
Information technology — Linear tape
file system (LTFS) Format specification
Technologies de l'information — Spécification du format de système
de fichier à bande magnétique

© ISO/IEC 2021

INTERNATIONAL
STANDARD

ISO/IEC
20919

Reference number
ISO/IEC 20919:2021(E)

Second edition
2021-07

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

﻿

ISO/IEC 20919:2021(E)
﻿

ii� © ISO/IEC 2021 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

© ISO/IEC 2021 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of document should be noted (see www.iso.org/directives or
www.iec.ch/members_experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details
of any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent
declarations received (see patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
 www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by the Storage Networking Industry Association (SNIA) (as Linear Tape File
System (LTFS) Format Specification, Version 2.5) and drafted in accordance with its editorial rules. It was
adopted, under the JTC 1 PAS procedure, by Joint Technical Committee ISO/IEC JTC 1, Information
technology.

This second edition cancels and replaces the first edition (ISO/IEC 20919:2016), which has been
technically revised.

The main changes compared to the previous edition are as follows:

— Volume Advisory Locking — a method of marking a volume as locked against future modification;

— Percent Encoding — method of including previously reserved characters in names of files and
directories;

— Incremental Indexes — a method of recording a smaller index containing only changes since the last
index;

— File hashes — a method of recording fils hash information in the index in an interchangeable manner;

— Open For Write — a method of noting files in the index which were still open at the time the index is
written to tape.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-
committees.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://www.iso.org/directives-and-policies.html
http://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://patents.iec.ch/
https://www.iso.org/foreword-supplementary-information.html
http://www.iec.ch/understanding-standards
https://www.iso.org/members.html
http://www.iec.ch/national-committees
http://www.iec.ch/national-committees
https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

2 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

USAGE
Copyright © 2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the
property of their respective owners.

The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with
no alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion

hereof) is reproduced, shall acknowledge the SNIA copyright on that material, and shall credit
the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document or
any portion thereof, or distribute this document to third parties. All rights not explicitly granted are
expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested
by e-mailing tcmd@snia.org. Please include the identity of the requesting individual and/or company
and a brief description of the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available
under the following license:

BSD 3-Clause Software License

Copyright (c) 2020, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names
of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 3
Version 2.5.1
© ISO 2021 – All rights reserved

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this specification, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this specification.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

4 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Revision History

Revision Date Sections Originator Comments
2.3.0 rev 1 3/18/14 Add section F.3 SNIA LTFS TWG Edits during TWG F2F
2.3.0 rev 2 12/15/14 Add Changes per

TWG
SNIA LTFS TWG Edits adding Volume Advisory

Locking, Volume UUID and LTFS
Name Encoding

2.3.0 rev 3 3/18/15 Add changes per
TWG

SNIA LTFS TWG Edits Advisory Locking,
Sha512,Media Pool Extended
Attributes &MAM

2.3.0 rev 4 3/24/15 Add edits from
TWG review

SNIA LTFS TWG Cleanup some reference errors
and minor editorial changes

2.3.0 rev 5 9/15/15 Add example 3 to
Appendix F.1.6

SNIA LTFS TWG Added additional description
and example to describe
reclamation of spanned file
segments

2.3.0 rev 6 9/15/15 Add edits from
TWG review

SNIA LTFS TWG Revised wording in Appendix
F.1.6 example 3

2.4.0 rev 0 11/14/15 Add work from
TWG

SNIA LTFS TWG Added changes listed in Change
history

2.4.0 rev 1 1/12/17 Add edits from
TWG review

SNIA LTFS TWG Cleaned up some hyperlinks
and minor editorial changes

2.4.0 rev 2 1/17/17 Add edits from
TWG F2F

SNIA LTFS TWG Minor editorial changes

2.4.0 rev3 6/12/17 Add edits from
TWG

SNIA LTFS TWG Added Advisory Locking
changes

2.4.0 rev 4 6/13/17 Add Media Pool
changes per TWG

SNIA LTFS TWG Added additional extended
attributes for Media Pool

2.4.0 rev 5 6/19/17 Add edits per
TWG

SNIA LTFS TWG Cleaned up a couple of
typographical errors

2.4.0 rev 6 10/10/17 Add edits per
TWG

SNIA LTFS TWG Incorporated public review
editorial comments

2.4.0 rev 7 10/18/17 Add edits per
TWG

SNIA LTFS TWG Minor editorial changes

2.4.0 rev 8 10/24/17 Annex G SNIA LTFS TWG Minor editorial change
2.4.0 rev 9 11/14/17 Annex G SNIA LTFS TWG Minor editorial change
2.5.0 rev 0 12/04/18 Sections 5 & 9,

Annex B, etc.
SNIA LTFS TWG Add incremental indexes;

changes for sync behavior
2.5.0 rev 1 02/11/19 Add Annex H;

edits per TWG
SNIA LTFS TWG New Annex describing

incremental indexes
2.5.0 rev 2 04/02/19 Section 9.2;

Annex H
SNIA LTFS TWG Corrected typos in example

XML, updated flowchart in
Annex H to clarify intent

2.5.1 rev 0 08/18/20 Section 3;
Annex I

SNIA LTFS TWG Editorial changes to References
per feedback from ISO

Suggestion for changes or modifications to this document should be sent to the SNIA Linear Tape File
System Technical Work Group at http://www.snia.org/feedback/.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

http://www.snia.org/feedback/
https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 5
Version 2.5.1
© ISO 2021 – All rights reserved

Changes between v1.0 and v2.0.0

• Incremented version number to 2.0.0 and updated date to March 11, 2011.

• Improvements in specification text to remove ambiguity and clarify intention of the specification.
These changes were made at several locations throughout the document.

• Improvements to clarify description of MAM parameters in Section 10 Medium Auxiliary Memory.

• Removed reference to a specific version of the Unicode standard in Section 7.5 Name pattern
format. This removes any requirement to use specific versions of Unicode support code in an
implementation.

• Improved description of Name pattern format to remove ambiguity in Section 7.5 Name pattern
format.

• Added description of LTFS Format specification version numbering in Section 2.1 Versions.

• Updated XML Schema for Label and Index to match version number format in Annex A and
Annex B.

• Added specification of minimum and recommended blocksize value for LTFS Volumes to Section
8.1.2 LTFS Label.

• Added definition of allowed version numbers to Section 8.1.2 LTFS Label and Section 9.2 Index.

• Added definition of fileoffset tag in Section 9.2 Index.

• Extended description in Section 6 Data Extents to support addition of fileoffset tag and associated
functionality.

• Added definition of highestfileuid tag in Section 9.2 Index.

• Added definition of fileuid tag in Section 9.2 Index.

• Added definition of backuptime tag in Section 9.2 Index.

• Incremented version number in Application Client Specific Information (ACSI) structure shown in
Section 10.3 Use of Volume Coherency Information for LTFS. This increment allows identification
of LTFS Volumes written with a LTFS v1.0 compliant implementation. A widely used v1.0
implementation wrote ambiguous ACSI values due to an implementation bug.

• Added definition of extended attributes in the ltfs.* namespace in Annex C.

• Added description for handling unknown XML tags in Index to Section 9.2.13 Managing LTFS
Indexes.

Changes between v2.0.0 and v2.0.1

• Incremented specification version number to 2.0.1.

• Updated specification date to August 17, 2011.

• Expanded historical record of changes between revisions of LTFS Format Specification.

• Improved description of constraints for two Indexes having the same generation number in
Section 5.4.1 Generation Number to make it clear that differences in access time values is
permitted between Indexes that are otherwise except for self pointer and index pointer values.

• Added note in Section 5.4.1 Generation Number to explicitly state that Index generation numbers
may increase by integer values other than 1.

• Expanded description of the ltfs.sync extended attribute in Annex C . The expanded description
explicitly states that this extended attribute triggers a sync of the in-memory data to the storage
media. That is, the operation is analogous to a POSIX sync operation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

6 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Changes between v2.0.1 and v2.1.0

• Incremented specification version number to 2.1.0.

• Updated specification date to October 18, 2012.

• Added definition of symlink tag in Section 9.2 Index.

• Added example of symlink tag use in Annex E.

• Added symlink tag to Annex B.

• Added description of “ltfs.vendor.X.Y” extended attribute namespace in Annex C .

• Added description of software metadata section in Annex C.

• Added description of drive metadata section in Annex C.

• Added ”ltfs.labelVersion” extended attribute in Annex C.

• Added ”ltfs.indexVersion” extended attribute in Annex C

• Added ”ltfs.mediaEncrypted” extended attribute in Annex C .

• Improved description of ”ltfs.mediaStorageAlert” extended attribute in Annex C.

Changes between v2.1.0 and v2.2.0

• Incremented specification version number to 2.2.0.

• Updated specification date to July 16, 2013.

• Changed “2010” to “2013” in XML examples.

• Editorial Cleanup.

• Changed “extentinfo” definition in Section 9.2 Index.

• Changed “symlink” definition in Section 9.2 Index.

• Added additional paragraph to “symlink” definition in Section 9.2 Index.

• Added general comments at start of Section 10 Medium Auxiliary Memory.

• Added Section 10.4 Use of Host-type Attributes for LTFS.

• Removed Section 9 Certification from document.

• Added “ltfs.mamBarcode” extended attribute in Volume Metadata.

• Added “ltfs.mamApplicationVendor” extended attribute in Volume Metadata.

• Added “ltfs.mamApplicationVersion” extended attribute in Volume Metadata.

• Added “ltfs.mamApplicationFormatVersion” extended attribute in Volume Metadata.

• Added new Annex F Interoperability Recommendation and added File Spanning and File
Permissions subsections

Changes between v2.2.0 and 2.3.0 rev 1

• Add section F.3 Storing File Hash Values in LTFS

• Add Section 10.5 Volume Advisory Locking to Section 10 Medium Auxiliary Memory

• Added Volume UUID to Section 10.4 and Section 10.4.8

• Added LTFS Name Encoding to Sections 3.1, 7.4, 9.2.1 and 9.2.2

• Added SHA512 to Section F.3 Storing Hash Values in LTFS

• ISO document formatting changes

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 7
Version 2.5.1
© ISO 2021 – All rights reserved

• Add Media Pool Extended Attributes and MAM

Changes between v2.3.0 rev 1 and v2.4.0

• Incremented specification version number to 2.4.0.

• Added new text to Section 10.5 Volume Advisory Locking

• Added new text to Annex C.4 VolumeMetadata, ltfs.volumeLockState

• Added new text for “openforwrite” to Section 9.2.9

• Added new entry to the file element list in Annex B

• Added new descriptive text to Annex E

• Added new example file “partialfile.bin” to Annex E

• Updated the compliance statement to “version 2.4.0” in Section 7.4 Name Format

• Added new percentencoding text to Section 7.4 Name Format

• Removed percentencoding definition from Section 9.2.7

• Removed percentencoding definition from Section 9.2.9

• Added new text to symlink definition in Section 9.2.9

• Removed percentencoding paragraph(s) from Section 9.2.10

• Removed the percentencoded entry from the directory, file and extended attributes sections in

Annex B

• Changed the name definition in the directory section of Annex B

• Changed the name definition in the file section of Annex B

• Changed the symlink definition in the file section of Annex B

• Changed the key definition in the extendedattributes section of Annex B

• Added new NameType definition to Annex B

• Changed the entry for fileuid “10” in Annex E

Changes between v2.4.0 and v2.4.0 rev 1

• Incremented specification version number to 2.4.0 rev 1.

• Changed version from 2.3.0 to 2.4.0 in Section 2.1 Versions

• Changed version from 2.3.0 to 2.4.0 in Annex E

• Cleaned up some hyperlinks and minor editorial changes

Changes between v2.4.0 rev 1 and v2.4.0 rev 2

• Changed version from 2.3.0 to 2.4.0 throughout document except for Section 9.2.19

• Changed updatetime in Annex E to reflect correct date/time value for example shown

• Changed highestfileuid in Annex E to reflect correct value for example shown

• Changed lockType to locktype throughout document

• Changed NameType to nametype throughout document

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

8 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Changes between v2.4.0 rev 2 and v2.4.0 rev 3

• Updated the definition of the volumeLockState virtual extended attribute in Section 10.5 and
Annex C.4

Changes between v2.4.0 rev 3 and v2.4.0 rev 4

• Updated the definition of the Media Pool MAM attribute in Section 10.4 and Annex F.4.1.1

Changes between v2.4.0 rev 4 and v2.4.0 rev 5

• Fixed a couple of typographical errors

Changes between v2.4.0 rev 5 and v2.4.0 rev 6

• Corrections to Annex B – XML Schema

• Added Annex G – character representations

• Clarified in Section 7.4 that percent encoding does not apply to Table 13, and added reference to
Annex G

• Added two further IBM contributors to the Acknowledgements

Changes between v2.4.0 rev 6 and v2.4.0 rev 7

• Changed title and reference of table G.1 in Annex G – applies to 2.3 and later

• Added clarifying note for symlinks in Annex G

Changes between v2.4.0 rev 7 and v2.4.0 rev 8

• Changed column heading in tables G.1 and G.2 to “symlink target name”

• Improved wording of Note 3 in Annex G

Changes between v2.4.0 rev 8 and v2.4.0 rev 9

• Changed column heading in tables G.1 and G.2 to “File name, directory name, filename pattern”

• Added corresponding Note 4 in Annex G

Changes between v2.4.0 rev 9 and v2.5.0

• Incremented specification version number to 2.5.0.

• Added new text to describe Full and Incremental Indexes, in particular in 5.4 Index Layout and 9
Index Format.

• Added new virtual extended attributes related to Incremental Indexes in C.4.

• Specify required behavior in response to writing ltfs.commitMessage and ltfs.sync VEAs in
Annex C.

Changes between v2.5.0 rev 0 and v2.5.0 rev 1

• Added new informative Annex H describing background information on Incremental Indexes

• Editorial changes to clarify required vs optional elements in Incremental Indexes in 9 Index
Format.

• Clarified that the required behavior for ltfs.commitMessage and ltfs.sync applies only to
implementations supporting those VEAs.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 9
Version 2.5.1
© ISO 2021 – All rights reserved

Changes between v2.5.0 rev 1 and v2.5.0 rev 2

• Corrected typos in Incremental Indexes example XML in 9.2.2 and 9.2.12

• Corrected typos in Annex H and amended flowchart H.1 to clarify the intent

Changes between v2.5.0 rev 2 and v2.5.1 rev 0

• Moved informative references from Section 3 to new Annex I Bibliography

• Amended all references to SPC-3 / SPC-4 to SPC-5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

10 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Acknowledgements
The SNIA LTFS Technical Working Group, which developed and reviewed this specification, would
like to recognize the significant contributions made by the following members:

EMC Corporation........................ Don Deel
Hewlett Packard Enterprise Chris Martin
IBM.. David Pease
.. Ed Childers
.. Takeshi Ishimoto
.. Atsushi Abe
NetApp...................................... David Slik
Oracle Corporation..................... Matthew Gaffney
... Carl Madison
Quantum Corporation........... Paul Stone
………………………………………………. Jim Wong
SNIA.. Arnold Jones

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 11
Version 2.5.1
© ISO 2021 – All rights reserved

Contents

1 Introduction .. 15

2 Scope .. 16

2.1 Versions .. 16

2.2 Conformance ... 17

3 Normative references .. 18

4 Definitions and Acronyms .. 19

4.1 Definitions .. 19

4.2 Acronyms .. 21

5 Volume Layout ... 22

5.1 LTFS Partitions .. 22

5.2 LTFS Constructs ... 22

5.3 Partition Layout ... 23

5.4 Index Layout .. 24

6 Data Extents ... 27

6.1 Extent Lists .. 27

6.2 Extents Illustrated .. 27

6.3 Files Illustrated .. 29

7 Data Formats .. 32

7.1 Boolean format .. 32

7.2 Creator format ... 32

7.3 Extended attribute value format .. 32

7.4 Name format .. 32

7.5 Name pattern format ... 34

7.6 String format .. 34

7.7 Time stamp format .. 34

7.8 UUID format .. 35

8 Label Format .. 36

8.1 Label Construct ... 36

9 Index Format .. 39

9.1 Index Construct ... 39

9.2 Index .. 39

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

12 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

10 Medium Auxiliary Memory .. 53

10.1 Volume Change Reference ... 53

10.2 Volume Coherency Information ... 54

10.3 Use of Volume Coherency Information for LTFS .. 5433

10.4 Use of Host-type Attributes for LTFS .. 55

10.5 Volume Advisory Locking .. 57

Annex A (normative) LTFS Label XML Schema ... 59

Annex B (normative) LTFS Index XML Schemas ... 61

B.1 LTFS Full Index XML Schema .. 61

B.2 LTFS Incremental Index XML Schema ... 63

Annex C (normative) Reserved Extended Attribute definitions ... 66

C.1 Software Metadata .. 66

C.2 Drive Metadata .. 66

C.3 Object Metadata .. 66

C.4 Volume Metadata .. 67

C.5 Media Metadata ... 69

Annex D (informative) Example of Valid Simple Complete LTFS Volume 72

Annex E (informative) Complete Example LTFS Full Index ... 73

Annex F (normative) Interoperability Recommendations ... 78

F.1 Spanning Files across Multiple Tape Volumes in LTFS ... 78

F.2 File Permissions in LTFS .. 83

F.3 Storing File Hash Values in LTFS ... 86

F.4 LTFS Media Pools ... 87

Annex G (informative) Character representations .. 89

Annex H (informative) Incremental Indexes ... 92

H.1 Background ... 92

H.2 Backwards Compatibility ... 92

H.3 Traversing the Index Back Pointer Chain ... 93

H.4 Incremental Index Format ... 93

H.5 Processing Incremental Indexes ... 95

H.6 Miscellaneous .. 96

Annex I (informative) Bibliography ... 98

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 13
Version 2.5.1
© ISO 2021 – All rights reserved

