Es have been added.]

Semantic Web

W3C'’s vision

of the Web of linked data

Note 1 to entry: Semantic Web technologies enable people to create data stores on the Web, build vocabularies,
and write rules for handling data. The goal is to make data on the Web machine-readable and more precise.

© ISO/IEC 2023 - All rights reserved

https://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/Consortium/Legal/2023/doc-license
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/Consortium/Legal/2023/doc-license
https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

[SOURCE: https://www.w3.org/standards/semanticweb/(Copyright © 2015. World Wide Web
Consortium. https://www.w3.org/Consortium/Legal/2023/doc-license).]

3.10
unit_of_measure
definite magnitude of a quantity, defined and adopted by convention and/or by law

[SOURCE: ISO/IEC 21972:2020, 3.9]

4 Abbreviated terms and namespaces

DL description logic
=4
OWL ontology web language A({L
RDF resource description framework ,\“.l/
RDFS resource description framework schema N\’
IRI international resource identifier ¢\)
4
The fdllowing namespace prefixes are used in this document: <</C)
N

— agqtivity: https://standards.iso.org/iso-iec/5087/-1/ed-1/en lo

— agent: https://standards.iso.org/iso-iec/5087/-1/ed-1 /en&%o}ltologv/AEent/

— agreement: https:ZZStandards.iso.orgZiso-iecz5087@&1ZenZOHtologyZAgreementz
— change: https:ZZStandards.iso.orgZiso-iecz5087§4 éd-l /en/ontology/Change/

— cikyunits: https:

— génprop: httDs://standards.iso.orQ/iS(){te}/S087/—1/ed—l/en/ontologV/GenericProner ies/

— ggo: httD://Www.onengis.net/ont/g&)soarql#

— i7]2: http: zmntology.eil.utoro%@\',c a/5087/2/is021972/
— lofc: https: ZZStandards.isdoE\gZiso-iecz 5087/-1/ed-1/en/ontology/SpatialL.oc/

— mlereology: https:zf@.dards.iso.org/iso-iec/5087/-1/ed—l/en/ontologv/Mereologv/

— orng: http:iiwwé@c.org[ns[org#
— org_s: httO‘ tandards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/OrganizationStru¢ture/
— oyl L{@[Wwww&orgﬂoozZO7ZOWI#

— partwhole: https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Mereolo

— prov: http://www.w3.org/ns/prov-o#

— 5087prov: https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Prov/

— rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

— rdfs: http://www.w3.0rg/2000/01/rdf-schema#
— recurringevent: https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/RecurringEvent

— resource: https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Resource/

— time: http://www.w3.org/2006/time#

— xsd: http://www.w3.0org/2001/XMLSchema#

© ISO/IEC 2023 - All rights reserved 3

https://www.w3.org/standards/semanticweb/
https://www.w3.org/Consortium/Legal/2023/doc-license
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Activity/
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Agent/
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Agreement/
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Change/
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/CityUnits/
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/GenericProperties/
http://www.opengis.net/ont/geosparql#
http://ontology.eil.utoronto.ca/5087/2/iso21972
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/SpatialLoc/
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Mereology/
http://www.w3c.org/ns/org#
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/OrganizationStructure/
http://www.w3.org/2002/07/owl#
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Mereology/
http://www.w3.org/ns/prov-o#
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Prov/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/RecurringEvent/
https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Resource/
http://www.w3.org/2006/time#
http://www.w3.org/2001/XMLSchema#
https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

The formalization of the classes in this document is specified using the following table format, which
is a simplification of description logic (DL) where the first column identifies the class name, the second
column its properties (a class is defined as the subclass of all of its properties) and the third column
each property’s range restriction. It shall be read as: The <Class> is a subClassOf the conjunction of
the associated <property>s with their <value>s. Range restrictions are specified using the Manchester
syntax. For example, Table 1 specifies that Agent is a subclass of the intersection of genprop:hasName
exactly 1 xsd:string and resource:resourceOf only resource:TerminalResourceState and performs only
activity:Activity.

Table 1 — Example class formalization

Class Property Valure-restrietion

Agent genprop:hasName exactly 1 xsd:string
resource:resourceOf only resource:TerminalResourceState
performs only activity:Activity

The following value restrictions are used in this document:

— “min n”: $pecifies that the property has to have a minimum n values.
— “max n”: Ppecifies that the property has to have a maximum n values(
— ‘“exactly n”: Specifies that the property has to have exactly n values:

— “only”: Specifies that the values of the property can only be-an instance/type of the class spefified,
e.g., a string, integer or another class such as Organizatiom.

CamelCase isfused for specifying classes, properties and instances. For example, “legalName” instlead of
“legal_name”| The first letter of a class name is capitalized. The first letter of a property and ingtance
name are noft capitalized. An instance of a class shall satisfy the class’s definition. The instfance’s
properties arjd values shall satisfy the value restrictions of the class it is an instance of.

The formaliZation of the properties in this document is done similarly, using the following table
format that dllows for the identification of‘properties and their sub-properties, inverse propertfes, or
other characteristics. It is to be read asiThe <property> is <characteristic> of <value>, or simply the
<property> if <characteristic> if novalue is applicable. For example, in Table 2 hasPrivilege is p sub-
property of the agentlnvolvedIn property. Characteristics are specified using the Manchester syrjtax.

Table 2 — Example property formalization

Property Characteristic Value (if applicable)
hasPrivilege rdfs:subPropertyOf agentlnvolvedIn
Irreflexive

In the case of Dl definitions of classes where the simplified table representation is insufficient, the DL
specification will be supplied.

The patterns defined in this document have also been implemented in OWL and made available online.
The location of these encodings is identified in Annex D.

5 General

5.1 Unique identifiers

All classes, properties and instances of classes have a unique identifier that conforms to Linked Data/
Semantic Web standards. The unique identifier is an IRI. When using ISO/IEC 5087-1 (this document)
in an application, a class is identified by the IRI for the pattern of which it is a member, followed by the
class name. In the Agent example in Clause 4, the Agent class’s unique identifier would be:

4 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Agent/Agent

Breaking the IRI down:
“5087” identifies the series number
— “1” identifies the part number
— “ed-1” indicates that the class is defined in edition 1 of the standard
— “en” indicates that the class is defined in a pattern implemented in English

— The first “Agent” identifies the Agent pattern

— The second “Agent” identifies the Agent class within the Agent pattern
The IRI can be shortened using the prefix’s defined in Clause 4:
agent:Agent

wherq agent: is the prefix for the Agent pattern.

Propefrties are identified in the same manner. The IRIs of individuals created by an gpplication of
ISO/IEC 5087-1 would have IRIs unique to the application.

5.2 Reference to existing patterns

The practice of reusing and referencing existing standard vocabularies is an important practice in the
context of the Semantic Web. It is important that existing standard patterns are included|as normative
referejnces where appropriate, rather than duplicating and inserting the appropriate content as a pattern
within this document. The use of shared vocabularies directly enables interoperability andl shareability
betweden implementations and avoids the additional work of attempting to map to these sthndards after
the fagt. Where possible, existing standardized ontologies have been included as normatiyve references
to spdcify the patterns below. In cases where an extension is required, this is done in quch a way as
to preserve the content of the normative reference in order to support interoperability gnd make the
relatignship transparent.

6 Foundational ontologies

6.1 [General

Beyonld the donfdin-specific subjects that are clearly identified in consideration of the nequirements,
there pre fundamental concepts that are necessary to formulate an accurate definition of the domain.

model clear and accessible to potential adopters It also ensures interoperability and consistency
in the representation of key concepts such as time and location. The city data model defines eleven
foundational patterns to capture these concepts. A pattern is a set of concepts that are related by
topic and inter-connected by properties, thereby forming a graph. A foundational pattern is a pattern
composed of a set of foundational concepts. These are described in the following subclauses.

6.2 Generic properties

6.2.1 General
Most of the properties are identified and defined relative to a certain Class and in the context of a

particular pattern in the following subclauses. However, there are certain exceptions where generic
properties can be recognized as applicable to a wide range of classes with no common theme amongst

© ISO/IEC 2023 - All rights reserved 5

https://standards.iso.org/iso-iec/5087/-1/ed-1/en/ontology/Agent/Agent
https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

them. Such properties are defined separately as generic properties. This allows for the reference to
these properties independent of any particular pattern. These generic properties are imported by all of
the patterns defined in the ISO/IEC 5087 series.

6.2.2 Key Properties
The following generic properties have been identified:
— hasName: identifies the name of a certain object;

— hasDescription: specifies a description of a certain object;

— hasldenfifier: specifies an identifier for a certain object.
6.3 Meredlogy pattern

6.3.1 Gendral

Notions of parthood are ubiquitous. While sometimes conflated, there are clear distinctions which
can be made petween different types of parthood. The Mereology pattern faeuses on identifying these
differences and making them explicit. The distinction between types of parthiood may be best explained
with the use pf examples. An item may be contained in a car, but that does-hot make it a componént of a
car. For exaniple, there may be a need to describe passengers or cargo‘being contained in a vehidle, but
this relation feeds to be distinguished from the parts and components that make up a vehicle. Sinjilarly,
the front of { car is intuitively a part of the car, but not a component of the car. While compongnts of
a vehicle may be defined, different city zone systems (wards, postal codes) are not components, but
proper parts fof larger areas.

6.3.2 Key ¢lasses and properties

They key properties are formalized in Table 3. The*Mereology pattern identifies the following diffferent
types of parthood: proper-part-of and component-of. A more detailed analysis, presented in Refg¢rence
[10] reveals ¢lear, ontological distinctions hetween these relations (as well as a containment relation)
that may formalized clearly with a setef first-order logic axioms. The different properties nmay be
described as follows:

— partOf: dpecifies a part-whole relationship between objects

— properPg
of itself

rtOf: specifiesapart-whole relationship between objects where an object cannot He part

— componentOf: specifies a part-whole relationship between objects where the part is defined|based
on actual boundaries. The parts are often also defined according to distinct functions. For example,
a trunk i$ a,componentOf a car.

— immedidteComponentof: pecifie 2 OMpPONENnto refationsiip — WHere e if x
immediateComponentOf y, then there does not exist a z where x immediateComponentOf z
immediateComponentOf'y.

The aforementioned analysis (presented in Reference [10]) also identifies the expressive limitations of
OWL, which prevent a complete representation of this semantics, and discussed the various possible
approximations. It is important to consider what should be captured, and what distinctions should be
made in the introduction of properties, in contrast with what is actually expressible in the logic. Since
the required semantics cannot be completely captured in OWL, some trade-off(s) is required for any
partial specification, (e.g. OWL only allows the specification of transitivity for simple object properties).

The difficulty with such an approximation is that the resulting theory defines a semantics for something
else entirely. Inherently, some semantics are omitted, which can potentially not be required for one
application but can potentially be important for another. For example, if transitivity is a key aspect of
some required reasoning, then perhaps a parthood relation would be defined as transitive, and some

6 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

omissions would be made with respect to the formalization of other restrictions (e.g. cardinality) that
should be applied to the parthood relation. Certainly, the use of approximations will be required in some
cases, for example in order to support some desired reasoning problems. However, precisely which
axiomatization is most suitable will vary between different usage scenarios. The Mereology pattern
therefore omits a detailed, partial axiomatization in favour of an under-axiomatized specification of
the key relations, in order to avoid prescribing one trade-off over another. This leaves the commitment
open-ended and variable to suit individual applications’ needs.