List of Figures
Figure 1 — LTFS Partition ... 22

Figure 2 — Label Construct ... 22

Figure 3 — Index Construct ... 23

Figure 4 — Partition Layout ... 23

Figure 5 — Complete partition containing data .. 24

Figure 6 — Back Pointer example ... 25

Figure 7 — Back Pointer example for Incremental Indexes 26

Figure 8 — Extent starting and ending with full block 28

Figure 9 — Extent starting with full block and ending with fractional block 28

Figure 10 — Extent starting and ending in mid-block 28

Figure 11 — File contained in a single Data Extent ... 29

Figure 12 — File contained in two Data Extents .. 29

Figure 13 — Shared Blocks example .. 30

Figure 14 — Sparse files example ... 30

Figure 15 — Shared data example .. 31

Figure 16 — Label construct .. 36

Figure 17 — Index Construct ... 39

Figure D.1 — Content of a simple LTFS volume ... 72

Figure H.1 — Processing an Incremental Index (flowchart) 97

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

14 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

List of Tables
Table 1 — Version elements .. 16

Table 2 — Version comparisons .. 16

Table 3 — Extent list entry starting and ending with full block 28

Table 4 — Extent list entry starting with full block and ending with fractional
block ... 28

Table 5 — Extent list entry starting and ending in mid-block 28

Table 6 — Extent list entry for file contained in a single Data Extent 29

Table 7 — Extent list entry for a file contained in two Data Extents 29

Table 8 — Extent lists for Shared Blocks example .. 30

Table 9 — Extent list for sparse files example ... 31

Table 10 — Extent lists for shared data example .. 31

Table 11 — Creator format definitions ... 32

Table 12 — Reserved characters for name format .. 33

Table 13 — Characters which should be avoided for name format 33

Table 14 — Name percent-encoding ... 33

Table 15 — Time stamp format ... 35

Table 16 — VOL1 Label Construct ... 36

Table 17 — Volume Coherency Information .. 54

Table 18 — ACSI format for LTFS ... 54

Table 19 — Relevant Host-type Attributes for LTFS .. 55

Table 20 — Example of Host-type Attributes ... 57

Table 21 — Volume Locked MAM Attribute ... 58

Table 22 — Volume Locked MAM Attribute Values ... 58

Table F.1 — Hash Types ... 86

Table G.1 — Character representations : version 2.3 or later 89

Table G.2 — Character representations : version 2.2 or earlier 90

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 15
Version 2.5.1
© ISO 2021 – All rights reserved

1 Introduction
This document defines a Linear Tape File System (LTFS) Format separate from any
implementation on data storage media. Using this format, data is stored in LTFS Volumes. An
LTFS Volume holds data files and corresponding metadata to completely describe the directory
and file structures stored on the volume.

The LTFS Format has these features:

• An LTFS Volume can be mounted and volume content accessed with full use of the data
without the need to access other information sources.

• Data can be passed between sites and applications using only the information written to
an LTFS Volume.

• Files can be written to, and read from, an LTFS Volume using standard POSIX file
operations.

The LTFS Format is particularly suited to these usages:

• Data export and import.

• Data interchange and exchange.

• Direct file and partial file recall from sequential access media.

• Archival storage of files using a simplified, self-contained or “self-describing” format on
sequential access media.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

16 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

2 Scope
This document defines the LTFS Format requirements for interchanged media that claims LTFS
compliance. Those requirements are specified as the size and sequence of data blocks and file marks
on the media, the content and form of special data constructs (the LTFS Label and LTFS Index), and
the content of the partition labels and use of MAM parameters.

The data content (not the physical media) of the LTFS format shall be interchangeable among all data
storage systems claiming conformance to this format. Physical media interchange is dependent on
compatibility of physical media and the media access devices in use.

NOTE: This document does not contain instructions or tape command sequences to build the LTFS structure.

2.1 Versions
This document describes version 2.5.0 of the Linear Tape File System (LTFS) Format Specification.

The version number for the LTFS Format Specification consists of three integer elements separated
by period characters of the form M.N.R, where M, N and R are positive integers or zero. Differences
in the version number between different revisions of this specification indicate the nature of the
changes made between the two revisions. Each of the integers in the format specification are
incremented according to Table 1.

Table 1 — Version elements

Element Description
M Incremented when a major update has been made to the LTFS Format

Specification. Major updates are defined as any change to the on-media format or
specification semantics that are expected to break compatibility with older
versions of the specification.

N Incremented when a minor update has been made to the LTFS Format
Specification. Minor updates are defined as any change to the on-media format or
specification semantics that is not expected to break compatibility with older
versions of the specification that have the same value for M in the version
number.

R Incremented when textual revisions are made to the LTFS Format Specification.
Textual revisions are defined as revisions that improve the clarity of the
specification document without changing the intent of the document. By definition,
minor changes do not alter the on-media format or specification semantics.

NOTE 1: When any element of the specification version number is incremented, all sub-ordinate elements to the right are reset
to zero. For example, if the version is 1.0.12 and N is incremented to 1, then R is set to zero resulting in version 1.1.0.

NOTE 2: The first public version of this document used version number 1.0. This value should be interpreted as equivalent to
1.0.0 in the version numbering defined in this document.

The result of comparison between two LTFS version numbers MA.NA.RA and MB .NB .RB is defined in
Table 2.

Table 2 — Version comparisons

Conditional Description
MA < MB MA.NA.RA is an earlier version than MB .NB .RB .
MA = MB and
MA < NB

MA.NA.RA is an earlier version than MB .NB .RB .

MA = MB and
NA = NB and
RA < RB

MA.NA.RA is an earlier version than MB .NB .RB . However, as defined
above, changes that result only in a different R value are descriptive
changes in the specification rather than on media changes.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 17
Version 2.5.1
© ISO 2021 – All rights reserved

2.2 Conformance
Recorded media claiming conformance to this format shall be in a consistent state when interchanged
or stored. See Section 4.1.4.

Any implementation conforming to this specification should be able to correctly read Label and Index
structures from all prior versions of this specification and write Label and Index structures conforming
to the descriptions in this document. The current Label and Index structures are defined in Section 8
Label Format and in Section 9 Index Format.

NOTE: Where practical, any implementation supporting a given version value for M should endeavor to support LTFS volumes
with version numbers containing higher values for N and R than those defined at the time of implementation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

18 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

3 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 14776-455, Information Technology - Small Computer System Interface (SCSI) – Part 455:
SCSI Primary Commands - 5 (SPC-5) [ANSI INCITS.502-219]

SSC-4 SCSI Stream Commands – 4 (SSC-4) [ANSI INCITS 516-2013]

ISO 8601:2004 Data elements and interchange formats – Information interchange – Representation
of dates and times – (UTC)

ISO/IEC 10646:2012: Information technology - Universal Coded Character Set (UCS) (UTF-8)

IETF RFC 4648, The Base16, Base32, and Base64 Data Encodings, http://www.ietf.org/rfc/rfc4648.txt

IETF RFC 4122, Universally Unique Identifier (UUID) URN Namespace
http://www.ietf.org/rfc/rfc4122.txt

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt

ANSI X3.27-1978 American National Standard Magnetic Tape Labels and File Structure for
Information

W3C - Extensible Markup Language (XML) http://www.w3.org/XML

OSF CDE 1.1, Remote Procedure Call – Universal Unique Identifier (UUID)
http://pubs.opengroup.org/onlinepubs/9629399/toc.pdf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/XML
http://pubs.opengroup.org/onlinepubs/9629399/toc.pdf
https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 19
Version 2.5.1
© ISO 2021 – All rights reserved

4 Definitions and Acronyms
For the purposes of this document the following definitions and acronyms shall apply.

4.1 Definitions
4.1.1
Block Position
The position or location of a recorded block as specified by its LTFS Partition ID and logical block
number within that partition.

The block position of an Index is the position of the first logical block for the Index.

4.1.2
Complete Partition
An LTFS partition that consists of an LTFS Label Construct and a Content Area, where the last construct
in the Content Area is an Index Construct.

4.1.3
Content Area
A contiguous area in a partition, used to record Index Constructs and Data Extents.

4.1.4
Consistent State
A volume is consistent when both partitions are complete and the last Index Construct in the Index
Partition has a back pointer to the last Full Index Construct in the Data Partition.

4.1.5
Data Extent
A contiguous sequence of recorded blocks.

4.1.6
Data Partition
An LTFS partition primarily used for data files.

4.1.7
File
A group of logically related extents together with associated file metadata.

4.1.8
Filesystem sync
An operation during which all cached file data and metadata is flushed to the media.

4.1.9
Full Index
A data structure that describes all valid data files in an LTFS volume. The Full Index is an XML document
conforming to the XML schema shown in Annex B (normative) LTFS Index XML Schema.

4.1.10
Generation number
A positive decimal integer which shall indicate the specific generation of an Index within an LTFS
volume.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

20 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

4.1.11
Incremental Index
A data structure that describes changes made to the LTFS volume since the last index was written. The
Incremental Index is an XML document conforming to the XML schema shown in Annex B (normative)
LTFS Index XML Schema.

4.1.12
Index
Either a Full Index or an Incremental Index.

4.1.13
Index Construct
A data construct comprised of an Index and file marks.

4.1.14
Index Partition
An LTFS partition primarily used to store Index Constructs and optionally data files.

4.1.15
Label Construct
A data construct comprised of an ANSI VOL1 tape label, LTFS Label, and tape file marks.

4.1.16
Linear Tape File System (LTFS)
This document describes the Linear Tape File System Format.

4.1.17
LTFS Construct
Any of three defined constructs that are used in an LTFS partition. The LTFS constructs are: Label
Construct, Index Construct, and Data Extent.

4.1.18
LTFS Label
A data structure that contains information about the LTFS partition on which the structure is stored. The
LTFS Label is an XML document conforming to the XML schema shown in Annex A (normative) LTFS
Label XML Schema.

4.1.19
LTFS Partition
A tape partition that is part of an LTFS volume. The partition contains an LTFS Label Construct and a
Content Area.

4.1.20
LTFS Volume
A pair of LTFS partitions, one Data Partition and one Index Partition, that contain a logical set of files
and directories. The pair of partitions in an LTFS Volume shall have the same UUID. All LTFS partitions
in an LTFS volume are related partitions.

4.1.21
Medium Auxiliary Memory
An area of non-volatile storage that is part of an individual storage medium. The method of access to
this non-volatile storage is standardized as described in the SPC-5 standard.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 21
Version 2.5.1
© ISO 2021 – All rights reserved

4.1.22
Partition Identifier (Partition ID)
The logical partition letter to which LTFS data files and Indexes are assigned.

The linkage between LTFS partition letter and physical SCSI partition number is determined by the
SCSI partition in which the LTFS Label is recorded. The LTFS partition letter is recorded in the LTFS
Label construct, and the SCSI partition number is known by the SCSI positional context where they
were read/written.

4.1.23
Sparse file
A file that has some number of empty (unwritten) data regions. These regions are not stored on the
storage media and are implicitly filled with bytes containing the value zero (0x00).

4.1.24
UUID
Universally unique identifier; an identifier use to bind a set of LTFS partitions into an LTFS volume.

4.1.25
Volume Change Reference (VCR)
A value that represents the state of all partitions on a medium.

4.1.26
Volume Advisory Locking
An indication that the LTFS volume has been locked against future modifications. This is a form of write
protection under the control of host software rather than physical hardware.

4.2 Acronyms
ASCII American Standard Code for Information Interchange
CM Cartridge Memory
DCE Distributed Computing Environment
ISO International Organization for Standardization
LTFS Linear Tape File System
MAM Media Auxiliary Memory
NFC Normalization Form Canonical Composition
OSF Open Software Foundation
POSIX Portable Operating System Interface for Unix
T10/SSC-4 ISO/IEC 14776-334, SCSI Stream Commands - 4 (SSC-4) [T10/2123-D]
UTC Coordinated Universal Time
UTF-8 8-bit UCS/Unicode Transformation Format
UUID Universally Unique
Identifier W3C World Wide Web
Consortium XML Extensible Markup
Language

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

22 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

5 Volume Layout
An LTFS volume is comprised of a pair of LTFS partitions. LTFS defines two partition types: data
partition and index partition. An LTFS volume shall contain exactly one Data Partition and exactly one
Index Partition.

5.1 LTFS Partitions
Each partition in an LTFS volume shall consist of a Label Construct followed by a Content Area. This
logical structure is shown in Figure 1.

The Label Construct is described in Section 5.2 LTFS Constructs and in Section 8 Label Format. The
Content Area contains some number of interleaved Index Constructs and Data Extents. These
constructs are described in Section 5.2 LTFS Constructs and in Section 9 Index Format. The precise
layout of the partitions is defined in Section 5.3 Partition Layout.

5.2 LTFS Constructs
LTFS constructs are comprised of file marks and records. These are also known as ‘logical objects’
as found in T10 SSC specifications and are not described here. An LTFS volume contains three kinds
of constructs.

• A Label Construct contains identifying information for the LTFS volume.

• A Data Extent contains file data written as sequential logical blocks. A file consists of
zero or more Data Extents plus associated metadata stored in the Index Construct.

• An Index Construct contains an Index, which is an XML data structure which describes
the mapping between files and Data Extents.

5.2.1 Label Construct
Each partition in an LTFS volume shall contain a Label Construct with the following structure. As
shown in Figure 2, the construct shall consist of an ANSI VOL1 label, followed by a single file mark,
followed by one record in LTFS Label format, followed by a single file mark. Each Label construct for
an LTFS volume shall contain identical information except for the “location” field of the LTFS Label.

The content of the ANSI VOL1 label and the LTFS Label is specified in Section 8 Label Format.

5.2.2 Data Extent
A Data Extent is a set of one or more sequential logical blocks used to store file data. The “blocksize”
field of the LTFS Label defines the block size used in Data Extents. All blocks within a Data Extent

Figure 1 — LTFS Partition

Figure 2 — Label Construct

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 23
Version 2.5.1
© ISO 2021 – All rights reserved

shall have this fixed block size except the last block, which may be smaller.

The use of Data Extents to store file data is specified in Section 6 Data Extents.

5.2.3 Index Construct
 Figure 3 shows the structure of an Index Construct. An Index Construct consists of a file mark,
followed by an Index, followed by a file mark. An Index consists of a record that follows the same
rules as a Data Extent, but it does not contain file data. That is, the Index is written as a sequence of
one or more logical blocks of size “blocksize” using the value stored in the LTFS Label. Each block in
this sequence shall have this fixed block size except the last block, which may be smaller. This
sequence of blocks records the Index XML data that holds the file metadata and the mapping from
files to Data Extents. The Index XML data recorded in an Index Construct shall be written from the
start of each logical block used. That is, Index XML data may not be recorded offset from the start of
the logical block.

Indexes also include references to other Indexes in the volume. References to other Indexes are used
to maintain consistency between partitions in a volume. These references (back pointers and self
pointers) are described in Section 5.4 Index Layout.

The content of the Index is described in Section 9 Index Format.

5.3 Partition Layout
This section describes the layout of an LTFS Partition in detail. An LTFS Partition contains a Label
Construct followed by a Content Area. The Content Area contains zero or more Data Extents and
Index Constructs in any order. The last construct in the Content Area of a complete partition shall be
an Index Construct.

Figure 4 illustrates an empty complete partition. It contains a Label Construct followed by an Index
Construct. This is the simplest possible complete partition.