This ontology defines the general properties such that the commonality between domain-specific
part-of relations may be captured, and more detailed semantics may be defined in extensions of the

properties. This creates a means of indicating the intended semantics of a relation by identifying
the type of pnrthnnd that it is intended to capture while :\Hm/\/ing for the Qppr‘ifirnfin

n of different

partia
requit
dividd
prope
appro

appro
for an

Figur¢
parth

| approximations of the semantics (and possibly also specializations of this?s
ed. For example, a notion of parthood arises in the description of a buildingrand

d into. In this case, this relationship can be identified as a sort of hasComponent re
'ty hasBuildingUnit can be identified then as a subPropertyOf hasComponent. The

kimation of the component-of relation can then be defined for the hasBuildingUnit
kimation chosen for one type of parthood relation does not constrain'the choice of a
bther.

b 4 illustrates the use of the properties defined in the Mereology pattern to ser
pod properties. In this example, the hasComponent property is made more sped

hasBulildingUnit subObjectProperty defined between Building and BuildingUnit classes.

bmantics), as
he units it is
lation; a new
most suitable
relation. The
bproximation

e as generic
ific with the

<<owlClass>> <<owlClass>>
Building +hasComponent BuildingUnit
<<objectPropepty>>
+hasBuildingUnit
<sebjectProperty>>
7 N
I I
| |
<<rdfType>> <<rdfll‘ype>>

- +hasComponent

<<owlIndividual>> <<objectProperty>> <<owlIndividual>

build1t1 +hasBuildingUnit _Bmm] i'I! .
iBuilding <<objectProperty>>
Figure 4 — Example use of the Mereology pattern
6.3.3 | Formalization
Table 3 — Key properties in the Mereology pattern
Property Characteristic Value restriction (if applicable)
partOf
properPartOf inverseOf hasProperPart
hasProperPart inverseOf properPartOf
componentOf rdfs:subPropertyOf properPartOf
inverseOf hasComponent
hasComponent rdfs:subPropertyOf hasProperPart
inverseOf componentOf
immediateComponentOf rdfs:subPropertyOf componentOf

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

6.4 City Units Pattern

6.4.1 General

Units of measure are an important concept due to the observational nature of city data collection. It
is particularly important to capture the relationship between some quantity and the unit of measure
it is described with. This allows for a representation in which the same individual quantity may be
associated with several values, according to different units of measurement.

The representation of quantities and measures information shall conform to the ontology specified

in ISO/IEC 21972. ISO/IEC 21972 is a standard that defines classes and properties required for a
i ranracantation of 1 diaob o Af ol b e o ot agnal o I 3 3ncoladad i i

foundational representatior——ofindicators—otwhich—onitsarean—intesralpart—tis—inehdedy in its

entirety with| the prefix ‘i72".

6.4.2 Key ¢lasses and properties

The City Unitls pattern provides a structured vocabulary to describe, among other things, the different
values (measpires) that are associated to given quantities. This allows for the provision of greater|{detail
regarding spg¢cific measurements that are defined in the ontology.

This pattern|extends ISO/IEC 21972 with the classes and properties outlined in Table 4 and Table 5,
respectively, to include the wider scope of quantities required for city data, such as those pertairjing to
physical desdriptions.

Figure 5 illugtrates the use of the City Units Pattern to capturenumerical values and their associated
units. This gxample shows the representation of a vehicle/s/speed. The speed is a single [object
(“veh123s1t1]’) that can be associated with multiple differént'values (e.g. 62 or 100) depending pn the
associated uiit.

<<owlflass>> <<owlClass>> <<owlClass>> <<owlClass>>
Veljicle Speed Measure SpeedUnit
+hasSpeed +value +unit_of_measure
<<objectProperty>> <<objeetProperty>> <<objectProperty>>’
/I'\ /:\ AN AN AN
I I I
! '
<<rd|Type>> <<rdfType>> i -<<rdnypel>> : <<rdfType>> :
; .
M ! ! | <<rdffype>>
g <<owlIndividual>> ! !
<<owlIndifidual>> +hasSpeed _|<<owlinfividyal>> value : : <<owlIndividual>> :
veh1Z3t1 <<objectProperty>> veh12381t1 +unit_of measure il
:Vehicle - i | _of) erHr 1
iSpeed <<objectProperty>> X I <<objectProperty>> :SpeedUnit !
+numerical_value = 62 1 1
© - <<rdfType>>-, |
I I
I

I

1
<<owlIndividual>> +unit_of measure
<<objectProperty>> - | kilometerPerHr

<<owlIndividual>>

+value
<<objectProperty>>

+numerical_value = 100

Figure 5 — Example use of the City Units pattern

Quantities, units, and/or measures that are defined using domain-specific concepts (e.g. vehicles, lanes)
are defined by reusing and extending the City Units pattern in the relevant ontologies, such that the
necessary concepts may be captured and the foundational ontology is not complicated with domain-
specific concepts.

8 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

6.4.3 Formalization
Table 4 — Key classes in the City Units pattern
Class Property Value restriction
Area rdfs:subClassOf i72:Quantity
i72:unit_of_measure only AreaUnit
AreaUnit rdfs:subClassOf i72:Unit_of _measure
Length rdfs:subClassOf i72:Quantity
i72:unit_of_measure only LengthUnit
LengthUnit rdfs:subClassOf i72:Unit_of _measure
Speed rdfs:subClassOf i72:Quantity
i72:unit_of _measure only SpeedUnit
SpeedUnit rdfs:subClassOf i72:Unit_of_measure
ValueQfMoney rdfs:subClassOf i72:Quantity

rdfs:subClassOf

i72:AmountOfMoney

i72:value anly MonetaryValue
MonetaryValue rdfs:subClassOf i72:Measure
hasRelativeYear exactly 1 xsd:gYear

i72:unit_of_measure

only i72:Amount_of_m|

oney_unit

Cardinality_unit_per_time

rdfs:subClassOf

i72:UnitDivision

i72:hasNumerator

only i72:Cardinality_u

hit

i72:hasDenominator

only TimeUnit

TimeUnit rdfs:subClassOf. i72:Unit_of_measure
average rdf:type Function
Duratjon rdfs:subGlassOf i72:Quantity
i72:value only i72:Measure and (i72:hasUnit
only TimeUnit)
rdfs:subClassOf time:TemporalDuration
Ratio rdfs:subClassOf i72:Quantity

i72:R4tiolndicator

rdfs:subClassOf

Ratio

Volunje rdfs:subClassOf i72:Quantity
i72:value only i72:Measure and (i72:hasUnit
only VolumeUnit)
Table 5 — Key properties in the City Units pattern

Property €haracteristic Vatuetifappticable)
hasAggregateFunction rdfs:domain i72:Quantity

rdfs:range i72:function
aggregateOf rdfs:domain i72:Quantity
aggregateOver rdfs:domain i72:Quantity

6.5 Time Pattern

6.5.1 General

To define an ontology pattern for time, it is necessary to identify the objects of interest, i.e., which
things will be described. In general, three approaches to a representation of time can be identified:
point-based, interval-based, and mixed. In a point-based representation, the objects of interest are

© ISO/IEC 2023 - All rights reserved 9

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

timepoints. The passing of time is described as an ordering over time points, and periods of time can
be represented as a series of timepoints. In an interval-based representation the objects of interest are
time intervals, whereas the mixed representation includes both timepoints and time intervals. Key to
all of these representations is that there is an ordering that holds over these time objects. It is important
to be able to describe whether one time object is before another; in the case of time intervals, it is also
important to be able to describe other relationships, such as whether one interval is contained in or
overlaps with another. The representation of time information shall conform to the ontology specified
in the W3C Candidate Recommendation “Time Ontology in OWL”. It specifies a mixed representation
that includes time points and intervals. It is included in its entirety with the prefix ‘time’.

6.6 Change pattern

6.6.1 Gendral

Many of the ¢oncepts identified in the urban system ontologies are subject to change.'Eor example, a
Vehicle will have one location at one time, and another location at a later time; it-¢an have only one
passenger at| one time, and four passengers at a later time. Similarly, many attributes of Persons,
Households and even Transportation Networks are subject to change.

Change over|time plays a role in many domains and thus the representation of change is by no
means a new| research topic. To this end, several approaches for capturing change in OWL hav¢ been
proposedl1l.l12], Despite these solutions, Semantic Web practitionersack clear and precise m¢thods
for how to apply these approaches to capture change at a domainlevel, whether reusing a temporal
ontology or (itveloping an ontology from scratch. The Change patfern serves as a clear guide to sypport
a consistent gpproach to representing change over time.

6.6.2 Key ¢lasses and properties

The key clasfes and properties are formalized in Table 6 and Table 7, respectively. An appropch to
representing|changing properties, or "fluents"”, that leverages the 4-dimensionalist perspectivle was
proposed in [Reference [11]. A similar approaech’is adopted in this document, based on the ¢lesign
pattern pres¢nted by Reference [13], requiring the representation of objects that are subject to dhange
as subclassed of the Manifestation class. Manifestations may be interpreted as “snapshots” of an jobject
at some poinf in time. This enables the(zepresentation of changing values of properties of an ¢bject,
without losinjg information about it§ past values. The properties of the class can then be idenptified
as propertieq that are (and are not).subject to change, in order to distinguish between the statjic and
dynamic aspg¢cts of a particularientity.

The Manifestation class is defined using the following properties:

— existsAt} identifies¢he TemporalEntity that reflects the time Instant or Interval during which the
snapshot] of the @bject holds (is valid).

— hasNextManifestation: identifies the immediate successor Manifestation (i.e. the subs¢quent
Snapshot afthe nh}'prf)

— hasPreviousManifestation: identifies the immediate prior Manifestation (i.e. the prior snapshot of
the object).

— hasFirstManifestation:identifiesthe FirstManifestationthatisrelated toaparticular Manifestation
(i.e., for some snapshot of an object, it identifies the first such snapshot of the object).

The class FirstManifestation denotes the first recorded manifestation of an individual. No prior
manifestations (in time) exist for the individual. It is a subclassOf Manifestation and contains the
following additional properties:

— precedesManifestation: identifies all subsequent Manifestations that follow a FirstManifestation.
In other words, the FirstManifestation is related to each and every subsequent manifestation via
the precedesManifestation.

10 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

— hasLatestManifestation: identifies the most recent Manifestation that is related to a particular

FirstManifestation (i.e., for some snapshot of an object, it identifies the most recent snapshot of the
object).

Manifestations sharing the same FirstManifestation, and often connected in a series (e.g. via the

hasNextManifestation property), form a group of descriptions about a particular entity. Some
applications may require the explicit representation this individual. In other words, there is
a need to represent a single, distinct individual while also capturing its changes over time. The
hasManifestation property is defined to support this requirement: a constant object class can
be related to its counterpart subclass of Manifestation via the hasManifestation property. In an
1nstant1at10n a smgle instance of some object class could be assoc1ated to multiple instances of
Mani o be achieved by
re presentlng the object as constantand re1fy1ng itsvariant properties as subclasses gfMlanifestation.
Different representation choices can be selected as appropriate for different appticatipns.

hasManifestation: identifies a Manifestation that captures the instantiatioh.of varignt attributes
o{an object at some time (i.e., a temporal snapshot of some individual). The individudl is related to
all manifestations in a series via the hasManifestation property.

A key pspect of the representation of change is the task of distinguishing between invariant and variant
properties. Invariant properties are those that are not expected to (9r'should not) change |n the context
of the| application(s), whereas variant properties are expected. to) possibly change in the context of
the application(s). This assessment will likely vary between applications, such that some properties
may ble considered invariant for some applications, but variant for others. In a broad sense, nearly all
properties (except those associated with an object’s identity) may be considered variant giyven a suitable
perspgctive. While it is true that historical properties (e.g. a person’s date of birth) are mych less likely

to change, even in this case it is plausible that some dpplications include the possibility

of revision of

prior knowledge. Similarly, the perception of a particular class as subject to change or jnot will vary

betweden applications. Use of the Change pattern is an implementation decision that

s left to the

discrdtion of users of the model presented heré. In other words, no classes in the ISO/IEC 5087 standard
series|are defined as subclasses of Manifestation. This provides the flexibility of representjng only what
is necpssary (e.g. where it is importantite’track or enforce constraints on changing infofmation) as a

Manifpstation, while maintaining some degree of interoperability with implementationf
adoptfthe same decisions. The alternative, to require that a specific set of concepts (or a

that do not
, or none) be

defingdd as subclasses of Manifestation is impractical and would decrease the utility of the [SO/IEC 5087

standfrd series.

A genpric approach can<beradopted to extend the Change pattern to capture change ap

it occurs in

speciffic classes throughout the city domain. This approach is a variation on the original }ogical design

patterjn outlined in _detail in Reference [13] and can be summarized with the following

sequence of

steps,[where theainderlined terms indicate placeholders for domain-specific terms to be specified when

implementing/the design pattern. For each class, C, that is subject to change:

1y

2)

3)

Distinguish between the variant and invariant properties of C i.e., identify which proplerties' values
mpayChange over time and which must remain the same for any instance of C, for as lofg as it exists.

Define the concept, C, as a subclass of Manifestation.
Axiom: C subClassOf Manifestation

Annotate the class C by identifying any invariant properties using the haslnvariantProperty

annotation to identify the property with its IRI.

C hasInvariantProperty invariantProperty

The following example illustrates the approach in detail. Figure 6 illustrates a simple representation of
objects that does not account for changes over time. The veh_123 object is an instance of Vehicle that
represents an individual vehicle. It has a model, model_x, an owner, alice, and a location, represented
by the object loc_1. No changes to veh_12 are expressible with this representation. For example, any
change to the associated location (via the hasLocation property) would be captured with a rewrite of

© ISO/IEC 2023 - All rights reserved 11

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

the statement about veh_123. In this approach it is not possible to state that the value was loc_1 and is
now loc_2. This representation supports a single snapshot of objects in its domain.

<<owlClass>>
loc:Location

+loc:hasLocation

<<objectProperty>>

<<owlClass>>
Vehicle
M
+hasOwner <<owlClass>> I
<<objectProperty>> Person |
1
1
N <<objectProperty>> [
I I
I +hasModel I
N I
: <<owlClass>> | <<rdfType>>
Model H
| 0% | |
<<rfifType>> I I
1
| | |
I I |
| | |
| ’I‘ <<rdfType>> |
| \
I <<rdfType>>
i

<<owlIndividual>>

|
<<owlndividual>> +hasModel | owlindividual>>

: ’ <<objectProperty>> model x:Model

+loc:hasLoc3tion

‘ +hasOwner

<<objectProperty>> alice :Person

<zobjectProperty>>

Figure(6,~— An atemporal representation

The default [atemporal) approach exemplified by the Vehicle class may be adapted to a temporal
approach (orle that represehts objects potentially changing over time) by introducing a relatignship
with the clasges Manifestation, FirstManifestation, and TemporalEntity) as follows:

Step 1: Ilttroduce classes Manifestation and FirstManifestation. The class that will have a temporal
represenfation {possibly changing properties) should be defined as a subclass of Manifestatipn.

In this chse”(Figure 7), Vehicle is defined as a subclass of Manifestation. This means that any
instances of Vehicle are now interpreted as snapshots of an object in time. Several differentinstances
of Vehicle can refer to the same object at different points in time. For example, each instance Vehicle
may have different values of a data property, such as an odometer reading or object property such
as hasLocation, but may still maintain the same object relationships values, such as owner. Each
instance is fully interconnected with other data being represented beyond the classes defined in
the pattern. In addition, it is not necessary that the value of an object property be a Manifestation.
For example, the value of hasLocation, loc_1, can be a simple instance of Location where change
management is not applied. Note that Manifestations that share the same FirstManifestation form
a group of Manifestations that describe the same object. So, in the example given, there can (and
likely will) be multiple such collections of instances of Vehicle, each describing the changes of a
different object.

12 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

) <<owlClass>>
+existsAt TemporalEntity

<<objectProperty>>

<<objectProperty>> . .
+hasNextManifestation

<<owlClass>>
Manifestation

<<owlClass>>
+precedesManifestation FirstManifestation

<<objectProperty>>

L<<rdfs$ubClassOf>>—

<<rdfsSubClassOf>>

<<owlClass*>
loc:Location

+loc: hasLocation

<<objectProperty>>

<<owlClass>>
Vehicle
T
I
+hasOwner <<owlClass>> |
<<objectProperty>> Person |
I
N <<objectProperty>> |
| I
| +hasModel I
I A |
I <<owlClass>% | <<rdfType>>
| Model | i
I
<<rdfType>> I |
I I |
I I |
I : I
| 0 <<rdfType>> |
! |
I <<rdfType>> | I
| I | <<owlIndivjdual>>
I loc]
<<owlIndividual>> +hasModel | <<owlindividuals> : :loc:Locdtion
<xobjectProperty>>| model x :Model
: pery I +Joc:hasLocation

+hasOwner _ | <<owlIndividual>>
<<objectProperty>> alice :Person

<<objectProperty>>

Figure 7 — Introducing the Change pattern

Next it is necessary to distinguish between invariant and variant properties. A consequence of Step
1 is that all of the property constraints that were associated with Vehicle are now interpreted as
"time variant". In other words, the restrictions only apply at instants/intervals in time (to individual
snapshots), so the values of these properties may change over time. In this example, the model of a
Vehicle is invariant whereas the other two properties are not. It does not matter that the location will
likely vary with much greater frequency than the owner of the vehicle (which might not vary at all).
Both are interpreted as invariant properties, and any snapshot of the vehicle will allow for changes to
either. The property hasModel will be annotated in the Vehicle class as an invariant property.

Step 2: distinguish between invariant and variant properties for the class that will have a temporal
representation. At minimum, this shall be done by annotating the invariant property with the
annotation hasInvariantProperty with a value of hasModel.

© ISO/IEC 2023 - All rights reserved 13

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Existing instances of Vehicle are interpreted as representing the state of a Vehicle at a given Instant
or Interval in time. Therefore, as shown in Figure 8, an additional assertion should be made as to
the TemporalEntity at which each Vehicle individual exists.

Now that Vehicle is a subclass of Manifestation, each instance of Vehicle inherits the property existsAt.

A temporal value, either an Instant or Interval, can be specified for which the individual is a temporal
snapshot.

Step 3: assert an applicable TemporalEntity for which the instance is valid, for the existsAt

property. Implicitly, all existing instances of Vehicle are now the first manifestation in a possible
series of changing snapshots.

At this point RIT Instances of Vehicle represent separate vehicles, and are the first manitestation|of the
instance. To feflect this, each of the instances are made to have the type FirstManifestationtoreflect
that they arefthe first temporal snapshot of what are to be many snapshots for each instance.

Step 4: agsert all instances to be of type FirstManifestation (Figure 8).

14 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

<<objectProperty>>

<<owlClass>>
Manifestation

rdfsSubClaccOf:

+existsAt

ISO/IEC 5087-1:2023(E)

<<owlClass>>
TemporalEntity

<<objectProperty>>

+hasNextManifestation

+precedesManifestation

<<objectProperty>>|

L<<rdfs$ubclassof>> _—]

<<owlClass>>
FirstManifestation

<<owlClass>>
Vehicle

<<owlClass>>
loc:Location

+loc:hasLocation

<<objectProperty>>

+hasOwner
<<owlClass>>

<<objectProperty>>

i

<<rd .ype>>

<<owlIndividual>>
veh_123 : Vehicle

<<objectProperty>>

+hasModel

Person

<<owlClass>>
Model

S —— >

<<rdfType>>

<<rd|

N

]
<<rdfType>>

T
|
|
|
|
|

fTy)

<<rdfType>>

<<owlIndividual>

+hasModel

<<objectProperty>>

<<owlIndividual>>

model x :Model

+hasLocation

1
|
I
| loc1
I
|
I

+hasOwner <<owlIndividual>>

<<objectProperty>>

alice :Person

+existsAt,

<<objectProperty>>

<<owlIndividual>>

<<objectProperty>>

Figure 8 — Adapting existing instances

m_ .
:TemporalEntity

ype>>

With these revisions complete, subsequent instances may be asserted to describe changes that occur
to a particular object over time. Each new snapshot of an instance, i.e. manifestation, will also be
associated with a TemporalEntity. In addition, the first instance (manifestation) will be associated
with all future instances via the precedesManifestation property. All instances will be related to any
subsequent instance with the hasNextManifestation property. Examples of the assertion of subsequent
instances are illustrated in Figure 9.

Step 5: The initial, FirstManifestation instance will be related to all subsequent manifestations of
an object via the precedesManifestation property.

Step 6: Each manifestation will be related to its following manifestation (i.e. the instance
representing the next change to the object) via the hasNextManifestation property.