Figure 5 illustrates a complete partition containing data. The Content Area on the illustrated partition
contains two Data Extents (the first extent comprising the block ‘A’, the second extent comprising
blocks ‘B’ and ‘C’) and three Index Constructs.

Figure 4 — Partition Layout

Figure 3 — Index Construct

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

24 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

NOTE: There must not be any additional data trailing the end of the VOL1 Label, the LTFS Label, nor any Index on an LTFS
Volume. The Label Construct must be recorded starting at the first logical block in each partition.

5.4 Index Layout
Each Index data structure contains information used to verify the consistency of an LTFS volume.

• A generation number, which records the age of this Index relative to other Indexes in
the volume.

• A self pointer, which records the volume to which the Index belongs and the block
position of the Index within that volume.

• A back pointer, which records the block position of the last Full Index present on the
Data Partition immediately before this Index was written.

• An optional second back pointer, which will only be present if an Incremental Index
has been written since the last Full Index on the Data Partition. If present this pointer
records the block position of the most recent Incremental Index.

5.4.1 Generation Number
Each Index in a volume has a generation number, a non-negative integer that increases as changes
are made to the volume. In any consistent LTFS volume, the Index with the highest generation
number on the volume represents the current state of the entire volume and must be a Full Index.
Generation numbers are assigned in the following way:

• Given two Indexes on a partition, the one with a higher block position shall have a generation
number greater than or equal to that of the one with a lower block position.

• Two Indexes in an LTFS volume may have the same generation number if and only if their
contents are identical except for these elements:
• access time values for files and directories (described in Section 9.2 Index),
• the self pointer (described in Section 5.4.2 Self Pointer), and
• the back pointer (described in Section 5.4.3 Back Pointer).

NOTE: The value of the generation number between any two successive Indexes may increase by any positive integer value.
That is, the magnitude of increase between any two successive Indexes is not assumed to be equal to 1.

The first Index on an LTFS Volume shall be generation number ‘1’.

5.4.2 Self Pointer
The self pointer for an Index is comprised of the following information:

• The UUID of the volume to which the Index belongs

• The block position of the Index

The self pointer is used to distinguish between Indexes and Data Extents. An otherwise valid Index
with an invalid self pointer shall be considered a Data Extent for the purpose of verifying that a volume
is valid and consistent. This minimizes the likelihood of accidental confusion between a valid Index
and a Data Extent containing Index-like data.

Figure 5 — Complete partition containing data

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 25
Version 2.5.1
© ISO 2021 – All rights reserved

5.4.3 Back Pointer
Each Index contains at most two back pointers, defined as follows.

• If the Index resides in the Data Partition, the full index back pointer shall contain the block
position of the preceding Full Index in the Data Partition. If no preceding Index exists, no
back pointer shall be stored in this Index. Back pointers are stored in the Index as
described in Section 9.2 Index.

• If the Index resides in the Index Partition and has generation number N then the full index
back pointer for the Index shall contain either the block position of a Full Index having
generation number N in the Data Partition, or the block position of the last Full Index
having at most generation number N−1 in the Data Partition. If no Index of generation
number N-1 or less exists in the Data Partition, then the Index in the Index Partition is not
required to store a back pointer.

• On a consistent volume, the final Index in the Index Partition shall contain a back pointer
to the final Full Index in the Data Partition.

• On a volume containing Incremental Indexes, an index residing in the Data Partition may
contain a second back pointer with the block position of the most recent Incremental
Index on the Data Partition written since the last Full Index

• As a consequence of the rules above, no Index may contain a back pointer to itself or to
an Index with a higher generation number.

On a consistent volume, the rules above require that the Indexes on the Data Partition and the final
Index on the Index Partition shall form an unbroken chain of back pointers. Figure 6 illustrates this
state for a volume not containing any Incremental Indexes, and Figure 7 illustrates the corresponding
state for a volume which does contain Incremental Indexes. See Section 9 for more detail on full and
incremental indexes.

Figure 6 — Back Pointer example IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 20

91
9:2

02
1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

26 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Figure 7 — Back Pointer example for Incremental Indexes

In Figure 7 the red arrows represent back pointers to a Full Index, and the blue arrows represent
back pointers to an Incremental Index.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 27
Version 2.5.1
© ISO 2021 – All rights reserved

6 Data Extents
A Data Extent is a set of one or more sequential records subject to the conditions listed in Section
5.2.2 Data Extent. This section describes how files are arranged into Data Extents for storage on an
LTFS volume. Logically, a file contains a sequence of bytes; the mapping from file byte offsets to
block positions is maintained in an Index. This mapping is called the extent list.

6.1 Extent Lists
A file with zero size has no extent list.

Each entry in the extent list for a file encodes a range of bytes in the file as a range of contiguous
bytes in a Data Extent. An entry in the extent list is known as an extent. Each entry shall contain the
following information:

• partition ID – partition that contains the Data Extent comprising this extent.

• start block (start block number) – block number within the Data Extent where the content for this
extent begins.

• byte offset (offset to first valid byte) – number of bytes from the beginning of the start block to the
beginning of file data for this extent. This value shall be strictly less than the size of the start
block. The use of byte offset is described in Section 6.2.3 Starting and ending Data Extent in mid-
block.

• byte count – number of bytes of file content in this Data Extent.

• file offset – number of bytes from the beginning of the file to the beginning of the file data
recorded in this extent.

NOTE: Version 1.0 of this specification did not explicitly include file offsets in the extent list. When interpreting LTFS Volumes
written based on the Version 1.0 specification, the file offsets shall be determined as follows.

• The first extent list entry begins at file offset 0.
• If an extent list entry begins at file offset N and contains K bytes, the following extent list entry begins at file offset N +

K.

These file extent rules for version 1.0 of the specification necessarily imply that the order of extents recorded in the Index shall
be preserved during any subsequent update of the Index to another version 1.0 Index.

The inclusion of the File Offset value for each extent starting from version 2.0.0 of this specification removes the significance of
the order in which extents are recorded in the Index.

Implementers are encouraged to record extents in the same logical order as they exist in the
represented file.

In the extent list for any file, no extent may contain bytes that extend beyond the logical end of file.
The logical end of file is defined by the file length recorded in the Index. Also, in any extent list for any
file, there shall not exist any pair of extents that contain overlapping logical file offsets. That is, no
extent is allowed to logically overwrite any data stored in another extent.

An extent list entry shall be a byte range within a single Data Extent; that is, it shall not cross a
boundary between two Data Extents. This requirement allows a deterministic mapping from any file
offset to the block position where the data can be found. On the other hand, two extent list entries (in
the same file or in different files) may refer to the same Data Extent.

6.2 Extents Illustrated
This section illustrates various forms of extent list entries and the mapping from files to these extents.
The illustrations are not exhaustive. Other combinations of starting and ending blocks are possible.

The LTFS Partition ID is an essential element of an extent definition. For simplicity, the LTFS Partition
ID and File Offset are not shown explicitly in the extents lists illustrated in Table 3 — Extent list entry
starting and ending with full block, Table 4, and Table 5 — Extent list entry starting and ending in mid-
block. Note that not all extents in an extent list shall be on the same partition.

6.2.1 Starting and ending Data Extent with full block
Figure 8 illustrates an extent of 3 full size blocks contained within a Data Extent of 3 blocks, N through

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

28 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

 N + 2.

The extent list entry for this extent is shown in Table 3.

Table 3 — Extent list entry starting and ending with full block

Start Block Offset Length
N 0 3 × Blk

NOTE: Blk is the length of a full-sized block.

6.2.2 Starting Data Extent with full block and ending with fractional block
Figure 9 illustrates an extent of 2 full-size blocks and one fractional block of K bytes, contained within
a Data Extent of 2 full size blocks N and N + 1 and one fractional block N + 2.

The extent list entry for this extent is shown in Table 4.

Table 4 — Extent list entry starting with full block and ending with fractional block

Start Block Offset Length
N 0 (2 × Blk) + K

NOTE: K is the length of the fractional block, where K < Blk

6.2.3 Starting and ending Data Extent in mid-block
Figure 10 illustrates an extent smaller than 3 blocks, contained within a Data Extent of 3 full size
blocks. Valid data begins in block N at byte number J and continues to byte number K of block N + 2.
The last block of the extent, block N + 2, may be a fractional block.

The extent list entry for this extent is shown in Table 5.

Table 5 — Extent list entry starting and ending in mid-block

Start Block Byte Offset Byte Count
N J (Blk − J) + Blk + K

Figure 8 — Extent starting and ending with full block

Figure 9 — Extent starting with full block and ending with fractional block

Figure 10 — Extent starting and ending in mid-block

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 29
Version 2.5.1
© ISO 2021 – All rights reserved

6.3 Files Illustrated
This section illustrates various possible extent lists for files. These illustrations are not exhaustive;
other combinations of extent geometry and ordering are possible. The extents shown in this section
are always displayed in file offset order, but they may appear in any order on a partition, or even in
different partitions. As in the previous section, Partition IDs are omitted for simplicity. Unless
otherwise noted these examples illustrate non-sparse files that have all file data written to the media.

6.3.1 Simple Files
Figure 11 illustrates a file contained in a single Data Extent of three blocks. The data fills the first two
blocks and K bytes in the last block. The last block of the extent, block N + 2, may be a fractional
block. This file is recorded as a regular (non-sparse) file. See Table 6.

Table 6 — Extent list entry for file contained in a single Data Extent

Start Block Byte Offset Byte Count File Offset
N 0 (2 × Blk) + K 0

Figure 12 illustrates a file contained in two Data Extents of three blocks each. The data fills the first
two blocks of extent N and K bytes of block N + 2, and the first two blocks of extent M and L bytes of
block M + 2. The last block of each extent, block N + 2 and M + 2, may be fractional blocks. This file is
recorded as a regular (non-sparse) file. Table 7 shows file details.

Figure 12 — File contained in two Data Extents

Table 7 — Extent list entry for a file contained in two Data Extents

Start Block Byte Offset Byte Count File Offset
N
M

0
0

(2 × Blk) + K
(2 × Blk) + L

0
(2 × Blk) + K

6.3.2 Shared Blocks
Figure 13 illustrates two full-sized blocks which are referenced by three files. Blocks may be shared
among multiple files to improve storage efficiency. File 1 uses the first K bytes of block N . File 2 uses
Q bytes in the mid part of block N , and (Blk − R) bytes at the end of block N + 1. File 3 uses the last
(Blk − P − Q) bytes at the end of block N and the first T bytes of block N + 1.

Figure 11 — File contained in a single Data Extent

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

30 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Figure 13 — Shared Blocks example

The extent lists for files 1, 2, and 3 are shown in Table 8.

Table 8 — Extent lists for Shared Blocks example

 Start Block Byte Offset Byte Count File Offset
File 1 N 0 K 0
File 2 N

N+1

P
R

Q
Blk − R

0
Q

File 3 N P + Q Blk − P − Q + T 0

NOTE: If N were a fractional block, File 3 would map to two entries in the extent list. As illustrated,
block N is a full block, and File 3 may be mapped to the single extent list entry shown above.
Alternatively, because blocks may always be treated as independent Data Extents, File 3 could be
mapped to two entries in the extent list, one entry per block (N and N + 1).

6.3.3 Sparse Files
The length of a file, as recorded in the Index, may be greater than the total size of data encoded in
that file’s extent list. A file may also have non-zero size but no extent list. In both of these cases, all
bytes not encoded in the extent list shall be treated as zero (0x00) bytes.

Figure 14 illustrates a sparse file that is contained in two Data Extents. In this figure, all white areas of
the file are filled with bytes that are set to zero (0x00). The file starts with T bytes with value
zero(0x00). The first extent stores K bytes of data which fills the file from byte T to T + K. The file
contains R bytes with value zero (0x00) from file offset T + K to T + K + R. The second extent
contains Q file bytes representing the file content from file offset T + K + R to T + K + R + Q. The end
of the file from file offset T + K + R + Q is filled with bytes set to value zero (0x00) to the defined file
size P.

Figure 14 — Sparse files example

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 31
Version 2.5.1
© ISO 2021 – All rights reserved

The extent list for this file is shown in Table 9.

Table 9 — Extent list for sparse files example

Start Block Byte Offset Byte Count File Offset
N

N + 1
S
0

K
Q

T
T + K + R

NOTE 1: Version 1.0 of this specification, implied zeros could only appear at the end of a file; other types of sparse files were
not supported. When appending to the end of a file that is to be stored on a volume in compliance with version 1.0 of this
specification, any implied trailing zero bytes in the file must be explicitly written to the media to avoid leaving holes in the extent
list for the file.

NOTE 2: Version 1.0 of this specification did not support sparse files.

6.3.4 Shared Data
Figure 15 illustrates four Data Extents which are partly shared by two files. Overlapping extent lists
may be used to improve storage efficiency.

NOTE: Methods to implement data deduplication are beyond the scope of this document. Implementations must read files with
overlapping extent lists correctly, but they are not required to generate such extent lists.

In Figure 15, File 1 uses all blocks in Data Extents N , M , and R. File 2 uses some of the blocks in
Data Extents N , R and V . The extent lists for the two files are shown in Table 10. The two files share
some of the data in blocks N , N + 1, N + 2, R + 1 and R + 2.

Figure 15 — Shared data example

The extent lists for files 1 and 2 are shown in Table 10.

Table 10 — Extent lists for shared data example

 Start Block Byte Offset Byte Count File Offset
File 1 N

M
R

0
0
0

3 × Blk
2 × Blk
3 × Blk

0
3 × Blk

(3 × Blk) + (2 × Blk)
File 2 N

R+1
V

K
Q
0

(Blk − K) + Blk + P
(Blk − Q) + Blk Blk +

S

0
(Blk − K) + Blk + P

(Blk − K) + Blk + P + (Blk − Q) + Blk

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

32 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

7 Data Formats
The LTFS Format uses the data formats defined in this section to store XML field values in the Index
Construct and Label Construct.

7.1 Boolean format
Boolean values in LTFS structures shall be recorded using the values: “true”, “1”, “false”, and “0”.
When set to the values “true” or “1”, the boolean value is considered to be set and considered to
evaluate to true. When set to the values “false” or “0”, the boolean value is considered to be unset,
and considered to evaluate to false.

7.2 Creator format
LTFS creator values shall be recorded in conformance with the string format defined in Section 7.6
String format with the additional constraints defined in this section.

LTFS creator values shall be recorded as a Unicode string containing a maximum of 1024 Unicode
code points. The creator value shall include product identification information, the operating platform,
and the name of the executable that wrote the LTFS volume.

An example of the recommended content for creator values is:

IBM LTFS 1.2.0 - Linux - mkltfs

The recommended format for a creator value is a sequence of values separated by a three character
separator. The separator consists of a space character, followed by a hyphen character, followed by
another space character. The recommended content for the creator value is Company Product
Version - Platform - binary name where definitions are as defined in Table 11.

Table 11 — Creator format definitions

Symbol Description
Company Product

Version
Identifies the product that created the volume.

Platform Identifies the operating system platform for the product.
binary name Identifies the executable that created the volume.

Any subsequent data in the creator format should be separated from this content by a hyphen
character.

7.3 Extended attribute value format
An extended attribute value shall be recorded as one of two possible types:

1. The “text” type shall be used when the value of the extended attribute conforms to the
format described in Section 7.6 String format. The encoded string shall be stored as the
value of the extended attribute and the type of the extended attribute shall be recorded as
“text”.

2. The “base64” type shall be used for all values that cannot be represented using the “text”
type. Extended attribute values stored using the “base64” type shall be encoded as
base64 according to RFC 4648, and the resulting string shall be recorded as the extended
attribute value with the type recorded as “base64”. The encoded string may contain
whitespace characters as defined by the W3C Extensible Markup Language (XML) 1.0
standard (space, tab, carriage return, and line feed). These characters shall be ignored
when decoding the string.

7.4 Name format
File and directory names, and extended attribute keys in an LTFS Volume shall conform to the
naming rules in this section.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 33
Version 2.5.1
© ISO 2021 – All rights reserved

Names shall be valid Unicode and shall be 255 code points or less after conversion to Normalization
Form C (NFC). Names shall be stored in a case-preserving manner. Since names are stored in an
Index, they shall be encoded as UTF-8 in NFC. Names may include any characters allowed by the
W3C Extensible Markup Language (XML) 1.0 standard except for the those listed in Table 12.

Table 12 — Reserved characters for name format

Character Description
U+002F slash
U+003A colon

Note that the null character U+0000 is disallowed by W3C XML 1.0. See W3C XML 1.0 for a full list of
disallowed characters. The characters listed in Table 13 are allowed, but they should be avoided for
reasons of cross-platform compatibility.