© ISO/IEC 2023 - All rights reserved

15

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Step 7: Each manifestation will be related to the first manifestation via the hasFirstManifestation
property

. <<owlClass>>
+existsAt TemporalEntity
<<objectProperty>>
<<objectProperty>>|
+hasNextManifestation
<<owlClass>>
Manifestation
<<owlClass>>
+precedesManifestation FirstManifestation
<<objectProperty>:
L<<rdfs$ub(}lassof>>7

<<owlClass>> |
|

T
<<rdfsSubClassOf>> |
| loc:Location
| +loc:hasLocation
T
<<objectProperty>>
<<owlClass>> |
Vehicle | /]\
+ha|s(|)wner <<owlClass>> |
<<objectProperty>> | Person |
/[\ <<objectProperty>> | l
| -— — — — —<<rdfTyper— — — +— — — |
| +hasModel |
| | /l\ | <<rdfType>>
| | <<owlClass>> i <<rdfType>> |
| |
<<rdfType>> : | |
|
| | <<rdfType>> | |
I | | I
| |] | <<owlindividual>>|
1 |— <<rdfType>>— — — — | loc 1
IIndividual>>] | I iloc:Location :
veh 123 :Vehicle
! ! +lochasLocation |
<<objectProperty>> | +hasOwner <owlIndividual>>| |
<<objectProperty>> alice :Person
+hasModel |) perty: +hasOwner |
<<objectProperty>> |
+hasModel _ f<<owlIndividual>>|
<<objectProperty>> model x :Model |
<<objectProperty>> |
+hasModel |
<<objectPropertyza rexistsAt . [<<owlndividual>> |
<<objectProperty>> JUR q
iTemporalEntity
+existsAt Individual
s 8
:TemporalEntity
hasNextManifestation,
<<objectProperty>> ~ <. 11
+preced¢sManifestation ;lehmle-'_l <<objectProperty>> +loczhasLocation | __ o ol
<<objettProperty>> <<objectProperty>> loc2
<<objectProperty>>
hasNextManifestation
+precedesManifestation <<owlIndividual>>| rexistsAt _ [<<owlIndividual>
<<objectProperty>> veh 123 2 <<objectProperty>> 2 .
iVehicle iTemporalEntity
<<objectProperty>>
+locthasLocation_ | .. owiindividual>>
+hasOwner _ |<<owlindividual>>| loc 3:loc:Location
<<objectProperty>> bob :Person

Figure 9 — Asserting new instances

16 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

It may be desirable to support inferences regarding the inheritance of invariant properties. In such
cases, rules languages (formalisms outside the OWL standard) may be specified. Alternative approaches
to formalizing this semantics for implementations are described in Annex A.

6.6.3 Formalization

Table 6 — Key classes in the Change pattern

Class Property Value restriction

Manifestation existsAt exactly 1 time:TemporalEntity
hasNextManifestation max 1 Manifestation
hasPreviousManifestation max 1 Manifestation
hasFirstManifestation exactly 1 Manifestation

FirstManifestation rdfs:subClassOf Manifestation
precedesManifestation only Manifestation and not (FirstManifes-

tation)

hasLatestManifestation exactly T Manifestation
Inverse(hasManifestation) exactly\Y owl:Thing

Table 7 — Key properties in the Change pattern

Propgérty Characteristic Value restriction (if applicable)
existsjAt rdfs:range time:Temporal Entity
hasNgxtManifestation rdfs:domain Manifestation

rdfs:range Manifestation
hasPrgpviousManifestation inverseOf hasNextManifestation
preceflesManifestation rdfs:domain FirstManifestation

rdfs:range Manifestation and not (FirstManifestatjon)
hasFifstManifestation inverseOf precedesManifestation
hasLakestManifestation rdfs:domain FirstManifestation

rdfs:range Manifestation
hasMdnifestation rdfs:range Manifestation

6.7 |Location pattern

6.7.1| General

The ontology for representing location information shall conform to the vocabulary specified in OGC 11-
052r4{(GeoSPARQL). To capture generic spatial objects requires concepts of location as wefll as concepts
of geometry in order to describe shapes that are more complex than a single point in space. In addition,
there is a need to be able to describe the spatial relationship between various objects (e.g. containment,
overlap). The GeoSPARQL Ontology is used in the Location pattern to achieve this. It is included in its
entirety with the prefix ‘geo’.

The GeoSPARQL Ontology has been selected to form the basis of the representation of location
information because it is the defacto standard for geospatial information on the Semantic Web. Along
with the formalization of ontology concepts the GeoSPARQL standard also specifies requirements for
the implementation of query functions. Conformant Semantic Web data stores provide the ability to
employ these functions to enable geospatial queries over information that is represented using the
vocabulary defined in the GeoSPARQL Ontology. It is therefore of practical importance to any users of
the ISO/IEC 5087 standard series that the terminology used to describe locations utilize the GeoSPARQL
labels.

© ISO/IEC 2023 - All rights reserved 17

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

6.7.2 Key classes and properties

The key classes and properties extended from GeoSPARQL are formalized in Table 8 and Table 9,
respectively. Specifically, the class Location is added, and and the properties hasLocation and
associatedLocation are introduced. These terms represent a minor extension of the GeoSPARQL
ontology.

— Location: a specialization (subclass) of geo:Geometry that refers to a geospatial representation of
the space occupied by some object.

In addition, the pattern introduces the associatedLocation property to support the reference of
locations by other classes:

— hasLocation: specifies the Location of an object.

— associatpdLocation: captures the association of a non-spatial object with a Location: Eor example,
an activity is not a spatial object but may be associated with some location in which it (mostly] takes
place.

The Mereology pattern is imported in order to specify the relationship between the mereotopological
properties d¢fined in GeoSPARQL for Spatial Objects and the more general patrt-whole relatior]s that
can also apply to other types of entities; namely, to relate geo:'tangential\proper part’ and g¢o:non
-tangential proper part properties with the partwhole:properPartOf property. These relationships are
illustrated in[Table 9.

The diagram|in Figure 10 illustrates the use of the Location pattern to represent a vehicle’s Log¢ation.
Note that thg Location of a particular Vehicle individual can-then be associated with other Locptions
(e.g. via a cofptainment relation). Note that the Location object may be a point or other more complex
shape and may be associated with more than one data preperty based on different serializationg (such
as well-knowpn text, shown here).

18 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

<<owlClass>>
geo:SpatialObject

<<rdfsSubClassOf>>

<<owlClass>>
geo:Geometry

<<rdfsSubClassOf>>

<<owlClass>>
Vehicle

+hasLocation

<<owlClass>>
Location

M

I

I

I
<<rdfType>>

<<owlIndividual>

<<objectProperty>>

+hasLocation

K
I I

|
<<rdfType>>

|

I

|

I

— — — —<<rdfTypex e — —

<<owlIndividual>>

k<objectProperty>>

+geo:contains

<<owlIndividual>>
loc12 :LoCation

veh123 :Vehicle

<<objectProperty>>

+asWKT = P@INT(-79.170867
43.809123)

Figure 10 — Example use of the Location pattern

6.7.3 | Formalization
Table'8 — Key classes in the Location pattern
Class Rroperty Value restriction
Locatjon rdfs:subClassOf geo:Geometry
Table P introduces-two new properties and extends a subset of properties in GeoSPARQL so that they

are in

regrated-with the Mereology pattern.

Table 9 — Additional properties introduced in the Location pattern

Property Characteristic Value (if applicable)
hasLocation rdfs:range Location
associatedLocation rdfs:range Location
tangentialProperPart rdfs:subPropertyOf geo:'tangential proper part’

nonTangentialProperPart

rdfs:subPropertyOf

geo:'non-tangential proper part’

tangentialProperPart

rdfs:subPropertyOf

partwhole:properPartOf

nonTangentialProperPart

rdfs:subPropertyOf

partwhole:properPartOf

hasGeometry

rdfs:Range

geo:Geometry

© ISO/IEC 2023 - All rights reserved

19

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

6.8 Activity pattern

6.8.1 General

The concept of activities arises in many cases in city data: there are trip activities that contribute to
the demand on a transportation system, and the routine activities that motivate these trips; there
are educational and recreational activities offered by various city services. In the most general sense,
activities are things that happen; events that occur (scheduled or not) or actions that are performed by
some agent. Activities may be described by the time and location of their occurrence, their preconditions
and effects, as well through the identification of any objects that are somehow involved.

There are ma#ny

are lacking
Activity Spec
limitations.
Fox, Sathi, an|

A precursor
ontologies, a
[llustrated in
of which ma
disjunctions

In this appro
where activif
This decision]
information

categorized v
activity type
more comple
Dividing thes
discretion to
and occurren
to capture th

6.8.2 Key (

I activity cluster provides a basic structure for representing-activity specificg

ith respect to the basic representation requirements. The Activity pattern adop
fication design pattern that was presented in Reference [14] as a solution to addréss
he representation of activity specifications is based on the activity clusters introdu
d colleaguesl13],[16],

to the TOronto Virtual EnterprisellZl and Process Specification Lianiguagel18] a

Figure 11, it consists of an activity connected to an enabling-and caused statg
IV be a state tree that defines complex states via decomppsition into conjunctior
f states.

L — enable cais€—| State

State

Figure 11 — A generic activity cluster

hch an activity is interpreted as a class of occurrences, in contrast with other appr
ies are separate entities that are related to occurrences via an "occurrence of" re
was motivated by several pragmatic factors: in many cases it is sufficient to c:
regarding individual activities (i.e. occurrences or events). These activities m
ia different subclasses of “Activity”, but there is no need to associate them with a

x formalization is supported, if necessary, by the Recurring Event Pattern (se
e representationsinto two separate ontologies allows users of the ISO/IEC 5087 ser
only include what'is needed. In addition, much of the semantics that relate activity
ces is not expressible in OWL. The Activity Ontology works within the limitations o
b concepts.ofactivities, their composition, preconditions and effects, and ordering.

lasses'and properties

Ctivity
itions.

each
s and

aches
ation.
Ipture
ay be
single

entity, unless it is wished to characterize the activity type itself. The capability for this

e 6.9).
es the

types
f OWL

The key clas
respectively.

a
<

[}

le 12,

— Activity: An Activity describes something that occurs in the domain. It has the following set of core
properties:

hasSubactivity: identifies a more granular Activity into which the Activity may be decomposed.

hasStatus: identifies an ActivityStatus. This specifies the status of the Activity at some point or
interval in time. For example, the Activity may be “scheduled, “executing” or “completed”.

hasPrecondition: identifies a State that must be realized in order for the Activity to occur.

hasEffect: identifies a State that is realized once the Activity has occurred.

occursAt: identifies a time Interval over which the Activity occurs.

20

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

loc:associatedLocation: identifies a Location where the Activity occurs.

scheduledFor: identifies the time Interval that an Activity was scheduled to be performed/occur
at.

occursBefore: identifies an Activity that the Activity occurred before.
An Activity may also be described with the following, supplemental properties:

enabledByState: identifies a State that in some (indirect) way enabled the Activity to occur.
An Activity is enabled by a State if the State is a precondition for the Activity or if the State
is a precondition of some subactivity of the Activity. The enabledByState property is a

1. dnn L dnr). il 1 D o b
SCHCT AIIZ4ALIUITN (SUPCITPIUpCl iy J U LINT II4dS5 T TTUUNIUILIVIT PpIUPTI Y.

cqusesState: identifies a State that in some (indirect) way was caused by the occTrence of the

Activity. An Activity is caused by a State if the State is an effect of the Activity ¢r if the State
is an effect of some subactivity of the Activity. The causes property is,a,generalization (super-
property) of the hasEffect property.

o¢cursDirectlyBefore: identifies an Activity that occurred immediately prior to the|Activity. The
occursDirectlyBefore property is a sub-property of the occursBefore property.

beginOf: identifies the time Instant at which the Activity occtirs.

endOf: identifies the time Instant at which the Activity ends.