Table 13 — Characters which should be avoided for name format

Character Description
U+0009, U+000A and U+000D control codes

U+0022 double quotation
k U+002A Asterisk

U+003F question mark
U+003C less than sign
U+003E greater than sign
U+005C Backslash
U+007C vertical line

Implementations which claim compliance with version 2.4.0 or later of this specification shall support
the percent-encoding of names as described below in order to avoid issues with the characters listed
in Table 12 above.

Percent-encoding is described in IETF RFC3986. Reserved characters are replaced by a triplet
consisting of the percent character ‘%’ followed by the two hexadecimal digits representing the
character’s numeric value. For example the colon character (‘:’, U+003A) would be represented as
the string “%3A”. In accordance with RFC3986, this further means that for any names that already
contain the percent character, and for which percent-encoding is enabled, that percent character itself
needs to be encoded as the triplet “%25” (since the percent character is encoded as 0x25). Also in
accordance with RFC3986 uppercase hexadecimal digits should be used for all percent-encodings,
although lowercase digits ‘a’ through ‘f’ shall be treated as equivalent to their uppercase equivalents
‘A’ through ‘F’.

Table 14 shows some examples of the encoding:

Table 14 — Name percent-encoding

Source name Encoded name Description

Testfile1.txt Testfile1.txt No transformation necessary

Testfile:1.txt Testfile%3A1.txt Colon must be encoded since it is reserved

Testfile%3A.txt Testfile%253A.txt Percent must be encoded to avoid
ambiguity

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

34 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Testfile:%1.txt Testfile%3A%251.txt Both colon and percent characters encoded

com.my.co:some_xattr com.my.co%3Asome_xattr Extended attribute name must be encoded

Names which have been processed using percent-encoding are indicated by the inclusion of the
attribute tag percentencoded. If a name element includes this attribute tag, the value of the tag shall
contain a value conforming to the boolean format definition provided in Section 7.1 Boolean format.

When the percentencoded attribute tag is present and has the value true, the corresponding name
has been processed to replace one or more characters with an encoded triplet as described above.
When reading back from the volume, the inverse operation should be applied to transform the name
back into its original form. In cases where the underlying operating system does not support the
characters in their original form, an implementation may choose to use the transformed name or to
report an error to the user.

If the percentencoded attribute tag does not exist, or has the value false, then the name encoding
transformation shall not be performed when writing to or reading from the volume.

Note that if the name does not contain any encoded triplets then it is strongly recommended that the
percentencoded attribute tag should be omitted rather than including it with the value false.

See Sections 9.2.7, 9.2.9 and 9.2.10 for further details. Annex G contains informative tables showing
how various characters are represented in an index.

7.5 Name pattern format
File name patterns in data placement policies shall be valid names as defined in Section 7.4 Name
format. A file name pattern shall be compared to a file name using these rules:
1. Comparison shall be performed using canonical caseless matching as defined by the Unicode

Standard, except for the code points U+002A and U+003F.
2. Matching of name patterns to file names shall be case insensitive.
3. U+002A (asterisk ‘*’) shall match zero or more Unicode grapheme clusters.
4. U+003F (question mark ‘ ?’) shall match exactly one grapheme cluster.

For more information on grapheme clusters, see Unicode Standard Annex 29, Unicode Text
Segmentation.

7.6 String format
A character string encoded using UTF-8 in NFC. The string shall only contain characters allowed in
element values by the W3C Extensible Markup Language (XML) 1.0 specification.

7.7 Time stamp format
Time stamps in LTFS data structures shall be specified as a string conforming to the ISO 8601 date
and time representation standard. The time stamp shall be specified in UTC (Zulu) time as indicated
by the ‘Z’ character in this example:

2013-02-01T18:35:47.866846222Z

The time shall be specified with a fractional second value that defines 9 decimal places after the
period in the format.

The general time format is YYYY-MM-DDThh:mm:ss.nnnnnnnnnZ where values are as described in
Table 15.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 35
Version 2.5.1
© ISO 2021 – All rights reserved

Table 15 — Time stamp format

Symbol Description
YYYY the four-digit year as measured in the Common Era.

MM an integer between 01 and 12 corresponding to the month.
DD an integer between 01 and 31 corresponding to the day in the month.
hh an integer between 00 and 23 corresponding to the hour in the day.
mm an integer between 00 and 59 corresponding to the minute in the hour.
ss an integer between 00 and 59 corresponding to the second in the minute.

nnnnnnnnn an integer between 000000000 and 999999999 measuring the decimal
fractional second value.

NOTE: The characters ‘-’, ‘T’, ‘:’, ‘.’, and ‘Z’ in the time stamp format are field separators. The ‘Z’ character indicates that the
time stamp is recorded in UTC (Zulu) time.

All date and time fields in the time stamp format shall be padded to the full width of the symbol using 0
characters. For example, an integer month value of ‘2’ shall be recorded as ‘02’ to fill the width of the
MM symbol in the general time format.

7.8 UUID format
LTFS UUID values shall be recorded in a format compatible with OSF DCE 1.1, using 32 hexadecimal
case-insensitive digits (0-9, a-f or A-F) formatted as shown. UUID values are expected to uniquely
identify the LTFS Volume, as in this example:

30a91a08-daae-48d1-ae75-69804e61d2ea

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

36 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

8 Label Format
This section describes the content of the Label Construct. The content of the Content Area is
described in Section 5.2 LTFS Constructs and in Section 9 Index Format.

8.1 Label Construct
Each partition in an LTFS Volume shall contain a Label Construct that conforms to the structure
shown in Figure 16. The construct shall consist of an ANSI VOL1 Label, followed by a single file mark,
followed by one record in LTFS Label format, followed by a single file mark. There shall not be any
additional data trailing the end of the ANSI VOL1 Label, nor any additional data trailing the end of the
LTFS Label. The Label Construct shall be recorded starting at the first logical block in the partition.
Both Label constructs in an LTFS Volume shall contain identical information with the exception of the
“location” field in the XML data for the LTFS Label.

8.1.1 VOL1 Label
A VOL1 label recorded on an LTFS Volume shall always be recorded in a Label Construct as defined
in Section 8.1 Label Construct.
The first record in a Label Construct is an ANSI VOL1 record. This record conforms to the ANSI
Standard X3.27. All bytes in the VOL1 record are stored as ASCII encoded characters. The record is
exactly 80 bytes in length and has the structure and content shown in Table 16.

Table 16 — VOL1 Label Construct

Offset Length Name Value Notes
0 3 label identifier ‘VOL’
3 1 label number ‘1’
4 6 volume identifier <volume serial

number>
Typically matches the physical
cartridge label.

10 1 volume accessibility ‘L’ Accessibility limited to
conformance to LTFS standard.

11 13 Reserved all spaces
24 13 implementation

identifier
‘LTFS’ Value is left-aligned and padded

with spaces to length.

37 14 owner identifier right pad with spaces Any printable characters. Typically
reflects some user specified
content oriented identification.

51 28 Reserved all spaces
79 1 label standard version ‘4’

NOTE 1: Single quotation marks in the Value column above should not be recorded in the VOL1 label.
NOTE 2: All fields in the VOL1 label must contain the constant values shown in the table above. The only exceptions are the
‘volume identifier’ and ‘owner identifier’ fields. These two fields should contain user-provided values in conformance to the
Notes provided.

8.1.2 LTFS Label
The LTFS Label is an XML data structure that describes information about the LTFS Volume and the
LTFS Partition on which the LTFS Label is recorded. The LTFS Label shall conform to the LTFS
Label XML schema provided in Annex A. The LTFS Label shall be encoded using UTF-8 NFC.

Figure 16 — Label construct

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 37
Version 2.5.1
© ISO 2021 – All rights reserved

An LTFS Label recorded on an LTFS Volume shall always be recorded in an Label Construct as
defined in Section 8.1 Label Construct.

A complete schema for the LTFS Label XML data structure is provided in Annex A. An example LTFS
Label is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<ltfslabel version="2.5.0">

<creator>IBM LTFS 2.5.0 - Linux - mkltfs</creator>
<formattime>2018-10-16T18:35:47.866846222Z</formattime>
<volumeuuid>30a91a08-daae-48d1-ae75-69804e61d2ea</volumeuuid>
<location>

<partition>b</partition>
</location>
<partitions>

<index>a</index>
<data>b</data>

</partitions>
<blocksize>524288</blocksize>
<compression>true</compression>

</ltfslabel>

Every LTFS Label shall be an XML data structure that conforms to the W3C Extensible Markup
Language (XML) 1.0 standard. Every LTFS Label shall have a first line that contains an XML
Declaration as defined in the XML standard. The XML Declaration shall define the XML version and
the encoding used for the Label.

The LTFS Label XML shall be recorded in a single logical data block and shall contain the following
information:

• ltfslabel: this element defines the contained structure as an LTFS Label structure. The element
shall have a version attribute that defines the format version of the LTFS Label in use. This
document describes LTFS Label version 2.5.0.

NOTE: The LTFS Label version defines the minimum version of the LTFS Format specification with which the LTFS
Volume conforms. Implicitly, the LTFS Label version defines the lowest permitted version number for all LTFS Indexes
written to the volume.

• creator: this element shall contain the necessary information to uniquely identify the writer of the
LTFS volume. The value shall conform to the creator format definition shown in Section 7.2
Creator format.

• formattime: this element shall contain the time when the LTFS Volume was formatted. The value
shall conform to the format definition shown in Section 7.7 Time stamp format.

• volumeuuid: this element shall contain a universally unique identifier (UUID) value that uniquely
identifies the LTFS Volume to which the LTFS Label is written. The volumeuuid element shall
conform to the format definition shown in Section 7.8 UUID format.

• location: shall contain a single partition element. The partition element shall specify the
Partition ID for the LTFS Partition on which the Label is recorded. The Partition ID shall be a lower
case ASCII character between ‘a’ and ‘z’.

• partitions: this element specifies the Partition IDs of the data and index partitions belonging to
this LTFS volume. It shall contain exactly one index element for the Index Partition and exactly
one data element for the Data Partition, formatted as shown. A partition shall exist in the LTFS
Volume with a partition identifier that matches the identifier recorded in the index element.
Similarly, a partition shall exist in the LTFS Volume with a partition identifier that matches the
identifier recorded in the data element.

• blocksize: this element specifies the block size to be used when writing Data Extents to the LTFS
Volume. The blocksize value is an integer specifying the number of 8-bit bytes that shall be
written as a record when writing any full block to a Data Extent. Partial blocks may only be written
to a Data Extent in conformance with the definitions provided in Section 5.2.2 Data Extent and in
Section 6 Data Extents. The minimum blocksize that may be used in an LTFS Volume is 4096 8-
bit bytes.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

38 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

NOTE: For general-purpose storage on data tape media the recommended blocksize is 524288 8-bit bytes.

• compression: this element shall contain a value conforming to the boolean format definition
provided in Section 7.1 Boolean format. When the compression element is set, compression shall
be enabled when writing to the LTFS Volume. When the compression element is unset,
compression shall be disabled when writing to the LTFS Volume. The compression element
indicates use of media-level “on-the-fly” data compression. Use of data compression on a volume
is transparent to readers of the volume.

8.1.3 Managing LTFS Labels
The LTFS Label captures volume-specific values that are constant over the lifetime of the LTFS
Volume. As such, the values recorded in an LTFS Label can only be set or updated at volume format
time.

Implementations should handle additional unknown XML tags when they occur as children of the
ltfslabel element. In general, such unknown tags may be ignored when mounting the LTFS Volume.
This handling of unknown XML tags reduces the risk of compatibility changes when future versions of
this specification are adopted. It is a strict violation of this specification to add any XML tags to the
Label beyond those defined in this document.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 39
Version 2.5.1
© ISO 2021 – All rights reserved

9 Index Format
The Content Area contains zero or more Data Extents and some number of Index Constructs in any
order. This section describes the content of the Index Construct. The Label Construct is described in
Section 8 Label Format. Data Extents are described in Section 6 Data Extents.

9.1 Index Construct
Each Content Area in an LTFS Volume shall contain some number of Index Constructs that conform
to the structure shown in Figure 17. The Index Construct shall contain a single file mark, followed by
one or more records in Index format, followed by a single file mark. There shall not be any additional
data trailing the end of the Index.

The contents of the Index are defined in Section 9.2 Index.

The Index Constructs in a Content Area may be interleaved with any number of Data Extents. A
complete partition shall have an Index Construct as the last construct in the Content Area, therefore
there shall be at least one Index Construct per complete partition.

9.2 Index
An Index is an XML data structure that describes data files, directory information and associated
metadata for files recorded on the LTFS Volume. An Index recorded on an LTFS Volume shall always
be recorded in an Index Construct as defined in Section 9.1 Index Construct.

An LTFS Index is either a Full Index or an Incremental Index. A Full Index describes the state of the
entire volume, i.e. all data files, directory information and associated metadata. An Incremental Index
describes only changes to the volume which have occurred since the last index (Full or Incremental)
was written to the volume. Full and Incremental Indexes share many of the same constructs, and the
remainder of this section applies to both types unless stated otherwise.

The following rules define when Full or Incremental Indexes may be written:

• The index partition shall only contain Full Indexes, i.e. Incremental Indexes shall not be written to
the index partition.

• A Full Index shall always be written to the data partition as part of the unmount processing (i.e. a
cleanly unmounted volume always has a Full Index at the end of the data partition)

• An Incremental Index may be written to the data partition at any time, to store any changes to the
volume contents since the last index (Full or Incremental) was written.

• A Full Index may be written to the data partition at any time, and shall represent the complete
state of the volume at the time it is written.

NOTE: Prior to version 2.5.0 of this specification, all indexes were implicitly Full Indexes and were referred to simply as
Indexes. The concept of an Incremental Index was introduced to reduce the space needed (and time taken) to write
periodic indexes during normal operation.

Every Index shall be an XML data structure that conforms to the W3C Extensible Markup Language
(XML) 1.0 standard. Every Index shall have a first line that contains an XML Declaration as defined in
the XML standard. The XML Declaration shall define the XML version and the encoding used for the
Index.

An LTFS Index shall conform to the Index XML schema provided in Annex B (normative) LTFS Index

Figure 17 — Index Construct

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

40 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

XML Schema. The Index shall be encoded using UTF-8 NFC. The remainder of this section describes
the content of the Index using an example XML Index.

An Index consists of a Preface section containing multiple XML elements followed by a single
directory element. This directory element is referred to as the “root” directory element. The root
directory element corresponds to the root of the file system recorded on the LTFS Volume.

Each directory element shall contain a contents element, which may contain zero or more directory
elements and zero or more file elements. The only exception is a directory entry marked as deleted
in an Incremental Index, where no contents element is allowed.

9.2.1 Example Full Index omitting the body
An example of a Full Index that omits the body of the directory element is shown in this section. The
omitted section in this example is represented by the characters ‘...’.

<?xml version="1.0" encoding="UTF-8"?>

<ltfsindex version="2.5.0">
<creator>IBM LTFS 2.5.0 - Linux - ltfs</creator>
<volumeuuid>30a91a08-daae-48d1-ae75-69804e61d2ea</volumeuuid>
<generationnumber>3</generationnumber>
<comment>A sample LTFS Index</comment>
<updatetime>2018-10-16T19:39:57.245954278Z</updatetime>
<location>

<partition>a</partition>
<startblock>6</startblock>

</location>
<previousgenerationlocation>

<partition>b</partition>
<startblock>20</startblock>

</previousgenerationlocation>
<allowpolicyupdate>true</allowpolicyupdate>
<dataplacementpolicy>

<indexpartitioncriteria>
 <size>1048576</size>

 <name>*.txt</name>
</indexpartitioncriteria>

</dataplacementpolicy>
<volumelockstate>unlocked</volumelockstate>
<highestfileuid>4</highestfileuid>
<directory>
...
</directory>

</ltfsindex>

9.2.2 Example Incremental Index omitting the body
An example of an Incremental Index that omits the body of the directory element is shown in this

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 41
Version 2.5.1
© ISO 2021 – All rights reserved

section. The omitted section in this example is represented by the characters ‘...’.