— State: A State describes some situation in the worldwhich may or may not be satisfied (true) at a
given point in time. States have the following corée.set of properties:

hasStatus: identifies the StateStatus at somepaint or interval in time. For example, the State may
be “unsatisfied, “satisfied” or “completed”.

a¢hievedAt: identifies the time Intervdlior Instant during which the State was satisfigd.

s¢heduledFor: identifies a time Interval during which the State is scheduled to be redlized.
efffectOf: identifies an Activity:that the State was realized by.
preconditionOf: identifies‘an Activity that requires the State to be realized in order o occur.
AlState may also be-described with the following, supplemental properties:

enablesActivity:-identifies an Activity that in some (indirect) way was enabled by fhe State. The
enablesproperty is the inverse of the enabledBy property and is a generaliZation (super-
property) of the preconditionOf property.

cqusedByActivity: identifies an Activity that in some (indirect) way caused the State f{o be realized.
The causedBy property is the inverse of the causes property and is a generaligation (super-
property) of the effectOr property.

— TerminalState: A State may be either non-terminal or terminal. A TerminalState has no sub-states.

— ManifestationState: A specialization of TerminalState, the ManifestationState specifies a
Manifestation class that an individual must satisfy in order for the ManifestationState to be true.

satisfiedBy: specifies the Manifestation that is to be satisfied (i.e., realized).

— NonTerminalState: a NonTerminalState has child States, which may be TerminalStates, or further
define some other complex state types. A State cannot be both non-terminal and terminal.
NonTerminalStates have the following core properties:

hasDecomp: identifies two or more States into which the State may be immediately decomposed,
i.e. its direct children.

© ISO/IEC 2023 - All rights reserved 21

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

NonTerminalState has the following supplemental properties:

hasSubState: identifies a State into which the complex state decomposes, at any level (i.e. its child
state, grandchild state, etc.). The hasSubState property is transitive and a super-property of
the hasDecomp property.

ConjunctiveState: a ConjunctiveState is a type of NonTerminalState thatis defined by the conjunction
of its child States.

DisjunctiveState: a DisjunctiveState is a type of NonTerminalState that is defined by the disjunction
of its child States. A State cannot be both conjunctive and disjunctive. Conjunctive and disjunctive
States, which do have substates, are achieved at some time if their decomposition of States is

achieved

It is not possible to completely define the semantics of an ordering over occurrences in OWL)However,
start and|end times of an activity may be used to describe the occursBefore property using jobject

the

property cha

ning as formalized in Table 10.

Table 10 — Formalization of occursBefore

Property Characteristic Value (if applicable)
endOf o beforg o inverse(beginOf) rdfs:subPropertyOf occursBefore
occursBefore TransitiveObjectProperty

occursAt o infervalMeets o in- rdfs:subPropertyOf occursDirectlyBefore
verse(occursit)

Figure 12 il]
identified as

ConjunctiveS
State where |

22

ustrates the use of the Activity pattern to-describe a class of objects that shotild be
‘Drive to Work” activities, where the effectof'such an Activity is a ConjunctiveState. The
fate is decomposed into two TerminalStates, meaning that it should be interpreted as a
oth substates (“DriverAtWork” and “CarAtWork”) are true.

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

<<owlClass>>
State
<<rdfsSubClassOf>>’ <<rdfsSubClassOf>>
<<owlClass>>
Activity
<<owlClass>> <<owlClass>>
ConjunctiveState TerminalState
|
<<rdfsSubClassOf>>
<<rdfsSubClassOf>> <<rdfsSubClassOf>>
SoouiChss <<owlClass>> Manifestationtate
DriveToWork DriverAtWorkAndCarAtWork
+hasEffect
<<objectProperty>>

) A ~or

| . .
<<rdfType>> <<rdfTIype>> | |

1 ! .

PR E—
I | |
<<owlIndividual>> | |
<<owlIndividual>> +hasEffect | |
dtw123pxvx <<objectProperty>> :DriverAtWorkAnd |
Driveratork CarAtWork |
<<objectProperty>> | |
| '
l______________«rdrrype»_____ <<rdfType>>
+hasDecomp I |
<<owlIndividual>> +satisfiedBy <<owlindividual>> +hasDecomp <<owlIndividual>> +satisfiedBy <<owlfndividual>>
statep123t1 stateveh1tl
p123t1 <<objectProperty>> i i <<objectProperty>> i i <<objectProperty>> ﬁhm
:Manifestation iMagifestation
+hasLocation | _wiindividual>> | +hasLocation
<<objectProperty>> 123 :Feature <<objectProperty>>
Figure 12 — Example use of the Activity pattern

© ISO/IEC 2023 - All rights reserved 23

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

6.8.3 Formalization

Table 11 — Key classes in the Activity pattern

Class Property Value restriction
Activity hasSubactivity only Activity
hasStatus exactly 1 ActivityStatus
hasPrecondition only State
enabledByState only State
hasEffect only State
causesState only State 0N
scheduledFor exactly 1 time:Interval Ad v
occursAt some time:Interval ,\".l/
beginOf some time:Instant n/\’)
endOf some time:Instant (‘QO
loc:associatedLocation only loc:Location C ,“)
occursBefore only Activity \\<</v
occursDirectlyBefore only Activity . O\
State preconditionOf only Activitx‘\v‘)
enablesActivity only Act}'agi@\
effectOf onlyA@'%ty
causedByActivity m&&ctivity
scheduledFor 5@3{ 1 time:Interval
achievedAt O < only time:TemporalEntity
hasStatus R\ N exactly 1 StateStatus
TerminalStatg rdfs:subClassOf \’\\® State
disjointWith . O NonTerminalState
hasDecomp (.\‘1: - exactly O State
Manifestatior|State rdfs:sub@'%\(’)f TerminalState
satis@’d.B; only change:Manifestation
NonTerminal§tate r@%l\l‘bClassOf State
Qli’s‘j'ointWtih TerminalState
Q‘® hasDecomp only State and min 2 State
X hasSubstate only State
ConjunctiveStfate C)V\ rdfs:subClassOf NonTerminalState
\Q/ disjointWith DisjunctiveState
DisjunctiveState rdfs:subClassOf NonTerminalState
disjointWith ConjunctiveState
ActivityStatus rdfs:subclassOf owl:Thing
StateStatus rdfs:subclassOf owl:Thing
24 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Table 12 — Key properties in the Activity pattern

Property Characteristic Value (if applicable)
hasPrecondition rdfs:subPropertyOf enabledBy
hasEffect rdfs:subPropertyOf causedByActivity
enablesActivity inverseProperty enabledByState
preconditionOf rdfs:subPropertyOf enablesActivity
causedByActivity inverseProperty causesState
effectOf rdfs:subPropertyOf causedByActivity
occursDirectlyBefore rdfs:subPropertyOf occursBefore
occurjBefore TransitiveObjectProperty —

hasSupState TransitiveObjectProperty —

hasDgcomp rdfs:subPropertyOf hasSubState

6.9 Recurring Event pattern

6.9.1 | General

A spegification of recurring events, in particular those that are defined according to calendlar dates (e.g.
every|Monday, every March), is required in order to capture information regarding hours| of operation,
road rlestrictions, restrictions on parking policies, and so on!A recurring event is a means|of describing
scenalios where some activity is scheduled to recur at'séme regular interval. It is impdrtant to note
that recurring events such as scheduled transit tripsé@nd operating hours represent plaﬁlEled or usual

occurrences. But exceptions to the planned recurrence can exist. For example, while a bulsiness can be
open gt some recurring intervals, it is possible that-in the case of some exceptional circuistances (for
examjple, a power failure) they are not open durifig the predefined days and times.

6.9.2 | Key classes and properties

The Hey classes are formalized in‘Table 13. The Recurring Event pattern adopts the following
repregentation of recurring events: daily, weekly, and monthly recurring events (and |their related
properties) are defined. However,the pattern may be extended with similar definitions gf other types
of rechirring events, as required.

Note that despite the close relationship, a recurring event is distinct from an activity] An instance
of a recurring event cosresponds to a class of activities (e.g. all of the occurrences of a Tuesday, all of
the oqcurrences of'the weekly waste pickup), but it is not itself an activity. The intuiti¢n is that the
occurfences of asecurring event are all the same type of activity. What defines a recurrfing event is a
combination-of the activity type (e.g. a transit trip from point A to point B or the provision of a service)
and tHe frequency at which it recurs.

that relates
recurring events to activities. Classes of recurring events may be captured by identifying their
associated classes of activities, while individual recurring events may be associated with one or more
instances of an activity.

The Recurring Event pattern uses the Activity pattern, as the concept of an activity is central to the
notion of a recurring event: the activities are the recurrences. It is important to note that while the
concept of Activity defined in the Activity pattern is necessary for the definition of a RecurringEvent,
it is not the case that the concept of RecurringEvent is required for the definition of an Activity. This
allows for a simpler representation of events in cases where the notion of recurrence is not required.

Recurring events are also identified based on the regular interval at which they occur. This is captured
using some combination of the startTime, endTime, dayOfWeek and onDateTimeDescription properties.
Using these properties, the pattern supports definitions of specializations of the RecurringEvent class.
In particular, subclasses for daily, weekly, monthly and yearly recurring events are defined; other

© ISO/IEC 2023 - All rights reserved 25

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

classes of recurring events may be defined similarly, as required. In addition, the properties startState
and endState are used to identify recurring events that occur due to certain circumstances, i.e. States,
rather than at specific points in time. Fuzzy sorts of recurring events that recur over imprecise periods
of time are not included in this pattern. However, the specified representation may be consistently
extended to include fuzzy recurring events with the introduction of classes to define concepts such as
fuzzy days or fuzzy times on which such an event would recur.

Exceptions to recurring events can also be defined. For example, a business that normally operates
on Monday-Friday, except for public holidays. Exceptions may also be defined on specific dates (e.g.
June 23, 2018), for example due to construction or on special calendar days (e.g. holidays) with the
ExceptlonDay class. These exceptlons can be deflned for recurrmg events with the recursExcept
his is

— hasOccurrence: identifies the Activities that take place at the time and location.

— associatpdLocation: identifies the Location where the event recurs.

— hasSubRecurringEvent: identifies the sub-recurring events that comprisethe RecurringEvént. As
with an Activity, a RecurringEvent may be decomposed/decomposed,into simpler/more complex
RecurringEvents to support varying levels of granularity.

— startTime: specifies the start time of the RecurringEvent's activity using xsd:time format.
— endTime: specifies the end time of the RecurringEvent’s activity using xsd:time format.

— beginsRecurringTime: specifies the start time of the RecurringEvent’s activity with a| time:
TemporalEntity from the Time pattern.

— endsRedurringTime: specifies the end time “of the RecurringEvent’s activity with a| time:
TemporalEntity from the Time pattern.

— hasDayQfWeek: specifies the day of the week on which a Weekly RecurringEvent occurs with the
time:Day|Of Week class from the Time pattern.

— onDateTjimeDescription specifies the date-time description (as defined in the Time pattefn) on
whichargcurringeventrecurs. For example, the day of the month on which a MonthlyRecurringEvent
recurs, of the day and monthion which a YearlyRecurringEvent recurs.