<?xml version="1.0" encoding="UTF-8"?>

<ltfsincrementalindex version="2.5.0">
<creator>IBM LTFS 2.5.0 - Linux - ltfs</creator>
<volumeuuid>30a91a08-daae-48d1-ae75-69804e61d2ea</volumeuuid>
<generationnumber>3</generationnumber>
<comment>A sample LTFS Incremental Index</comment>
<updatetime>2018-10-16T19:39:57.245954278Z</updatetime>
<location>

<partition>b</partition>
<startblock>1632</startblock>

</location>
<previousgenerationlocation>

<partition>b</partition>
<startblock>20</startblock>

</previousgenerationlocation>
<previousincrementallocation>

<partition>b</partition>
<startblock>960</startblock>

</previousincrementallocation>
<volumelockstate>unlocked</volumelockstate>
<highestfileuid>46</highestfileuid>
<directory>
...
</directory>

</ltfsincrementalindex>

9.2.3 Required elements for every index
Every Index shall contain the following elements, unless otherwise noted:

• ltfsindex or ltfsincrementalindex: These elements define the contained structure as an Index
structure. Every index shall contain either an ltfsindex element or an ltfsincrementalindex
element. Both shall have a version attribute that defines the format version of the LTFS Index in
use. This document describes LTFS Index version 2.5.0.

NOTE: The LTFS Label version defines the minimum version of the LTFS Format specification with which the LTFS
Volume conforms. Implicitly, the LTFS Label version defines the lowest permitted version number for all LTFS Indexes
written to the volume.

An Index update occurs when an LTFS Volume containing a current Index of version M.N.R is
written with a new Index using a version number with a higher value for M. The version for any
LTFS Index written to an LTFS Volume shall have an M value that is greater than or equal to the
M value in the current Index. When the M value for the new LTFS Index equals the M value in the
current Index, the new Index may be written in conformance to any value of N and R so long as N
and R match the version of a published LTFS Format Specification.

An Index downgrade occurs when an LTFS Volume containing a current Index of version
M.N.R is written with a new Index using a version number with a lower value for M. Index
downgrades are explicitly disallowed in an LTFS Volume. Further details on Index version
numbering is shown in Section 2.1 Versions.

• creator: This element shall contain the necessary information to uniquely identify the writer of the
Index. The value shall conform to the creator format definition shown in Section 7.2 Creator
format.

• volumeuuid: This element shall contain a universally unique identifier (UUID) value that uniquely
identifies the LTFS Volume to which the Index is written. The value of the volumeuuid element
shall conform to the format definition shown in Section 7.8 UUID format. The volumeuuid value
shall match the value of the volumeuuid element in the LTFS Labels written to the LTFS Volume.

• generationnumber: This element shall contain a non-negative integer corresponding to the
generation number for the Index. The first Index on an LTFS Volume shall be generation number
“1”. The generationnumber shall conform to the definitions provided in Section 5.4.1 Generation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

42 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Number.

• updatetime: This element shall contain the date and time when the Index was modified. The
value shall conform to the format definition shown in Section 7.7 Time stamp format.

• location: This element shall contain a single partition element and a single startblock element.
The partition element shall specify the Partition ID for the LTFS Partition on which the Index is
recorded. The startblock element shall specify the first logical block number, within the partition,
in which the Index is recorded. The location element is a self-pointer to the location of the Index
in the LTFS Volume.

• allowpolicyupdate: This element shall contain a value conforming to the boolean format
definition provided in Section 7.1 Boolean format. When the allowpolicyupdate value is set, the
writer may change the content of the dataplacementpolicy element. When the
allowpolicyupdate value is unset, the writer shall not change the content of the
dataplacementpolicy element. This element is not permitted in Incremental Indexes, i.e. shall
only be included as a child of an ltfsindex element. Additional rules for the allowpolicyupdate
element are provided in Section 9.2.14 Data Placement Policy.

• highestfileuid: This element contains an integer value that is equal to the value of the largest
assigned fileuid element in the Index. An implementation shall be able to rely on the
highestfileuid element to determine the highest assigned fileuid value in the Index without
traversing all file and directory elements. The valid range of values for the highestfileuid value
is 1 through 264 − 1 with the additional special value of zero (0x0).
The highestfileuid can be used to determine the highest integer value assigned to the fileuid
element for all directories and files in the Index. While the highestfileuid value not equal to zero
(0x0), an implementation may increment the highestfileuid value to create unique fileuid values
for new directory and file entries.

A highestfileuid element value of zero (0x0) indicates that the LTFS Volume has exhausted the
contiguous range of valid values for fileuid elements in the Index. In this case, an implementation
should use a mechanism such as traversing all file and directory elements to identify an unused
and therefore unique fileuid value for any new file and directory elements.

• directory: This element corresponds to the “root” directory element in the Index. The content of
this element is described later in this section.

9.2.4 Optional elements for every index
Every Index may contain the following elements, unless otherwise noted:

• comment: This element, if it exists, shall contain a valid UTF-8 encoded string value. The value
of this element shall be used to store a user-provided description of this generation of the Index
for the volume. The value of this element shall conform to the format definition provided in Section
7.6 String format. An Index may have at most one comment element. The writer of an Index may
remove or replace the comment element when recording a new Index. The value of this element
shall not exceed 64KiB in size.

• previousgenerationlocation: This element, if it exists, defines the back pointer for the Full Index.
The previousgenerationlocation element shall contain a single partition element and a single
startblock element. The value of the partition element shall specify the Partition ID for the LTFS
Partition on which the back pointed Full Index is recorded. The startblock element shall specify
the first logical block number, within the partition, in which the back pointed Full Index is recorded.
If the Index does not have a back pointer there shall be no previousgenerationlocation element
in the Index. Every Index that does have a back pointer shall have a
previousgenerationlocation. Note that as a consequence this element is required in an
Incremental Index, which will always contain a back pointer. All data values recorded in the
previousgenerationlocation element shall conform to the definitions provided in Section 5.4
Index Layout.

• previousincrementallocation: This element, if present, defines the back pointer to the most
recent Incremental Index written after the most recent Full Index. The
previousincrementallocation element shall contain a single partition element and a single
startblock element. The value of the partition element shall specify the Partition ID for the LTFS

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 43
Version 2.5.1
© ISO 2021 – All rights reserved

Partition on which the back pointed Incremental Index is recorded, which must be the Data
Partition since Incremental Indexes are not permitted in the Index Partition. The startblock
element shall specify the first logical block number, within the Data Partition in which the back
pointed Incremental Index is recorded. If no Incremental Index has been written since the most
recent Full Index then there shall be no previousincrementallocation element in the Index. If an
Incremental Index has been written since the most recent Full Index then this Index shall have a
previousincrementallocation. All data values recorded in the previousincrementallocation
element shall conform to the definitions provided in Section 5.4 Index Layout. See also Figure 7
which illustrates the relationship between previousgenerationlocation and
previousincrementallocation.

• dataplacementpolicy: This element, if it exists, shall contain a single indexpartitioncriteria
element. The indexpartitioncriteria element shall contain a single size element and zero or
more name elements. The value of the size element shall define the maximum size of files that
may be stored on the Index Partition. Each name element shall specify a file name pattern. The
file name pattern value shall conform to the name pattern format provided in Section 7.5 Name
pattern format. A description of the rules associated with the dataplacementpolicy element is
provided in Section 9.2.14 Data Placement Policy. This element may exist in a Full Index but
shall not exist in an Incremental Index.

• volumelockstate: This element, if it exists, indicates the state of volume advisory locking for the
volume. The following values are defined:

unlocked The volume may be modified
locked The volume shall not be modified other than to change the

volumelockstate
permlocked The volume is permanently locked and shall not be

modified in any way

If a volume is in the unlocked state, it may be modified either to the locked state or to the
permlocked state.

If a volume is in the locked state, it may be modified either to the unlocked state or to the
permlocked state.

If a volume is in the permlocked state, it may be reformatted to enable re-use of the
cartridge; however no other write / update operations are permitted.

If this element does not exist then the volume is implicitly treated as unlocked.

Refer to Section 9.2.19 for more information.

9.2.5 Example Full Index that omits the Preface section
An example Full Index that omits the Preface section of the Index is shown in this section. The
omitted section in this example is represented by the characters ‘...’. This example shows the root
directory element for the Index.
<?xml version="1.0" encoding="UTF-8"?>

<ltfsindex version="2.5.0">
...
<directory>

<fileuid>1</fileuid>
<name>LTFS Volume Name</name>
<creationtime>2018-10-17T19:39:50.715656751Z</creationtime>
<changetime>2018-10-17T19:39:55.231540960Z</changetime>
<modifytime>2018-10-17T19:39:55.231540960Z</modifytime>
<accesstime>2018-10-17T19:39:50.715656751Z</accesstime>
<backuptime>2018-10-17T19:39:50.715656751Z</backuptime>
<contents>

<directory>
<fileuid>2</fileuid>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

44 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

<name>directory1</name>
<creationtime>2018-10-17T19:39:50.740812831Z</creationtime>
<changetime>2018-10-17T19:39:56.238128620Z</changetime>
<modifytime>2018-10-17T19:39:54.228983707Z</modifytime>
<accesstime>2018-10-17T19:39:50.740812831Z</accesstime>
<backuptime>2018-10-17T19:39:50.740812831Z</backuptime>
<readonly>false</readonly>
<contents>

<directory>
<fileuid>3</fileuid>
<name>subdir1</name>
<readonly>false</readonly>
<creationtime>2018-10-17T19:39:54.228983707Z</creationtime>
<changetime>2018-10-17T19:39:54.228983707Z</changetime>
<modifytime>2018-10-17T19:39:54.228983707Z</modifytime>
<accesstime>2018-10-17T19:39:54.228983707Z</accesstime>
<backuptime>2018-10-17T19:39:54.228983707Z</backuptime>

</directory>
</contents>

</directory>
<file>

<fileuid>4</fileuid>
<name>testfile.txt</name>
<length>5</length>
<creationtime>2018-10-17T19:39:51.744583047Z</creationtime>
<changetime>2018-10-17T19:39:57.245291730Z</changetime>
<modifytime>2018-10-17T19:39:57.245291730Z</modifytime>
<accesstime>2018-10-17T19:39:57.240774456Z</accesstime>
<backuptime>2018-10-17T20:21:45.424385077Z</backuptime>
<readonly>true</readonly>
<extendedattributes>
</extendedattributes>
<extentinfo>

<extent>
<partition>a</partition>
<startblock>4</startblock>
<byteoffset>0</byteoffset>
<bytecount>5</bytecount>
<fileoffset>0</fileoffset>

</extent>
</extentinfo>

</file>
</contents>

</directory>
</ltfsindex>

9.2.6 Required directory elements for a Full Index
An Index shall have exactly one directory element recorded as a child of the ltfsindex element in the
Index. The directory element recorded as a child of the ltfsindex element in the Index shall
represent the root of the filesystem on the LTFS Volume.

Every directory element (at any level) shall contain the following information:

• fileuid: This element shall contain an integer value that is a unique identifier with respect to
directories and files in the Index. The valid range of values for the fileuid value is 1 through 264 −
1.

An example of how to calculate this unique value is provided in the description of highestfileuid
above. The directory element corresponding to the root of the filesystem shall have a fileuid
value of one (0x1).

name: This element shall contain the name of the directory. A directory name shall conform to the
format specified in Section 7.4 Name format. The value of the name element for the root directory
element in an Index shall be used to store the name of the LTFS Volume.

• creationtime: This element shall contain the date and time when the directory was created in the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 45
Version 2.5.1
© ISO 2021 – All rights reserved

LTFS Volume. The value shall conform to the format definition shown in Section 7.7 Time stamp
format.

• changetime: This element shall contain the date and time when the extended attributes or
readonly element for the directory was last altered. The value shall conform to the format
definition shown in Section 7.7 Time stamp format.

• modifytime: This element shall contain the date and time when the content of the directory was
most recently altered. The value shall conform to the format definition shown in Section 7.7 Time
stamp format.

• accesstime: This element may contain the date and time when the content of the directory was
last read. Implementators of the LTFS Format may choose to avoid or otherwise minimize
recording Index updates that only change the accesstime element. The value shall conform to
the format definition shown in Section 7.7 Time stamp format.

• backuptime: This element may contain the date and time when the content of the directory was
last archived or backed up. If the directory has never been archived or backed up this element
shall contain a value equal to the value of the createtime element. The value shall conform to the
format definition shown in Section 7.7 Time stamp format.

• readonly: This element shall contain a value conforming to the boolean format definition provided
in Section 7.1 Boolean format. When the readonly element is set, the directory shall not be
modified by any writer. When the readonly element is unset, the directory may be modified by
any writer. The following operations are considered to be modifications to a directory:
• adding a child file or directory
• removing a child file or directory, and
• any change to the extendedattributes element.

• contents: This element shall contain zero or more directory elements and zero or more file
elements. The elements contained in the contents element are children of the directory.

9.2.7 Optional directory elements for a Full Index
Every directory element may contain the following elements:

• extendedattributes: This element, if it exists, may contain zero or more xattr elements. The xattr
elements are described in Section 9.2.10 extendedattributes elements. A directory element may
have zero or one extendedattributes elements.

9.2.8 Required file elements for a Full Index
Every file element shall contain the following information:

• fileuid: This element shall contain an integer value that is a unique identifier with respect to
directories and files in the Index. The valid range of values for the fileuid value is 2 through
264 − 1. An example of how to calculate this unique value is provided in the description of
highestfileuid above.

NOTE: The value of the ‘fileuid’ element for the root directory is one (0x01) as defined in Section 9.2.5

All ‘fileuid’ elements shall be unique in the index therefore no file may have a ‘fileuid’ less than 2.

• name: This element shall contain the name of the file. A file name shall conform to the format
specified in Section 7.4 Name format.

• length: for file elements containing an extentinfo element or file elements describing a regular
file with no extentinfo element (zero length or sparse files), the length element shall contain the
integer length of the file. The length is measured in bytes. For file elements containing a symlink
element, the length element shall contain the integer length of the symlink target path.

• creationtime: This element shall contain the date and time when the file was created in the LTFS
Volume. The value shall conform to the format definition shown in Section 7.7 Time stamp format.

• changetime: This element shall contain the date and time when the extended attributes or
readonly element for the file was last altered. The value shall conform to the format definition
shown in Section 7.7 Time stamp format.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

46 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

• modifytime: This element shall contain the date and time when the content of the file was most
recently altered. The value shall conform to the format definition shown in Section 7.7 Time stamp
format.

• accesstime: This element may contain the date and time when the content of the file was last
read. Implementers of the LTFS Format may choose to avoid or otherwise minimize recording
Index updates that only change the accesstime element. The value shall conform to the format
definition shown in Section 7.7 Time stamp format.

• backuptime: This element may contain the date and time when the content of the file was last
archived or backed up. If the file has never been archived or backed up, this element shall contain
a value equal to the value of the createtime element. The value shall conform to the format
definition shown in Section 7.7 Time stamp format.

• readonly: This element shall contain a value conforming to the boolean format definition provided
in Section 7.1 Boolean format. When the readonly element is set, the file shall not be modified by
any writer. When the readonly element is unset, the file may be modified by any writer. The
readonly element is ignored for file elements containing a symlink element.

9.2.9 Optional file elements for a Full Index
Every file element may contain the following elements:

• extendedattributes: This element, if it exists, may contain zero or more xattr elements. The xattr
elements are described in Section 9.2.10 extendedattributes elements. A file element may have
zero or one extendedattributes elements.

• extentinfo: This element, if it exists, may contain zero or more extent elements. A file element
may have zero or one extentinfo elements, however a file element shall not have both an
extentinfo element and a symlink element .

Every extent element shall describe the location where a file extent is recorded in the LTFS
Volume. Every extent element shall contain one partition element, one startblock element, one
byteoffset element, one bytecount element, and one fileoffset element. The values recorded in
elements contained by the extentinfo element shall conform to the definitions provided in Section
5.2.2 Data Extent and in Section 6 Data Extents. The partition element shall contain the Partition
ID corresponding to the LTFS partition in which the Data Extent is recorded. The startblock
element shall specify the first logical block number, within the partition, in which the Data Extent is
recorded. The byteoffset element shall specify the offset into the start block within the Data
Extent at which the valid data for the extent is recorded. The bytecount element shall specify the
number of bytes that comprise the extent. The fileoffset element shall specify the offset into the
file where the data stored in this Data Extent starts.

The order of extent elements within an extentinfo element is not significant. Implementors are
encouraged to record extentinfo in the same order that the extents occur in the file. The
definition of how extent values are determined and used is provided in Section 6 Data Extents
and in Section 6.1 Extent Lists.

• openforwrite: This element, if it exists, shall contain a value conforming to the boolean format

definition provided in Section 7.1 Boolean format. When the openforwrite element exists and
has the value true, the corresponding file was open for writing at the time that the index was
written and so may not be complete. This information may be made available to the user by an
application attempting to roll back a volume, for example to inform the user’s choice of rollback
points.

If the openforwrite element exists and has the value false, or if it does not exist, then there is no
indication of whether or not the file was open for writing.