— beg1nsR=curringState: defines a State that is required to be true in order to initiafe the

e the

OCcur.

This can spec1fy a time, day of the week, or spec1f1c dates

— recursAddition: defines a condition when the RecurringEvent should be added to. This can specify
a time, day of the week, or specific dates.

An ExceptionDay specifies a day or days that recursExcept and recursAddition use to specify unique
days that do not recur on the same day each year, for example, holidays. Similar sorts of exceptions
(e.g. for times or months) can be specified, but are not included in this pattern. It has the following
properties:

— hasName: the name of the exception day, e.g. Labour Day.

— time:hasTime: specifies the year/month/day on which the exception occurs.

26 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087

-1:2023(E)

A DailyRecurringEvent occurs every day. It has a maximum of one associated time, the start time.
Typically, a daily-recurring event will occur at the same time every day, but it is also possible that no
commitment is made to a recurring start time for the event, in which case no start time is specified. A
DailyEvent does not necessarily have a recurring end time (this would require a constant duration),
therefore this is not part of the definition (although it is possible to specify).

A WeeklyRecurringEvent recurs regularly on the same day of the week, as specified by the dayOfWeek
property.

A MonthlyRecurringEvent recurs regularly on the same day of each month, as specified by the
onDateTimeDescription property. Note that there is often ambiguity regarding the semantics of a
monthly-recurring event: in this formalization, a MonthlyRecurringEvent is any event that recurs

regulz
the sa
is not

A Yea
onDat
the se
event

Figurd

rly on the same day of each month; other interpretations sometimes consider events
e day of week, or first or last day, in which case the day of month will vary. Such a.1¢
included in this pattern but could be captured in an extension.

'lyRecurringEvent recurs regularly on the same day of the same menth, as spe
eTimeDescription property. As with MonthlyRecurringEvent, there eaivbe ambigul
mantics of a yearly-recurring event. However, this formalization captures only the
that recurs on the same day of the same month (e.g. a birthday),

13 and Figure 14 illustrate how the Recurring Event pattericould be used to defin

of a sd
so all
on thd

heduled bus trip. In this example, the scheduled bus trip {sched_bus_trip” recurs da
bccurrences of the event (i.e. activities “bustrip1_123”, *bustripl_321") ought to occ
ir respective dates. For reference, a more complex example is outlined in Annex C.

<<owlClass>>
RecurringEvent

<<rdfsSubClassOf

<<owlClass>>
Activity

<<owlClass>>
DailyRecurringEvent

<<rdfsSubClassOf

x<rdfsSubClassOf

<<owlClass>>
BusTrip

<<owlClass>>
ScheduledBusTrip

+hasOccurrence

<<objectProperty>>

thatrecur on
presentation

cified by the
ity regarding
notion of an

e the concept
ly at 8:00 am
ur at 8:00 am

N N
! | /[\

} } I

<<rdfType>> I

| [<<rdfType>> — <<rdfType>>
<<owlIndividual>> | l
iScheduledBusTrip

+hasOccurrence <<owlIndivi <<owlIndividual>>
<<objectProperty>> bustrip1 123 bustripl 321
:BusTrip :BusTrip

startTime = 08:00:00

+hasOccurrence

<<objectProperty>>

Figure 13 — Example use of the Recurring Event pattern

© ISO/IEC 2023 - All rights reserved

27

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

<<rdfsSubC]assOf>>—T

<<owlClass>>
RecurringEvent

<<owlClass>>
DayOfWeek

+dayOfWeek

<<objectProperty>>
+startTime: xsd:time
+dayOfMonth: rdfs:Literal

<<objectProperty>>

<<rdfsSubClassOf>>

L L=

<<rdfsSubClass <<rdfsSubClassOf>>

<<owlClass>>

+hasMonth

<<owlClass>>

<<owlClass>>

<<owlClass>>

<<owlClass>>

6.9.3 Fornjalization

Figure 14 — Basic structure of the Recurring Event pattern

Table 13 — Key classes in the Recurring Event-pattern

Class Property Value restriction

RecurringEvent hasOccurrence only activity:Activity
associatedLocation only loc:Location
hasSubRecurringEvent only RecurringEvent
startTime only xsd:time
endTime only xsd:time
dayOfWeek only DayOfWeek

onDateTimeDeseription

only time:DateTimeDescription

beginsRecurfingTime only time:TemporalEntity
endsReeurringTime only time:TemporalEntity
beginsRecurringState only State
endsRecurringState only State
recursExcept only time:TemporalEntity or Daypf-
Week
recursAddition only time:TemporalEntity or Daypf-
Week
DailyRecurrijgEvent rdfs:subClassOf RecurringEvent
startTime max 1 xsd:time
WeeklyRecurringEvent rdfs:subClassOf RecurringEvent
hasDayOfWeek exactly 1 DayOfWeek
MonthlyRecurringEvent rdfs:subClassOf RecurringEvent

onDateTimeDescription

Exactly 1 (time:DateTimeDescription
and time:day exactly 1 rdfs:Literal and
time:month exactly 0 rdfs:Literal and
time:year exactly O rdfs:Literal)

YearlyRecurringEvent

rdfs:subClassOf

RecurringEvent

onDateTimeDescription

exactly 1 (time:DateTimeDescription
and time:day exactly 1 rdfs:Literal and
time:month exactly 1 rdfs:Literal and
time:year exactly 0 rdfs:Literal)

28

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Table 13 (continued)

Class

Property Value restriction

ExceptionDay

genprop:hasName some xsd:string

onDateTimeDescription

some time:DateTimeDescription

6.10 Resource pattern

6.10.1 General

Reso

asset
failurg

The R
wheth
activit

activity

produ
speciad
Activi

An ob
The R

6.10.2
The R

R
ty
cq

cq
dg

R
0

e rates are important factors for predicting the performance of various city services

esource pattern adopts the view presented in the Toronto Virtual\Enterprise
er or not an object is considered a resource is dependent on the roléthat it plays fo
y. A Resource can be associated with an activity in different ways: it can be int
(this is captured with the Planned Allocation class), or_it\cdan be actually con
ced, or released by an activity (this is captured with the-Terminal Resource State
lizations, which can be used to describe the enabling, and caused states of an ac
Ly cluster described in the Activity pattern).

ect may be classified as a different type of resource) dependent on its participation
bsource pattern reuses the Activity pattern.

Key classes and properties
bsource pattern defines the followingw¢lasses, formalized in Table 14:

psource: A Resource is an object that plays, or is intended to play, a role in some Act
pes (subclasses) of Resource’may be defined as required. A Resource class may
nsumed by some Activity-class. The specification of the Resource and the qua
nsumed in an activity is defined by the UseState and/or ConsumeState, which are

finition that is linked-to-an Activity by an enablesActivity property. If some Resouf
an Activity, then when‘the Activity occurs, the Resource needs to be (partially) not

psource is consured by an Activity, then the Resource (partially) ceases to exist by
currence. Resources have the following core properties:

hasCapacity:identifies the quantity that specifies how much of the Resource exists, e

if it isdiquid; how much it can hold, if it is a container.

hTs

AvailableCapacity: identifies the quantity that specifies how much of the Resour

a particular
ended for an
sumed, used,
class and its
Livity, i.e. the

n an activity.

ivity. Various
e used by or
tity used or
art of a State
ce is used by
hvailable. If a
the end of the

g. its volume,

‘e is available

for use

capacityInUse: identifies the portion of capacity in use, by some Activity(s).

hasAllocation: specifies a planned allocation for the Resource. This indicates a State and time

interval to which the Resource has been allocated.

participatesIn: identifies the Activity by which the Resource is being used, consumed, produced,

or released.

hasLocation: identifies the Location (as defined the in the Spatial Location pattern) where the

resource is located.

© ISO/IEC 2023 - All rights reserved

29

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

For additional detail, a Resource may be classified according to more specific resource types. A Resource
may either be a DivisibleResource or a NonDivisibleResource, but not both.

Specializatio
of Resources

Figure 15, Fig

DivisibleResource: may be divided for use or consumption between multiple Activities.

NonDivisibleResource: may only be used for a single Activity at once, even if it isn’t fully utilized.

Planned Allocation: the planned assignment of a Resource to an Activity via a State. It has the
following properties:

forResource: specifies the Resource that is allocated.

forState;

cpnrifinc the State towhich the Resgurce is allocated

hasQuar

hasTimg
alloc

Terminal
pattern),

hasQuar
part

hasResoprce: specifies a Resource that participates in the State_This identifies the condition

obje

has Allo
whid

Consum

Resourcsq.

Produce
UseState

ReleaseS

tity: specifies the amount of the Resource allocated.

ated to the State.

ResourceState: The Resource pattern extends TerminalState (défined in the A
specialized as TerminalResourceState with the following properties:

tity: specifies the quantity (as defined in the City Units pattern) of the Resourd
cipates in the State, if applicable.

t that plays a resource role (i.e. is used, consumed;-efc.) when the state’s status is ag

cation: specifies one or more planned allocations-that identify a Resource and the ti
h it is allocated to the State.

as preconditions and effects:

pState: identifies a Resource and-quantity it consumes. The quantity is removed frd

State: identifies a Resource-and quantity it produces.
: identifies a Resource and quantity it uses (without consuming).

ptate: identifies-a\Resource and quantity it releases (after using).

: specifies the time:TemporalEntity (i.e. time interval or instant) at which the"Resotirce is

Ctivity
e that
of the

tive.

me for

1s of TerminalResourceStates are identified in order to more precisely distinguish the role

m the

30

resource
to the A
describe
pothole ¢

fure 16, Figlire' 17 and Figure 18 illustrate the Resource pattern employed to descripe the
5 associated with a pothole repair activity. The basic activity cluster, represented accprding
Ctivity_pattern, is shown with a single instantiation in Figure 15. The represerjtation
5 thé FixPothole activity as being enabled by a state where resources are availableland a
xists (ResourcesAvailPotholeExists). This state class is then more precisely specifigd as a

conjunct

ve state that 1s decomposed 1nto a state where resources are avallable (KESOUFCGSAVEIH),

and a state where the pothole exists (PotholeExists state). Similarly, the activity causes a state
where the pothole is fixed, and the resources have been affected in some way (consumed or made
available). The FixPothole activity class and associated states describes the generic requirements
(enabling and caused states) of any pothole fixing activity, whereas the instances describe specific
occurrences of a pothole fixing activity, including specific instances of enabling and caused states.
For example, Figure 15 also depicts a particular instance of the FixPothole activity that is enabled
by a specific state where resources are available, s11, and a specific state where a pothole exists,

s12.