An application claiming conformance to version 2.4 or later of this specification shall include the
openforwrite element with the value true for all files open for writing when the index was written.

NOTE 1: It is recommended that this element should only be included for files that are known to be in the open state, i.e. not
included if the value would be false.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 47
Version 2.5.1
© ISO 2021 – All rights reserved

NOTE 2: In normal usage the index (in both partitions) written on a clean unmount will not have the openforwrite element set to
true, as all files should be closed as part of the unmount processing.

• symlink: This element, if it exists, shall contain either the fully qualified path from the root of the
file system tree to the target file, or shall contain a relative path to the target file. Path strings shall
be stored using the Unix-style forward slash as the path delimiter. The path shall conform to the
format specified in Section 7.4 Name format. A file element may have zero or one symlink
elements, however a file element shall not have both an extentinfo element and a symlink
element.

NOTE: It is possible that an older implementation of LTFS could create a tape that violates the mutual exclusivity requirement
for extentinfo and symlink elements. In this case, the LTFS volume will not conform to this specification; it is recommended that
an LTFS implementation encountering such a volume perform a recovery action before mounting or using the volume.

9.2.10 extendedattributes elements
All directory and file elements in an Index may specify zero or more extended attributes. These
extended attributes are recorded as xattr elements in the extendedattributes element for the
directory or file.

An example directory element is shown in the following paragraph, with three extended attributes
recorded. The empty_xattr and document_name extended attributes in this example both record
string values. The binary_xattr attribute is an example of storing a binary extended attribute value.
This example omits parts of the Index outside of the directory. The omitted sections in this example
are represented by the characters “...”.

...
<directory>

<fileuid>2</fileuid>
<name>directory1</name>
<creationtime>2013-01-28T19:39:50.740812831Z</creationtime>
<changetime>2013-01-28T19:39:56.238128620Z</changetime>
<modifytime>2013-01-28T19:39:54.228983707Z</modifytime>
<accesstime>2013-01-28T19:39:50.740812831Z</accesstime>
<backuptime>2013-01-28T19:39:50.740812831Z</backuptime>
<extendedattributes>

<xattr>
<key>binary_xattr</key>
<value type="base64">/42n2QaEWDSX+g==</value>

</xattr>
<xattr>

<key>empty_xattr</key>
<value/>

</xattr>
<xattr>

<key>document_name</key>
<value type="text">LTFS Format Specification</value>

</xattr>
</extendedattributes>
<contents>
</contents>

</directory>
...

Each extendedattributes element may contain zero or more xattr elements.

Each xattr element shall contain one key element and one value element. The key element shall
contain the name of the extended attribute. The name of the extended attribute shall conform to the
format specified in Section 7.4 Name format. Extended attribute names shall be unique within any
single extendedattributes element. The value element shall contain the value of the extended
attribute. The value element may have a type attribute that defines the type of the extended attribute
value. If the type attribute is omitted then the type for the extended attribute value shall be “text”. The
value of the extended attribute shall conform to the format specified in Section 7.3 Extended attribute
value format.

All extended attribute names that match the prefix “ltfs” with any capitalization are reserved for use by

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

48 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

the LTFS Format. (That is, any name starting with a case-insensitive match for the letters “ltfs” are
reserved.) Any writer of an LTFS Volume shall only use reserved extended attribute names to store
extended attribute values in conformance with the reserved extended attribute definitions shown in
Annex C.

9.2.11 Required and Optional elements for Incremental Indexes
Because Incremental Indexes record only changes to the volume contents, the preceding sections
may not apply in their entirety; however the following rules do apply:

• Newly created directories shall follow the rules described in 9.2.6 Required directory elements for
a Full Index and 9.2.7 Optional directory elements for a Full Index.

• Newly created files shall follow the rules described in 9.2.8 Required file elements for a Full Index
and 9.2.9 Optional file elements for a Full Index.

• Modified directories or files shall follow the same rules as for newly created directories or files
except for the list of required elements. The name and fileuid elements are required and shall be
recorded; any elements which have changed since the last index shall also be recorded.
Elements which have not changed since the last index are not required to be recorded, but may
be included if desired to make the implementation more straightforward. Note that if the
extentinfo or extendedattributes elements have changed for a file or directory, they shall be
included in an Incremental Index in their entirety.

• Deleted files shall be denoted using a special file element deleted. If this element is present in a
file entry, then the name and deleted elements are the only elements that shall appear in the
Incremental Index entry for that file. Every file deleted since the last index shall be included in the
Incremental Index and shall include the deleted element. The only exception to this rule is where
a parent directory has also been deleted (and so includes the deleted element); in this case the
file is implicitly assumed to have been deleted or moved.

• Deleted directories shall also be denoted using the optional deleted element. If this element is
present in a directory entry, then the name and deleted elements are the only elements that shall
appear in the Incremental Index entry for that directory. Every directory deleted since the last
index shall be included in the Incremental Index and shall include the deleted element. The only
exception to this rule is where a parent directory has also been deleted (and so includes the
deleted element); in this case the child directory is implicitly assumed to have been deleted or
moved.

NOTE: Normal file system operation requires that any children of a directory must previously have been deleted or
moved/renamed as a prerequisite for the deletion of the directory.

• Files or directories that have been moved or renamed shall be reflected in an Incremental Index
using the deleted element for the old name and the insertion of the file or directory with its new
name. A directory inserted due to a move or rename must include all of the information about the
directory itself, along with all children (at any level) that have been relocated with it. In other
words, the inserted directory must record all of the information about the entire directory subtree
that was moved or renamed.

• The deleted element shall not appear in a Full Index.

• Refer to Annex H for more information on handling Incremental Indexes.

9.2.12 Example Incremental Index that omits the Preface section
An example Incremental Index that omits the Preface section of the index is shown in this section.
The omitted section in this example is represented by the characters ‘…’. This example illustrates the
case where a new file samplefile.txt has been created in the top level directory, and both an empty
directory subdir1 and a file named testfile.txt have been deleted. The modifytime timestamps for the
affected parent directories are updated.
<?xml version="1.0" encoding="UTF-8"?>

<ltfsincrementalindex version="2.5.0">
...
<directory>

<fileuid>1</fileuid>
<name>LTFS Volume Name</name>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 49
Version 2.5.1
© ISO 2021 – All rights reserved

<modifytime>2018-10-02T19:39:54.228983707Z</modifytime>
<changetime>2018-10-02T19:39:54.228983707Z</changetime>
<contents>

<directory>
<fileuid>2</fileuid>
<name>directory1</name>
<modifytime>2018-10-02T19:39:54.228984707Z</modifytime>
<changetime>2018-10-02T19:39:54.228984707Z</changetime>
<contents>

<directory>
<name>subdir1</name>
<deleted/>

</directory>
</contents>

</directory>
<file>

<name>testfile.txt</name>
<deleted/>

</file>
<file>

<fileuid>5</fileuid>
<name>samplefile.txt</name>
<length>256</length>
<creationtime>2018-10-02T19:39:54.228983701Z</creationtime>
<changetime>2018-10-02T19:39:54.228983701Z</changetime>
<modifytime>2018-10-02T19:39:54.228983701Z</modifytime>
<accesstime>2018-10-02T19:39:54.228983701Z</accesstime>
<backuptime>2018-10-02T19:39:54.228983701Z</backuptime>
<readonly>false</readonly>
<extendedattributes>
</extendedattributes>
<extentinfo>

<extent>
<partition>b</partition>
<startblock>18</startblock>
<byteoffset>0</byteoffset>
<bytecount>256</bytecount>
<fileoffset>0</fileoffset>

</extent>
</extentinfo>

</file>
</contents>

</directory>
</ltfsincrementalindex>

9.2.13 Managing LTFS Indexes
A Full Index is a snapshot representation of the entire content of the LTFS Volume at a given point in
time. An Incremental Index is a snapshot representation of changes to the volume since the previous
index (Full or Incremental) was written. Incremental Indexes may be written as needed to save the
current state of the volume, but shall always be followed by a Full Index generated during unmount
processing or as needed. An implementation claiming compliance with v2.5.0 or later of this
specification shall be able to recognize and process Incremental Indexes, but is not required to write
them. An implementation processing a consistent volume for mount will not normally need to know
whether Incremental Indexes have been written in previous mounts.

NOTE: This should minimize backward compatibility issues, allowing an older implementation to mount a volume containing
Incremental Indexes without understanding them. Checking and rolling back of a volume containing Incremental Indexes will be
more complex; it is here that backwards compatibility will be an issue since an older implementation will not be able to walk the
full back pointer chain. Because an older implementation will not recognize incremental indexes, it will ignore them and use the
Full Index back pointer chain for rollback. Rollback can be performed, but it will be possible to roll back only to a Full Index (not
to any Incremental Indexes). Using an older implementation to recover a volume that is in an inconsistent state and that
contains Incremental Indexes may fail or lead to data loss if the most recent index on the volume is an Incremental Index; for
more details, refer to Section H.2 Backwards Compatibility.

An implementation should allow the user to specify the interval between Full Indexes, i.e. how many

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

50 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Incremental Indexes may be written before a Full Index is required. For example if this value were set
to 5, then after five Incremental Indexes had been written to tape, the next index written would be a
Full Index. If the interval were set to 0 then no Incremental Indexes would be written and the behavior
would be unchanged from versions of this specification prior to v2.5.0. An implementation may
choose to write a Full Index at any time.
NOTE: It is recommended that an implementation should set a limit on this interval, because of the increased complexity and
time required to rebuild a full index from a sequence of incremental indexes. A maximum value in the range 5-10 may be
suitable.

Implementations should handle additional unknown XML tags when they occur as children of the
ltfsindex, ltfsincrementalindex, directory, and file elements. These additional tags shall be
preserved when a new generation of the Index is written to the LTFS Volume. This handling of
unknown XML tags reduces the risk of compatibility changes when future versions of this specification
are adopted. It is a strict violation of this specification to add any XML tags to the Index beyond those
defined in this document.

9.2.14 Data Placement Policy
A Full Index may specify a Data Placement Policy. This policy defines when the Data Extents for a file
may be placed on the Index Partition. A Data Placement Policy specifies the conditions under which it
is allowed to place Data Extents on the Index Partition. An Incremental Index shall not specify a Data
Placement Policy.

An example Full Index that shows the elements that define the Data Placement Policy for an LTFS
Volume is shown in this section. This example omits part of the Preface section and the root directory
element. The omitted sections in this example are represented by the characters ‘...’.

<?xml version="1.0" encoding="UTF-8"?>

<ltfsindex version="2.5.0">
...
<allowpolicyupdate>true</allowpolicyupdate>
<dataplacementpolicy>

<indexpartitioncriteria>
<size>1048576</size>
<name>*.txt</name>
<name>*.bin</name>
</indexpartitioncriteria>

</dataplacementpolicy>
<directory>
...
</directory>

</ltfsindex>

The Data Placement Policy for an LTFS Volume shall be defined in a dataplacementpolicy element
in a Full Index. A Full Index may contain zero or one dataplacementpolicy elements.

Every dataplacementpolicy element shall contain exactly one indexpartitioncriteria element. This
means that the dataplacementpolicy constructs <dataplacementpolicy/> and
<dataplacementpolicy></dataplacementpolicy> are explicitly disallowed.

Every indexpartitioncriteria element shall contain exactly one size element. The size element shall
define the maximum file size for the Data Placement Policy.

Every indexpartitioncriteria element may contain zero or more name elements. The value of each
name element shall define a Filename Pattern for the Data Placement Policy. The Filename Pattern
value shall conform to the format defined in Section 7.5 Name pattern format.

9.2.15 Data Placement Policy Alteration
An LTFS Volume shall have an associated Allow Policy Update value. The current Allow Policy
Update value for an LTFS Volume shall be defined in the most recent Full Index as described in
Section 9.2.14 Data Placement Policy.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 51
Version 2.5.1
© ISO 2021 – All rights reserved

This section describes the conditions under which the Data Placement Policy and Allow Policy Update
values may be altered.

9.2.16 Allow Policy Update is set
If the current Allow Policy Update value is set, as defined in Section 9.2.14 Data Placement Policy, a
writer may record a Full Index that indicates the Allow Policy Update value is set or unset.

If the current Allow Policy Update value is set, as defined in Section 9.2.14 Data Placement Policy, a
writer may record a Full Index with the same dataplacementpolicy values recorded in the previous
generation of the Index.

If the current Allow Policy Update value is set, as defined in Section 9.2.14 Data Placement Policy, a
writer may record a Full Index with dataplacementpolicy values that differ from the
dataplacementpolicy values recorded in the previous generation of the Index.

If the current Allow Policy Update value is set, as defined in Section 9.2.14 Data Placement Policy, a
writer may record a Full Index without any dataplacementpolicy element.

9.2.17 Allow Policy Update is unset
If the current Allow Policy Update value is unset, as defined in Section 9.2.14 Data Placement Policy,
a writer shall only record a Full Index that indicates the Allow Policy Update is unset.

If the current Allow Policy Update value is unset, as defined in Section 9.2.14 Data Placement Policy,
a writer shall only record a Full Index without a dataplacementpolicy element when the previous
generation of the Index does not contain a dataplacementpolicy element.

If the current Allow Policy Update value is unset, as defined in Section 9.2.14 Data Placement Policy,
a writer shall only record a Full Index with dataplacementpolicy values when those values exactly
match the dataplacementpolicy values recorded in the previous generation of the Index.

9.2.18 Data Placement Policy Application
An LTFS Volume may have an associated Data Placement Policy. The current Data Placement Policy
for an LTFS Volume shall be defined in the current Full Index as described in Section 9.2.14 Data
Placement Policy. This section describes how the current Data Placement Policy and current Allow
Policy Update value shall affect the valid placement options for Data Extents when adding files to an
LTFS Volume.

The Data Placement Policy defines criteria controlling the conditions under which Data Extents may
be recorded to the Index Partition. The current Data Placement Policy only affects the placement of
Data Extents for new files written to the LTFS Volume. The Data Placement Policy has no impact on
Data Extents already written to the LTFS Volume. Similarly, the Data Placement Policy does not imply
any constraint on Data Extents previously written to the LTFS Volume.

The Data Placement Policy in use for an LTFS Volume does not require that Data Extents conforming
to the policy be written to the Index Partition. A Data Placement Policy only defines the conditions
under which it is valid to write Data Extents to the Index Partition. When the Data Placement Policy in
use does not allow a Data Extent to be written to the Index Partition the Data Extent shall be written to
the Data Partition. Any Data Extent may be written to the Data Partition regardless of the Data
Placement Policy in use.

Any LTFS Volume without a defined Data Placement Policy, as described in Section 9.2.14 Data
Placement Policy, shall have a NULL Data Placement Policy.

A NULL Data Placement Policy shall mean that no criteria exist to control the conditions under which
Data Extents may be recorded to the Index Partition. When a NULL Data Placement Policy is in
effect, any Data Extent may be written to the Index Partition. In general, it is recommended that
implementations should avoid use of NULL Data Placement Policies.

A Data Placement Policy other than the NULL policy shall define the criteria under which the Data
Extents for a new file may be written to the Index Partition.

A non-NULL Data Placement Policy shall define a maximum file size for the policy. The maximum file
size may be “0” or any positive integer.

A non-NULL Data Placement Policy may define zero or more Filename Pattern values for the policy.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

52 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

The Filename Pattern values shall be defined and interpreted as file name patterns conforming to the
format defined in Section 7.5 Name pattern format.

A non-NULL Data Placement Policy shall “match” the Data Extents being recorded to an LTFS
Volume if and only if all of the following conditions are met:

• the size of the file being recorded is smaller than the maximum file size for the Data Placement
Policy in effect, and

• the file name of the file being recorded matches any of the file name patterns defined in the Data
Placement Policy. The rules for matching file name patterns to file names are provided in Section
7.5 Name pattern format.

NOTE: Files with a size of 0 bytes have no Data Extents recorded anywhere in the volume. Therefore, a Data Placement Policy
with size value of “0” indicates that no file shall have Data Extents stored on the Index Partition.

As described in Section 9.2 Index, every Full Index shall contain a boolean allowpolicyupdate
element corresponding to the Allow Policy Update value for the Index. When Allow Policy Update is
unset, a writer shall not modify an LTFS Volume unless the modification conforms with the Data
Placement Policy defined for the Index. Any writer unable to comply with the current Data Placement
Policy shall leave the LTFS Volume unchanged.

Writers are encouraged to comply with the current Data Placement Policy at all times. However, when
Allow Policy Update is set, a writer is permitted to violate the Data Placement Policy. Violating the
policy in this case is equivalent to changing the Policy, modifying the Volume, then changing the
Policy back to the original Policy.