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

<<owlClass>>
ConjunctiveState

<<rdfsSubClassOf>: >T

<<owlClass>>
Activity

<<rdfsSubClassOf>>
'

ISO/IEC 5087-1:2023(E)

<<owlClass>>

ResourcesAvailPotholeExists

+enabledBy

<<owlClass>>
FixPothole

<<objectProperty>>

<<rdf55ubClassOf>j

<<owlClass>>
PotholeFixedResourcesAffected

+causes

<<objectProperty>>

<<objectProperty>> | N [<<objectProperty>> M <<objectProperty>> | /N [<<objectProperty>>
+hasDecompy[| shash] | |
T T T
<<owlClass>> | <<owlClass>> | +hasDecomp | +hasDeconp
ResourcesAvail PotholeExists
I | <<owlClass>> | <kowlClass>>
<<rdf'|1‘ype>> <<rdfl]-ype>> ResourcesAffected <<rdfl]-ype>> PptholeFixed
I | s 0 s)
l <°W“"::’id“al> +enabledBy ! <owlindividual> ! scauseq I NgE oamoidual> |
I :ResourcesAvail <<objectProperty>3 al:FixPothole [<<objectProperty>> ResourcesAffected |
PotholeExists
rdfType>> <<rdfType>> H !
| I <<rdfType>> <<rdfType>>
<<objectProperty>> <<objectProperty>> }		
		<<objectProperty>> <<objectPropeffty>>
+hasDecomp +hasDecomp		+hasDecomp +ha{Decomp
<<owlIndividual>> <<owlIndividual>> <<owlIndividual>> |k<owlIndividual>>

Figure 15 — Example definition and instantiation of a basic activity cluster with resources

Focus
state
identi
resou
be usg
potho

ng on the representation of required (enabling) resources in more detail, the R¢sourcesAvail
ran be decomposed into three terminal states, corresponding to the required r¢sources. The
fied states, illustrated in Figure 16, are AsphaltConsume, a consume state indicqdting that the
‘ce is to be consumed by the activity, TampUse, a use state indicating that the tamping tool is to

d by the activity, and Road Segment Use, a use state indicating that the road segment (with the
e) is to be used by the dctivity.

© ISO/IEC 2023 - All rights reserved

31

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

<<owlClass>>
TerminalResourceState

<<rdfsSubClassOf>> -T T—«rdfss\;bclassof»

<<owlClass>> <<owlClass>>
ConsumeState UseState
| <<owlIndividual>> ! !
|<<rdnype>>J s11 <<rdfType>> <<rdfType>>
:ResourcesAvail 1 |
| <<objectProperty>> I <<objectProperty>>
[+hasDecomp +hasDecomp | haspecomp
1
<<owlIndividual>> <<owlIndividual>> <<owlIndividual>>
5111 :Asphalt. 5112 :Tamp Use 5112 :Road.
Consume Segment Use

Figure 16 — Decomposition of individualresource states

This level of fetail can be sufficient in some cases. Howevet; if there is a need to capture the planned
allocation of|resources, then the planned allocation class can be instantiated. Figure 17 illugtrates
an allocation| defined for the Asphalt Consume state,“s11. This indicates that a quantity (mdsll, a
measurement of mass) of a particular resource (asphtl11, an instance of Asphalt) has been allocdted to

the state at time, t1.

+hasAllocation

<<owlIndividual>>

5111 :Asphalt
Consume

<<objectProperty>>

<<objectProperty>>

<<owlIndividual>>
as11 :Planned
Allocation

<<objectProperty>>

<<objectProperty>>

+hasTime

+forResource

<<owlIndividual>>

aspht11 :Asphalt

+hasQuantity

<<owlIndividual>>

mas11 :Mass

<<owlIndividual>>
t

:TemporalEntity

Figure 17 — Example instantiation of PlannedAllocation

If or when it is required, the actual resource use (or consumption, production, or release) can also be
defined for individual states. The diagram in Figure 18 illustrates the specification that the resource
that was allocated (i.e. planned for use) to the Asphalt Consume state was actually used, but the
quantity and the time at which it was used were different than planned.

32

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

<<owlIndividual>>

2
iTemporalEntity

+achievedAt

<<owlIndividual>>

mas12 actual
:Mass

<<objectProperty>>

ISO/IEC 5087-1:2023(E)

+hasQuantity

<<objectProperty>>

<<objectProperty>>

+hasAllocation

<<owlIndividual>>

s111 :Asphalt
Consume

<<objectProperty>>

<<owlIndividual>>

Allocation

<<objectProperty>>

+forResource

<<owlIndividual>>

aspht11 :Asphalt

+hasResource

<<objectProperty>> <<objectProperty>>

#hasTime

+hasQuantity

<<owlIndividual>> <<owlIndividual>>

mas11 :Mass o 8
iTemporalEntity

Figure 18 — Example representation of actual resgurce use (and consumpt

jon)

6.10.3 Formalization
Table 14 — Key classes.in the Resource pattern
Class Property Value restriction
Resource hasLocation only loc:Location
hasCapacity. exactly 1i72:Quantity
(functional)
capacitynUse exactly 1i72:Quantity
(functional)
hasAvailableCapacity exactly 1i72:Quantity
(functional)
participatesin only activity:Activity
hasAllocation only PlannedAllocation
DivisipleResource rdfs:subClassOf Resource
disjointWith NonDivisibleResource
NonD{visibleResource rdfs:subClassOf Resource
disjointWith DivisibleResource

PlannedAllocation

time:hasTime

exactly 1 time:TemporalEntity

forResource exactly 1 Resource
hasQuantity exactly 1i72:Quantity
forState exactly 1 activity:State
TerminalResourceState rdfs:subClassOf activity:TerminalState
hasQuantity only i72:Quantity
hasResource only Resource
hasAllocation only PlannedAllocation
ConsumeState rdfs:subClassOf TerminalResourceState
ProduceState rdfs:subClassOf TerminalResourceState

© ISO/IEC 2023 - All rights reserved

33

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Table 14 (continued)
Class Property Value restriction
UseState rdfs:subClassOf TerminalResourceState
ReleaseState rdfs:subClassOf TerminalResourceState

The properties in Table 15 are defined for use by other patterns.

Table 15 — Additional properties in the Resource pattern

Property Characteristic Value restriction (if applicable)
hasAsset

hasResource inverseProperty resourceOf

has Allocatior inverseProperty forState

6.11 Agentpattern

6.11.1 Gene

An Agent is dlefined in the context of an Activity that it affects or is affected by, or their role

an organizat
device.

6.11.2 Key ¢
The key class

— Agent: A
persons :

hasNam

resource
Reso
of ar
pers

performs: identifies activities that the Agent performs.

ral

on. An Agent can refer to something like a person, organization, software or mech

lasses and properties
in this pattern is formalized in Table 16.

n Agent affects, is affected by, or perfornmissome Activity(s). Examples of an Agent i
ind organizations. An Agent has the fellowing core properties:

p: an identifier for the Agent;
urce pattern, where the Agent would be considered to be a resource from the persp

Activity that uses it in.some way. For example, a construction activity may use
bns(s) and those persons would be considered a Resource for that Activity.

within
anical

hclude

Of: identifies what State the ‘agent may be a resource of. This is specified usipg the

ective
some

6.11.3 Formalization
Table 16 — Key classes in the agent pattern
Class Prgperty Value restriction
Agent rdfs:subClassOf <http://xmlns.com/foaf/spec/#term Agent>
genprop:hasName exactly 1 xsd:string
resource:resourceOf only resource:TerminalResourceState
performs only activity:Activity

Note that the term Agent defined in the foaf vocabulary referenced above is introduced to support
identification of the relationship (subclass of, a specialization) between the class Agent defined in this
document and the foaf vocabulary term <http://xmlns.com/foaf/spec/#term Agent>. The term from
the foaf vocabulary is not defined with any formal definitions and does not add anything to the formal
definition here, but enables mapping with other representations that use this term, such as the W3C
Recommendation “The Organization Ontology” which is a normative reference used in the Organization
Structure pattern.

34

© ISO/IEC 2023 - All rights reserved

http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

6.12 Organization Structure pattern

6.12.1 General

The representation of organization structure information shall conform to the ontology specified in the
W3C Recommendation “The Organization Ontology”. It defines a standard set of classes and properties
to describe organizations. It is included in its entirety with the prefix ‘org’.

In the W3C Organization ontology, an Organization may act as an agent and is comprised of a collection
of people, organized with some structure, and with some common goal. In this pattern, an Organization
is defined as a subclass of org:Organization with extensions and specializations relevant to this
documpent:

6.12.2 Key classes and properties

The k¢y classes are formalized in Table 17. In this subclause, a subset of the W3C .Organizagion Ontology
is replicated and specialized. This extension is needed to identify a formalvelationship between an
Orgarlization and an Agent.

— Otfganization: an Organization may act as an Agent and is comprised of a collectipn of people,
organized with some structure, and with some common goal.

6.12.3 Formalization

Table 17 — Key classes in the Orgdnjzation Structure pattern

Class Property Value restriction
Organjization rdfs:subClassOf agent:Agent
rdfs:subClassOf org:Organization

6.13 Agreement pattern

6.13.1 General

An agreement exists between two or more agents. It is established at some point in time and it may be
considered valid only in some Location and/or for some interval in time. An agreement mpy be defined
at vailying levels of detail, this is supported with the introduction of the ComplexAgreement and
AtomicAgreement class. A complex agreement may be decomposed into sub-agreementg, whereas an
atomif agreemenficannot. Similar to the approach taken for the representation of activities, a complex
agreement may.be decomposed into disjunctive or conjunctive sub-agreements. This allows for the
repregentationof both types of agreement composition. At their simplest level, the AtonjicAgreement
describes (a)commitment to some activity; this is captured with the commitsToActiviity property.
Finallyagreements involve some specification of rights or commitments of the involved pprties. This is
represented as a relationship between the Involved Agent and a particular activity. The precise nature
of the relationship indicates the type of agreement. The possible relationships are defined according
to the elements of the so-called primary rules[2% of the Hohfeldian analytical system,[21l (and their
opposites): claim and privilege.

6.13.2 Key classes and properties

The key classes and properties are formalized in Table 18 and Table 19, respectively. The class
Agreement has the following properties:

— involvesAgent: identifies the Agents that are party to the Agreement.
— validIn: identifies the Location where the Agreement is valid.

— establishedOn: specifies the Instant of time at which the Agreement was created.

© ISO/IEC 2023 - All rights reserved 35

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

— validFor: specifies the time Interval during which the Agreement is in force.

ComplexAgreement is a subclass of Agreement and has one additional property:

— hasSubAgreement: identifies two or more Agreements that comprise the Agreement.

Elements of the Hohfeldian analytical system are used to define the following sub-properties of the
inverse of involvesAgent (agentInvolvedIn) in order to represent the nature of the agreement between
two (or more) agents in greater detail:

— hasClaim: the hasClaim property indicates that an Agent is the beneficiary of an Activity fulfilled
by another Agent in the Agreement (i.e. the Agent with the duty to fulfil the Activity), e.g. payment

of wages

— hasNoCl
the desct

service grovided by another Agent (e.g. a person under the legal drinking age has no claim

services

— hasPrivilege: the hasPrivilege property indicates that an Agent is not required to ful

describe
(privileg

— hasDuty
Contrary
to includ

The relationd

opposites andl correlatives, as originally identified by Hohfeld:[21]

— IfagentA
— Ifagent 2
— Ifagent
— IfagentA

AtomicAgree

agreement. [particular, it identifies how Agents participating in the Agreement are involved:

— forActiv]
— inverse h
— inverse h

— inverse h

.. C .
PLUVISIUITI UL ST VILTS.

him: the hasNoClaim property indicates that an Agent has no claim on (i.e. hasmori
ibed Activity. For example, under certain circumstances an Agent can havenoe clai

provided by a bar).