NOTE: It is always valid to write a non-empty Data Extent to the Data Partition. This results from the Data Placement Policy
and Allow Policy Update values defining when it is permitted to write Data Extents to the Index Partition rather than these
values defining when it is required that Data Extents be written to the Index Partition.

9.2.19 Volume Advisory Locking
Although most tape cartridges incorporate some form of physical write protect mechanism, it is also
useful for a software application to be able to mark an LTFS volume as write-protected. This is
achieved through the Volume Advisory Locking mechanism, whereby the application modifies the
index to indicate the locked state of the volume. Refer to Section 9.2.4 for details of permitted
operations on a locked volume.

It is recommended that a volume which has been locked should be mounted as Read Only to prevent
inadvertent modification, and to indicate to the user that the volume is in a locked state.

An implementation which claims to support version 2.3.0 or later of this specification shall support this
Volume Advisory Locking mechanism and shall honor the locked state of the volume. It is important
to note that if a locked volume is mounted by an application that complies with an earlier version of
this format specification, the application will be unaware of the Volume Advisory Locking mechanism
and so will permit changes. Also any different application can also overwrite or modify the volume;
the Volume Advisory Locking mechanism is not intended to guard against all possible modifications.
To guarantee that no further changes can be made to the volume, it is necessary to use the physical
write protect mechanism of the cartridge.

 IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 53
Version 2.5.1
© ISO 2021 – All rights reserved

10 Medium Auxiliary Memory
An LTFS Volume may use standard Medium Auxiliary Memory (MAM) to store auxiliary information
with the volume to improve the efficiency of LTFS Index retrieval and to aid the identification and
management of an LTFS Volume. Values stored in the MAM are stored on the volume in non-volatile
storage as MAM attributes. Use of these attributes can enhance performance of an implementation
but are not required for compliance to the LTFS Format Specification. That is, an LTFS Volume may
still be correctly read and written if the MAM attributes become inaccessible or are not updated.

For each partition, LTFS stores a standardized Volume Coherency Information (VCI) value in a MAM
attribute. This attribute contains a standardized value known as the Volume Change Reference
(VCR), together with the Index generation number for the current Index and the on-media location of
the current Index. These values can be used to determine whether a partition is complete and to
verify volume consistency without requiring that the Index be read from both partitions. This allows an
implementation to avoid the cost of seeking to the end of both partitions when verifying the
consistency of an LTFS Volume.

For performance reasons, it is strongly recommended that LTFS implementers use the MAM
attributes as described in Section 10.3 Use of Volume Coherency Information for LTFS if such usage
is supported by the underlying storage technology.

Standard MAM attributes can be used to identify the volume as containing LTFS format, and it is
strongly recommended that LTFS implementers populate the attributes described in Section 10.4 Use
of Host-type Attributes for LTFS. Note that some of the attributes are mandatory for implementations
which claim compliance to revision 2.2.0 or later of the LTFS format specification and where MAM
attributes are supported by the underlying storage technology.

NOTE: For consistency with the referenced specifications, throughout Section 10 Medium Auxiliary Memory, the word Volume
is used to refer to a data storage medium (e.g., a tape cartridge). The words LTFS Volume is used when referencing an ’LTFS
Volume’ as defined in Section 4.1.20

LTFS Volume and throughout this document.

10.1 Volume Change Reference
Volume Change Reference (VCR) is a non-repeating, unique value associated with a volume
coherency point. This section contains a partial description of the VCR (for informational purposes).
See the T10/SSC4 Standard for a complete description of the VCR.

The VCR attribute indicates changes in the state of the medium related to logical objects or format
specific symbols of the currently mounted volume. There is one value for the volume change
reference. The VCR attribute for each partition shall use the same single VCR value. The VCR
attribute value shall:

• be written to non-volatile medium auxiliary memory before the change on medium is valid for
reading, and

• change in a non-repeating fashion (i.e., never repeat for the life of the volume).

The VCR attribute value shall change when:

• the first logical object for each mount is written on the medium in any partition;

• the first logical object is written after GOOD status has been returned for a READ ATTRIBUTE
command with the SERVICE ACTION field set to ATTRIBUTE VALUES (i.e., 0x00) and the
FIRST ATTRIBUTE IDENTIFIER field set to VOLUME CHANGE REFERENCE (i.e., 0x0009);

• any logical object on the medium (i.e., in any partition) is overwritten; or

• the medium is formatted.

The VCR attribute may change at other times when the contents on the medium change. The VCR
attribute should not change if the logical objects on the medium do not change.

A binary value of all zeros (e.g., 0x0000) in the VCR attribute indicates that the medium has not had
any logical objects written to it (i.e., the volume is blank and has never been written to) or the value is
unknown. A binary value of all ones (e.g., 0xFFFF) in the VCR attribute indicates that the VCR

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

54 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

attribute has overflowed and is therefore unreliable. In this situation, the VCR value shall not be used.

10.2 Volume Coherency Information
The Volume Coherency Information (VCI) attribute contains information used to maintain coherency
of information for a volume. The VCI has six fields as listed in Table 17. There shall be one VCI
attribute for each LTFS Partition that is part of an LTFS Volume. The correspondence between LTFS
nomenclature and T10/SSC-4 nomenclature is shown in Table 17.

Table 17 shows a partial listing of the Volume Coherency Information attribute (for informational
purposes). See the T10/SSC-4 Standard for a complete description of the Volume Coherency
Information attribute.

Table 17 — Volume Coherency Information

LTFS Name T10 SSC-4 Name
VCR Length VOLUME CHANGE REFERENCE VALUE LENGTH
VCR VOLUME CHANGE REFERENCE VALUE
generation number VOLUME COHERENCY COUNT
block number VOLUME COHERENCY SET IDENTIFIER
Application Client Specific Information Length APPLICATION CLIENT SPECIFIC INFORMATION LENGTH
Application Client Specific Information APPLICATION CLIENT SPECIFIC INFORMATION

Notes for Table 17:

1. VCR Length: this field contains the length of the VCR field. The VCR Length field is a one-byte field.
2. VCR: this field contains the value returned in the VCR attribute after all information for which coherency is desired was

written to the volume. The length of this field is specified by the value of the VCR Length field.
3. generation number: this field contains the generation number of the LTFS Index that is pointed to by the block number

field. The generation number field is an 8-byte field. The value stored in this field shall be a big-endian binary integer
value.

4. block number: this field contains the logical block number of the LTFS Index on this partition for which coherency is
desired. Typically coherency is desired for the most recently written LTFS Index. This field and the partition ID of this
partition comprise the position of the LTFS Index on the media. A value of zero is invalid. The block number field is an 8-
byte field.

5. Application Client Specific Information Length: this field contains the length of the Application Client Specific Information
field. The Application Client Specific Information Length field is a two-byte field.

6. Application Client Specific Information: this field contains information the application client associates with this coherency
set. The length of this field is specified by the value of the Application Client Specific Information Length field.

10.3 Use of Volume Coherency Information for LTFS
Use of the Volume Coherency Information (VCI) attribute with the LTFS format is optional, but it is
recommended to improve performance. If the VCI attribute is stored for an LTFS Partition, it shall be
used as described in this section.

The VCI attribute for each volume partition contains the Application Client Specific Information (ACSI)
for the LTFS Partition stored on the volume partition. The ACSI for LTFS shall be formatted as shown
in Table 18. All offsets and lengths are measured in bytes.

Table 18 — ACSI format for LTFS

Offset Length Value Notes
0 4 ‘LTFS’
4 1 0x00 string terminator (binary)
5 36 <volume UUID> as defined in Section 7.8 UUID format
41 1 0x00 string terminator (binary)
42 1 0x01 version number (binary)

NOTE: Single quotation marks in the ‘Value’ column shall not be recorded in the Application Client Specific

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 55
Version 2.5.1
© ISO 2021 – All rights reserved

Information.

The first 43 bytes of the Application Client Specific Information will retain their current meaning in all
future versions of the LTFS Format. A future version of the LTFS Format may define additional
content to be appended to the Application Client Specific Information, in which case the version
number field will be incremented.
NOTE: The version number stored at offset 42 has been incremented from 0x0 in IBM LTFS Format Specification version 1.0
to 0x1 for LTFS Format Specification version 2.0.0. This increment allows identification of LTFS Volumes created with incorrect
MAM values by an implementation of the IBM LTFS Format Specification version 1.0.

An application may write the VCI attribute for an LTFS Partition at any time when the partition is
complete. The attribute shall contain the VCR of the cartridge and the generation number of the last
LTFS Index on the partition, with both values determined at the time the attribute is written. When
writing the VCI attribute for any LTFS Partition, an application should write the VCI attribute for all
complete partitions. Implementations of the LTFS Format Specification should update the VCI
attribute for all complete partitions immediately after fully writing an Index Construct to any partition.
The recommended order of operations is:
1. Write an Index Construct to a partition.
2. Ensure that all pending write requests are flushed to the medium. The procedure for doing this

may depend on the underlying storage technology.
3. Read the VCR attribute immediately (before issuing any additional write requests to the medium).
4. If the VCR attribute value is valid (i.e., does not contain a binary value of all ones or all zeros),

compute and write the VCI attributes containing the read VCR value for all complete partitions.

A VCR instance in a VCI attribute is up-to-date if it equals the VCR value of the cartridge. Any LTFS
Partition with a corresponding VCI attribute that contains an up-to-date VCR instance is complete. If
all partitions in an LTFS Volume have VCI attributes containing up-to-date VCR instances, the
attribute with the highest generation number determines the block position of the current Index for the
LTFS Volume. This allows an implementation to determine the state of an LTFS Volume quickly by
reading that single LTFS Index.

If any partition in an LTFS Volume has a VCI attribute containing a VCR instance which is not up-to-
date, that partition is not guaranteed to be complete. In this case, the consistency of the LTFS Volume
cannot be determined from the values in the VCI attributes for each partition. For example, the
following sequence of operations results in exactly one partition having a VCI attribute containing an
up-to-date VCR instance but the LTFS Volume is not consistent:
1. An implementation writes an Index Construct to partition ‘a’, then writes the VCI attribute for

partition ‘a’.
2. The implementation appends a Data Extent to partition ‘a’. The VCI attribute for partition ‘a’ now

contains an out-of-date VCR instance.
3. The implementation Writes an Index Construct to partition ‘b’, then writes the VCI attribute for

partition ‘b’.

In this case, the current Index for the LTFS Volume cannot be identified without reading Indexes from
both partitions and comparing their generation numbers.

10.4 Use of Host-type Attributes for LTFS
The T10 technical committee of INCITS owns the specification for MAM attributes (published in SPC-
5), and these attributes include a category known as Host-type Attributes intended to provide host-
settable information describing the volume. For full details of these attributes refer to SPC-5.

The relevant attributes are shown in Table 19. The “Support” column indicates whether
implementations which claim compliance to revision 2.4.0 or later of the LTFS format specification
should support (O – optional) or shall support (M- mandatory) the corresponding attribute.

Table 19 — Relevant Host-type Attributes for LTFS

Attribute Name Identifier Size Format Support
APPLICATION VENDOR 0800h 8 bytes ASCII M
APPLICATION NAME 0801h 32 bytes ASCII M
APPLICATION VERSION 0802h 8 bytes ASCII M

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

56 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Attribute Name Identifier Size Format Support
USER MEDIUM TEXT LABEL 0803h 160 bytes TEXT O
TEXT LOCALIZATION IDENTIFIER 0805h 1 byte BINARY O
BARCODE 0806h 32 bytes ASCII O
MEDIA POOL 0808h 160 bytes TEXT O
APPLICATION FORMAT VERSION 080Bh 16 bytes ASCII M
MEDIUM GLOBALLY UNIQUE IDENTIFIER 0820h 36 bytes BINARY O
MEDIA POOL GLOBALLY UNIQUE IDENTIFIER 0821h 36 bytes BINARY O

When accessing these attributes, the PARTITION NUMBER field in the READ ATTRIBUTE and
WRITE ATTRIBUTE SCSI commands shall be set to 0.

IMPORTANT NOTE: The Mandatory attributes are required to be set by the application which formats the volume. Some
storage technology may have insufficient available capacity to store all the attributes in MAM, in which case writing the
Mandatory attributes should take precedence over the Optional attributes. However an implementation which attempts to
mount the volume should not fail just because these attributes are not set or are unreadable.

10.4.1 Application Vendor
This attribute shall be set to indicate the manufacturer of the LTFS software which formatted the
volume. It shall be consistent with the Company name (if any) used in the Creator format in LTFS
label and index constructs (see Section 7.2 Creator format). The attribute shall be left-aligned, and
shall be padded with ASCII space (20h) characters if the company name is less than 8 characters in
length. If the company name exceeds 8 ASCII characters then the 8 left-most characters of the name
shall be used.

10.4.2 Application Name
This attribute shall be set to the ASCII string “LTFS”, left-aligned and followed by at least one ASCII
space (20h) character. This may be followed by a vendor-specific ASCII string further identifying the
application, also left-aligned and padded with ASCII space characters. If no further identification is
desired then ASCII space characters shall be added to pad to the width of the field. Both of the
following are valid uses of this attribute:

 “LTFS ”
 “LTFS Standalone XYZ ”

10.4.3 Application Version
This attribute shall be set to indicate the application version used to format the volume and shall be
consistent with the Version identifier (if any) used in the Creator format in LTFS label and index
constructs (see Section 7.2 Creator format). The attribute shall be left-aligned and padded with ASCII
space (20h) characters. The LTFS format specification does not define any particular style or content
for the value of this attribute.

10.4.4 Text Localization Identifier
This defines the character set used for the User Medium Text Label attribute (Section 10.4.5 User
Medium Text Label) (see SPC-5). If this attribute is not set then the default assumed value shall be
ASCII (value 00h).

NOTE: It is strongly recommended that the attribute should be set to indicate UTF-8 encoding (value 81h) for compatibility with
the encoding used in the rest of the LTFS format.

10.4.5 User Medium Text Label
This attribute may be used to record the volume name. If set, it shall be left-aligned and null-
terminated, and its value should be consistent with the value of the name element for the root
directory element in an index construct (see Section 9.2 Index). If the number of bytes required to
store the root directory name exceeds the available attribute storage size of 160 bytes, then the name
stored in the attribute shall be truncated at the most appropriate character boundary. If this attribute
is set, and the name is updated by writing to the VEA ltfs.volumeName, then this attribute shall be

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 57
Version 2.5.1
© ISO 2021 – All rights reserved

updated to maintain consistency.

10.4.6 Barcode
It is recommended that this attribute should be set to match the physical cartridge label (if any). If set,
it shall be left-aligned and padded with ASCII space (20h) characters.

NOTE: This attribute is related to the volume identifier in the VOL1 label (see Section 8.1.1) but without the restriction of six
characters; the attribute can hold up to 32 characters.

10.4.7 Media Pool
This attribute may be set to a media pool name and/or additional information as specified in Annex
F.4.

10.4.8 Application Format Version
This attribute shall be set to indicate the version of the LTFS format specification with which this
volume was formatted. It shall be consistent with the version attribute of the ltfslabel element as
found in the LTFS label construct (see Section 8.1.2 LTFS Label). It shall be left-aligned and padded
with ASCII space (20h) characters.

NOTE: In the special case where a volume is migrated to a newer version of the format, this attribute should be updated to
continue to provide an accurate view of the volume. In this case, the attribute may no longer be consistent with the version
attribute of the ltfslabel element.

10.4.9 Medium Globally Unique Identifier
This attribute may be used to store the volume UUID, generated when a volume is formatted. It
provides access to the UUID of the volume without requiring it to be mounted.

If implemented, the value shall be stored according to the format defined in Section 7.8 UUID format
and shall be stored without null termination. The value shall be consistent with the volumeuuid value
stored in the LTFS volume label (Section 8.1.2 LTFS Label) and in the LTFS index (Section 9.2.3
Required elements for every index).

10.4.10 Media Pool Globally Unique Identifier
This attribute may be set to a media pool UUID as specified in Annex F.4.

10.4.11 Example attributes
An implementation that populates all of the attributes described in Section 10.4 Use of Host-type
Attributes for LTFS would follow the pattern shown in Table 20:

Table 20 — Example of Host-type Attributes

Name 1 2 3 4 5 6 7 8
Application Vendor “H” “P” 20h 20h 20h 20h 20h 20h
Application Name “L” “T” “F” “S” 20h 20h 20h 20h ... 20h
Application Version “1” “.” “2” “.” “3” 20h 20h 20h
User Medium Text Label “M” “y” “T” “a” “p” “e” “V” “o” “l” 00h
Text Localization Identifier 81h
Barcode “A” “B” “1” “2” “3” “4” “L” “5” … 20h
Media Pool “A” “n” “i” “m” “a” “t” “i” “o” “n” 00h
Application Format Version “2” “.” “2” “.” “0” 20h 20h 20h … 20h
Medium Globally Unique Identifier “3” “0” “a” “9” “1” “a” “0” “8” “-“ …
Media Pool Globally Unique Identifier “8” “c” “5” “5” “c” “1” “4” “1” “-” “...”