 Activity. For example, if gratuities are left to a person’s discretionthen they have th
b) not to include a tip in their payment.

: the hasDuty property indicates that an Agent is required-to fulfil the described Ad
to the example above, if gratuities are mandatory, then-the person is required (has g
e the tip in their payment.

hip between these properties in a given Agreement can be summarized by the foll

hasClaim, then A lacks a hasNoClaim
hasPrivilege, then A lacks a hasDuty
hasClaim, then some agent B hasDuty
hasPrivilege, then some agent B hasNoClaim

ment is a subclass of Agreement. It has no decomposition and specifies the “essence

ty: identifies the)Activity the AtomicAgreement is for.
asClaim:dinks the Agreement to any Agent that has a claim.

asNo€laim: links the Agreement to any Agent that does not have a claim.

rht to)
m to a
Lo any

il the
e right

tivity.
duty)

pwing

" of an

asDuty: links the Agreement to any Agent that has a duty to perform the Activity.

— inverse hasPrivilege: links the Agreement to any Agent that has the privilege to perform the

Activity.

Figure 19 illustrates the use of the Agreement pattern to represent agreements at different levels of
detail. The example shown captures a complex DisjunctiveAgreement that can be decomposed into two
simple Agreements. One option (“agr0012”) describes “alice”’s right (claim) to have lawn maintenance
be performed by “bob”, (also read “bob”’s duty to perform lawn maintenance for “alice”).

36

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

<<owlClass>> <<owlClass>>

Interval Location

+validFor

+validIn

<<owlClass>>
<<owlClass>> 8!

<<objectProperty>> <<objectProperty>>

+establishedOn —owlClassos
<<objectProperty>> <<objectProperty>> Agent
<<o;?::f:;2§:;>m:nt +involvesAgent > <« —— — — _i
<<rdfsSubClassOf T<<rdf55"hC13550f I
] I
<<owlClass>> <<owlClass>> hasClaim |
ComplexAgreement AtomicAgreement <<objectProperty>>
+hasNoClaim |
<<objectProperty>> |
+hasDuty
<<objectProperty>> |
f t N /N +hasrivilege |
[«r TassOf- |a,~sof—| | <<objectProperty>> |
<<owlClass>> <<owlClass>> | |
DisjunctiveAgreement ConjunctiveAgreement | |
I I
I <<owlClass>> l
/[\ | +forActivity” l
<<objectProperty>> |
<<rdfType>> | |
—— — — —<<rdfType>»— |
l l II\ <<rdffype>>
<<owlIndividual>> | | (R e
sexaOLDincie I I it
I I
N | | |
ivi j perty>> i " ivi +hasClaim i |
2gr001L:Atomic agro012:Atomic | <<objectProperty>> | - alice:Agent <<owlindividual>>
Agreement Agreement +hasDuty 1;
<<objectProperty>> hobiAgent P
+fnrActiv1ty/]\
<<objectProperty>>
Figure 19 — Example'use of the Agreement pattern
6.13.3 Formalization
Table 18 — Key classes in the Agreement pattern
Class Property Value restriction
Agreement involvesAgent min 2 Agent
validln only loc:Location
establishedOn only time:Instant
validFor only time:Interval
ComplexAgreement rdfs:subClassOf Agreement
hasSubAgreement min 2 Agreement
AtomicAgreement rdfs:subClassOf Agreement
hasSubAgreement exactly 0 Agreement
forActivity min 1 Activity
inverse hasDuty only Agent
inverse hasPrivilege only Agent
inverse hasClaim only Agent
inverse hasNoClaim only Agent
disjointWith ComplexAgreement

© ISO/IEC 2023 - All rights reserved

37

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Table 18 (continued)
Class Property Value restriction
Agent rdfs:subClassOf agent:Agent
hasClaim only AtomicAgreement
hasNoClaim only AtomicAgreement
hasDuty only AtomicAgreement
hasPrivilege only AtomicAgreement
DisjunctiveAgreement rdfs:subClassOf ComplexAgreement
disjointWith ConjunctiveAgreement
ConjunctiveAgreement rdfs:subClassOf ComplexAgreement
disjointWith DisjunctiveAgreement

Table 19 — Key properties in the Agreement pattern

Property Characteristic Value (if applicable)
hasClaim rdfs:subPropertyOf agentInvolvedIn
hasNoClaim rdfs:subPropertyOf agentlnvolvedIn
hasDuty rdfs:subPropertyOf agentlnvolvedIn
hasPrivilege rdfs:subPropertyOf agentlnvolvedin
agentlnvolvedIn inverseOf involvesAgent

6.14 Provel

6.14.1 Gene

The concept
important to
a consistent
representing
“PROV-0: The
properties fo

6.14.2 Key ¢

The key class
with specialj
order to forn
Without this
PROV-0 with

nlance pattern

ral

of provenance is important for mafiy applications in the smart city domain. It ig

represent the origin of a particular record, document or other object. To do {
way requires a mechanism téJrepresent the provenance of objects. The ontolo
provenance shall conform/to the ontology specified in the W3C Recommen
PROV Ontology”. PROV-0.is‘a W3C standard that defines an appropriate set of class
I the representation of provenance information in any domain.

lasses and properties

bs are formalized in Table 20. The core classes of Agent and Activity in PROV-0 are ext
zed classés (subclasses). These classes extend the original classes defined in PRO
halize_the’relationship with the Agent and Activity patterns defined in this doct
exténsion, there would be nothing to connect the Agent and Activity classes defi
thie’Agent and Activity classes defined in the Agent and Activity patterns, respectiv

often
his in
by for
Hation
bs and

ended
V-0 in
ment.
hed in

bly.

6.14.3 Formalization

Table 20 — Key classes in the Provenance pattern

Class Property Value
Agent rdfs:subClassOf prov:Agent
rdfs:subClassOf agent:Agent
Activity rdfs:subClassOf prov:Activity
rdfs:subClassOf activity:Activity
38 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Annex A
(informative)

Implementation alternatives for additional change semantics

It can be desirable to support inferences regarding the inheritance of invariant properties. In such

cases, a rule of the following form may be specified, property, where invariantProperty

represents a

placehelderfor-the-property

FirstManifestation(?x) & invariantProperty(?x,?y) &

invaripntProperty(?n,?y)

The SWRL rules languagel22] is used above as an example. However, in practice,thé chosenr
will vary depending on the intended implementation. This asserts that all(sttbsequent m
should inherit the invariant property from the first manifestation. Returning to the exan
expregsions asserted for Arc in the adapted representation now apply-to each snapshot]
other words, at any point in time an Arc should have exactly one TThvalue, exactly one st
exactlly one end Node. If startNode and endNode are identified as-invariant properties, the
be anpotated as such in order to be interpreted correctly. As described above, a rule of
form ¢ould also be asserted to support this interpretation:

FirstManifestation(?x) & startNode(?x,?y) & precedesManifestation(?x,?n) -> startNode(?

FirstManifestation(?x) & endNode(?x,7y) & precedesManifestation(?x,7n) -> endNode(?n,?

precedesManifestation(?x,7n)

lilles language
anifestations
ple, the class
of an Arc. In
art Node and
h they should
the following

n,?y)
V)

Note that with this approach, any property thatds identified as invariant is defined so universally. This

canr

ed as variant

quire the definition of class-specific properties in cases where a property is identif

for ong class, but invariant for another (forexample, the height of a person vs. the height

In ord
The u

r to maintain decidability, OWEZ restricts the use of some class expressions to sim
e of object property chaining results in all invariant properties being non-simp
class expressions (e.g. cardinality) for invariant properties will not be supporte

e (precedesManifestation) o invariantProperty -> invariantProperty

d, the Change pattern proposes the use of a property annotation, and possibly suppl
port themnecessary inference in implementation.

a table)

0 .
e properties.

e. Therefore,
1 with OWL2

ibns using the

bmental rules

hnifestations,

ain, and the

constraints could be spec1f1ed for the original property. Returmng to the Arc example described in 6.5,

the resulting alternative representation would be as shown in Tables A.1 and A.2.

Table A.1 — Formalization of Arc with separate inherited properties

Class Property Value

Arc rdfs:subClassOf change:Manifestation

arcHasInheritedStartNode exactly 1 Node

arcHasInheritedEndNode exactly 1 Node

hasTTI exactly 1 TTI

Arc and FirstManifestation startNode exactly 1 Node

© ISO/IEC 2023 - All rights reserved

39

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

ISO/IEC 5087-1:2023(E)

Table A.1 (continued)
Class Property Value
Arc and FirstManifestation endNode exactly 1 Node
Table A.2 — Formalization of separate inherited properties
Property Characteristic Value (if applicable)
arcHasInheritedStartNode rdfs:subPropertyOf inverse(precedesManifestation) o startNode
arcHasInheritedEndNode rdfs:subPropertyOf inverse(precedesManifestation) o endNode

This approad
However, it h

40

h requires the definition of an additional property and some additional asseftions.
hs the advantage of being fully expressible within OWL 2.

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=747e7f355c2469eb7c761d584aa04343

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviated terms and namespaces
	5 General
	5.1 Unique identifiers
	5.2 Reference to existing patterns

	6 Foundational ontologies
	6.1 General
	6.2 Generic properties
	6.2.1 General
	6.2.2 Key Properties

	6.3 Mereology pattern
	6.3.1 General
	6.3.2 Key classes and properties
	6.3.3 Formalization

	6.4 City Units Pattern
	6.4.1 General
	6.4.2 Key classes and properties
	6.4.3 Formalization

	6.5 Time Pattern
	6.5.1 General

	6.6 Change pattern
	6.6.1 General
	6.6.2 Key classes and properties
	6.6.3 Formalization

	6.7 Location pattern
	6.7.1 General
	6.7.2 Key classes and properties
	6.7.3 Formalization

	6.8 Activity pattern
	6.8.1 General
	6.8.2 Key classes and properties
	6.8.3 Formalization

	6.9 Recurring Event pattern
	6.9.1 General
	6.9.2 Key classes and properties
	6.9.3 Formalization

	6.10 Resource pattern
	6.10.1 General
	6.10.2 Key classes and properties
	6.10.3 Formalization

	6.11 Agent pattern
	6.11.1 General
	6.11.2 Key classes and properties
	6.11.3 Formalization

	6.12 Organization Structure pattern
	6.12.1 General
	6.12.2 Key classes and properties
	6.12.3 Formalization

	6.13 Agreement pattern
	6.13.1 General
	6.13.2 Key classes and properties
	6.13.3 Formalization

	6.14 Provenance pattern
	6.14.1 General
	6.14.2 Key classes and properties
	6.14.3 Formalization

	Annex A (informative) Implementation alternatives for additional change semantics
	Annex B (informative) Relationship to existing standards
	Annex C (informative) Extended recurring event example
	Annex D (informative) Location of pattern implementations
	Bibliography