10.5 Volume Advisory Locking
The Volume Advisory Locking state of the volume is stored in MAM attribute 1623h, as shown in
Table 21 below. This attribute falls within the “Vendor-specific Host-type” range of attributes; the
identifier has been chosen to minimize the likelihood of collision with a different application.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

58 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Table 21 — Volume Locked MAM Attribute

Attribute Name Identifier Size Format Support

VOLUME LOCKED 1623h 1 byte BINARY M

The MAM attribute shall be set to one of the values shown in Table 22.

Table 22 — Volume Locked MAM Attribute Values

Value Meaning
0x00 Volume is unlocked (default state)
0x01 Volume is locked at user request
0x02 Volume is locked due to a permanent write error, location is not specified
0x03 Volume is permanently locked at user request
0x04 Volume is locked due to a permanent write error in the data partition
0x05 Volume is locked due to a permanent write error in the index partition
0x06 Volume is locked due to permanent write errors in both partitions

The value 0x02 is retained for backwards compatibility with version 2.3 of the specification but is
deprecated for implementations claiming support for version 2.4 or later.

When a volume is formatted, the attribute shall be set to the unlocked state. If a volume does not
report this MAM attribute or does not support MAM at all, the locked state can only be determined by
reading the index. The volumelockstate element which may be stored in the volume index (see
Section 9.2.4) shall be treated as definitive except in the case where the MAM attribute indicates that
the volume encountered a permanent write error (in which case the index cannot be trusted).

If a volume has been locked due to a permanent write error, an implementation may choose whether
to require recovery before mounting or to allow mounting while still in the locked error state. A volume
in this state shall be mounted as read-only using the highest generation index available on the tape in
either partition. If the volume is later recovered using some other means, the MAM attribute should be
reset to the unlocked state.

The attribute shall be stored for the index partition (i.e. the PARTITION field in the SCSI WRITE
ATTRIBUTE command shall correspond to the index partition of the volume).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 59
Version 2.5.1
© ISO 2021 – All rights reserved

Annex A (normative) LTFS Label XML Schema

This annex shows the LTFS Label XML Schema.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ltfslabel">
 <xs:complexType>
 <xs:all>
 <xs:element name="creator" type="xs:string"/>
 <xs:element name="formattime" type="datetime"/>
 <xs:element name="volumeuuid" type="uuid"/>
 <xs:element name="location">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="partition" type="partitionid"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="partitions">
 <xs:complexType>
 <xs:all>
 <xs:element name="index" type="partitionid"/>
 <xs:element name="data" type="partitionid"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name="blocksize" type="blocksize"/>
 <xs:element name="compression" type="xs:boolean"/>
 </xs:all>
 <xs:attribute name="version" use="required" type="version"/>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name="blocksize">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="4096"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="version">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]+\.[0-9]+\.[0-9]+"/>
 <xs:enumeration value="2.5.0"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="datetime">
 <xs:restriction base="xs:string">
 <xs:pattern
 value="[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{9}Z"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="partitionid">
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-z]"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="uuid">
 <xs:restriction base="xs:string">
 <xs:pattern

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

http://www.w3.org/2001/XMLSchema
https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

60 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

 value="[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 61
Version 2.5.1
© ISO 2021 – All rights reserved

Annex B (normative) LTFS Index XML Schemas

This annex contains the XML schemas for Full and Incremental LTFS Indexes.

B.1 LTFS Full Index XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ltfsindex">
 <xs:complexType>
 <xs:all>
 <xs:element name="creator" type="xs:string" />
 <xs:element name="comment" type="xs:string" minOccurs="0" />
 <xs:element name="volumeuuid" type="uuid" />
 <xs:element name="generationnumber" type="xs:nonNegativeInteger" />
 <xs:element name="updatetime" type="datetime" />
 <xs:element name="location" type="tapeposition" />
 <xs:element name="previousgenerationlocation" type="tapeposition" minOccurs="0" />
 <xs:element name="previousincrementallocation" type="tapeposition" minOccurs="0"
/>
 <xs:element name="allowpolicyupdate" type="xs:boolean" />
 <xs:element name="dataplacementpolicy" type="policy" minOccurs="0" />
 <xs:element name="volumelockstate" type="locktype" minOccurs="0" />
 <xs:element name="highestfileuid" type="xs:nonNegativeInteger" />
 <xs:element ref="directory" />
 </xs:all>
 <xs:attribute name="version" use="required" type="version" />
 </xs:complexType>
 </xs:element>
 <xs:element name="directory">
 <xs:complexType>
 <xs:all>
 <xs:element name="fileuid" type="xs:nonNegativeInteger" />
 <xs:element name="name" type="nametype" />
 <xs:element name="creationtime" type="datetime" />
 <xs:element name="changetime" type="datetime" />
 <xs:element name="modifytime" type="datetime" />
 <xs:element name="accesstime" type="datetime" />
 <xs:element name="backuptime" type="datetime" />
 <xs:element name="readonly" type="xs:boolean" />
 <xs:element ref="extendedattributes" minOccurs="0" />
 <xs:element name="contents">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="directory" />
 <xs:element ref="file" />
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name="file">
 <xs:complexType>
 <xs:all>
 <xs:element name="fileuid" type="xs:nonNegativeInteger" />
 <xs:element name="name" type="nametype" />
 <xs:element name="length" type="xs:nonNegativeInteger" />
 <xs:element name="creationtime" type="datetime" />
 <xs:element name="changetime" type="datetime" />
 <xs:element name="modifytime" type="datetime" />
 <xs:element name="accesstime" type="datetime" />
 <xs:element name="backuptime" type="datetime" />
 <xs:element name="readonly" type="xs:boolean" />
 <xs:element ref="extendedattributes" minOccurs="0" />
 <xs:element name="openforwrite" type="xs:boolean" minOccurs="0" />
 <xs:element ref="extenttype" minOccurs="0" />
 </xs:all>
 </xs:complexType>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

62 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

 </xs:element>
 <xs:element name="extendedattributes">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="xattr">
 <xs:complexType>
 <xs:all>
 <xs:element name="key" type="nametype" />
 <xs:element name="value">
 <xs:complexType mixed="true">
 <xs:attribute name="type" default="text">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="base64" />
 <xs:enumeration value="text" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="extenttype" abstract="true" />
 <xs:element name="extentinfo" substitutionGroup="extenttype">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="extent">
 <xs:complexType>
 <xs:all>
 <xs:element name="partition" type="partitionid" />
 <xs:element name="startblock" type="xs:nonNegativeInteger" />
 <xs:element name="byteoffset" type="xs:nonNegativeInteger" />
 <xs:element name="bytecount" type="xs:positiveInteger" />
 <xs:element name="fileoffset" type="xs:nonNegativeInteger" />
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="symlink" type="nametype" substitutionGroup="extenttype" />
 <xs:complexType name="policy">
 <xs:sequence>
 <xs:element name="indexpartitioncriteria">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="size" type="xs:nonNegativeInteger" />
 <xs:element name="name" type="nametype" minOccurs="0" maxOccurs="unbounded"
/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="tapeposition">
 <xs:all>
 <xs:element name="partition" type="partitionid" />
 <xs:element name="startblock" type="xs:nonNegativeInteger" />
 </xs:all>
 </xs:complexType>
 <xs:complexType name="nametype">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="percentencoded" type="xs:boolean" default="false" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="version">

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 63
Version 2.5.1
© ISO 2021 – All rights reserved

 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]+\.[0-9]+\.[0-9]+" />
 <xs:enumeration value="2.5.0" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="datetime">
 <xs:restriction base="xs:string">
 <xs:pattern
 value="[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{9}Z" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="partitionid">
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-z]" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="locktype">
 <xs:restriction base="xs:string">
 <xs:enumeration value="unlocked" />
 <xs:enumeration value="locked" />
 <xs:enumeration value="permlocked" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="uuid">
 <xs:restriction base="xs:string">
 <xs:pattern
 value="[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-
9]{12}"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

B.2 LTFS Incremental Index XML Schema

The XML Schema Definition (XSD) language has a limited ability to define and validate complex
constraint relationships such as those shown below. As a result, the schema definition in this section
will perform basic validation of an Incremental Index, but is not capable of detecting certain invalid
constructs within the file and directory elements. Thus an Incremental Index may pass validation by
the schema below, but still be invalid according to the definitions in this specification (which always
take precedence).

The specific constraints that cannot be expressed in the XSD (but must be adhered to according to
the specification) are:

1. A directory element in an Increment Index must contain:
• a name element, AND

• exactly ONE of the following:
o a deleted element
o a contents element
o a fileuid element AND a contents element PLUS any other valid directory

elements (except deleted)

2. A file element in an Increment Index must contain:
• a name element, AND

• exactly ONE of the following:
o a deleted element
o a fileuid element PLUS any other valid file elements (except deleted)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="ltfsincrementalindex">
 <xs:complexType>
 <xs:all>
 <xs:element name="creator" type="xs:string"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 <xs:element name="volumeuuid" type="uuid"/>
 <xs:element name="generationnumber" type="xs:nonNegativeInteger"/>
 <xs:element name="updatetime" type="datetime"/>
 <xs:element name="location" type="tapeposition"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

64 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

 <xs:element name="previousgenerationlocation" type="tapeposition"/>
 <xs:element name="previousincrementallocation" type="tapeposition" minOccurs="0"/>
 <xs:element name="volumelockstate" type="locktype" minOccurs="0"/>
 <xs:element name="highestfileuid" type="xs:nonNegativeInteger"/>
 <xs:element ref="directory"/>
 </xs:all>
 <xs:attribute name="version" use="required" type="version"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="directory">
 <xs:complexType>
 <xs:all>
 <xs:element name="name" type="nametype"/>
 <xs:element name="fileuid" type="xs:nonNegativeInteger" minOccurs="0" />
 <xs:element name="creationtime" type="datetime" minOccurs="0"/>
 <xs:element name="changetime" type="datetime" minOccurs="0"/>
 <xs:element name="modifytime" type="datetime" minOccurs="0"/>
 <xs:element name="accesstime" type="datetime" minOccurs="0"/>
 <xs:element name="backuptime" type="datetime" minOccurs="0"/>
 <xs:element name="readonly" type="xs:boolean" minOccurs="0"/>
 <xs:element name="deleted" type="xs:string" fixed="" minOccurs="0"/>
 <xs:element ref="extendedattributes" minOccurs="0"/>
 <xs:element ref="contents" minOccurs="0" />
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name="contents">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="directory"/>
 <xs:element ref="file"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="file">
 <xs:complexType>
 <xs:all>
 <xs:element name="name" type="nametype"/>
 <xs:element name="fileuid" type="xs:nonNegativeInteger" minOccurs="0" />
 <xs:element name="length" type="xs:nonNegativeInteger" minOccurs="0"/>
 <xs:element name="creationtime" type="datetime" minOccurs="0"/>
 <xs:element name="changetime" type="datetime" minOccurs="0"/>
 <xs:element name="modifytime" type="datetime" minOccurs="0"/>
 <xs:element name="accesstime" type="datetime" minOccurs="0"/>
 <xs:element name="backuptime" type="datetime" minOccurs="0"/>
 <xs:element name="readonly" type="xs:boolean" minOccurs="0"/>
 <xs:element name="deleted" type="xs:string" fixed="" minOccurs="0"/>
 <xs:element ref="extendedattributes" minOccurs="0"/>
 <xs:element name="openforwrite" type="xs:boolean" minOccurs="0"/>
 <xs:element ref="extenttype" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name="extendedattributes">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="xattr">
 <xs:complexType mixed="true">
 <xs:all>
 <xs:element name="key" type="nametype"/>
 <xs:element name="value">
 <xs:complexType>
 <xs:attribute name="type" default="text">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="base64"/>
 <xs:enumeration value="text"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 65
Version 2.5.1
© ISO 2021 – All rights reserved

 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="extenttype" abstract="true"/>
 <xs:element name="extentinfo" substitutionGroup="extenttype">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="extent">
 <xs:complexType>
 <xs:all>
 <xs:element name="partition" type="partitionid"/>
 <xs:element name="startblock" type="xs:nonNegativeInteger"/>
 <xs:element name="byteoffset" type="xs:nonNegativeInteger"/>
 <xs:element name="bytecount" type="xs:positiveInteger"/>
 <xs:element name="fileoffset" type="xs:nonNegativeInteger"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="symlink" type="nametype" substitutionGroup="extenttype"/>
 <xs:complexType name="tapeposition">
 <xs:all>
 <xs:element name="partition" type="partitionid"/>
 <xs:element name="startblock" type="xs:nonNegativeInteger"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="nametype">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="percentencoded" type="xs:boolean" default="false"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="version">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]+\.[0-9]+\.[0-9]+"/>
 <xs:enumeration value="2.5.0"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="datetime">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-
9]{9}Z"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="partitionid">
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-z]"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="locktype">
 <xs:restriction base="xs:string">
 <xs:enumeration value="unlocked"/>
 <xs:enumeration value="locked"/>
 <xs:enumeration value="permlocked"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="uuid">
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-
F0-9]{12}"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

66 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Annex C (normative) Reserved Extended Attribute definitions

In an LTFS Index, all extended attribute names that start with the prefix “ltfs” with any capitalization
are reserved for use by the LTFS Format; i.e., any names starting with a case-insensitive match for
the letters “ltfs” are reserved.

Any writer of an LTFS Volume shall only use reserved extended attribute names to store extended
attribute values in conformance with the lists in Table C. 1 through Table C. 5. However, two
extended attribute namespaces are reserved for implementation-specific information.

The extended attribute namespace “ltfs.permissions.<type>” shall be used only for storing
permissions as described in Annex F.2 File Permissions in LTFS.

The extended attribute namespace “ltfs.mediaPool.<attribute>” shall be used only for storing media
pool information as described in Annex F.4 LTFS Media Pools.

The extended attribute namespace “ltfs.vendor.X.Y” shall be used for implementation-specific
attributes, where X identifies a company, organization or technology standard and Y is an attribute
name.

NOTE: The Storage Networking Industry Association (SNIA) maintains a list of registered vendor names at
http://www.snia.org/ltfs.

This section describes the meaning of defined, reserved extended attributes.

Support for each of these defined, reserved extended attributes is optional for implementations in
compliance with this specification.

C.1 Software Metadata

 Table C. 1 describes the extended attribute values for software metadata.

Table C. 1 — Reserved extended attribute definitions: Software metadata

Extended Attribute Value description
ltfs.softwareProduct Product name of this software

ltfs.softwareVendor Software vendor of this software

ltfs.softwareVersion LTFS version number

ltfs.softwareFormatSpec LTFS Format spec version supported by this software

C.2 Drive Metadata

Table C. 2 describes the extended attribute values for drive metadata.

Table C. 2 — Reserved extended attribute definitions: Drive metadata

Extended Attribute Value description
ltfs.driveEncryptionState Current encryption status of the drive ("true", "false", or

"unknown").
ltfs.driveEncryptionMethod Current encryption method of the drive.
ltfs.driveCaptureDump Writing any value to this extended attribute shall trigger a

drive dump on any implementation that supports this
extended attribute.

C.3 Object Metadata

Table C. 3 describes the extended attribute values for object metadata.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

http://www.snia.org/ltfs
https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 67
Version 2.5.1
© ISO 2021 – All rights reserved

Table C. 3 — Reserved extended attribute definitions: Object metadata

Extended Attribute Value description
ltfs.accessTime Date and time of last access to object.

ltfs.backupTime Date and time of last archive or backup of object.
ltfs.changeTime Date and time of last status change to object.
ltfs.createTime Date and time of object creation.
ltfs.fileUID Integer identifier for objects in the filesystem. Guaranteed to be

unique within the LTFS Volume.
ltfs.modifyTime Date and time of last object modification.
ltfs.partition Partition on which the first extent of the file is stored.
ltfs.startblock Block address where the first extent of the file is stored.
ltfs.spannedFileOffset The logical file offset of the first byte of the segment relative to the

full file. See Annex F.1 for full description.

C.4 Volume Metadata

Table C. 4 describes the extended attribute values for volume metadata.

Table C. 4 — Reserved extended attribute definitions: Volume metadata

Extended Attribute Value description
ltfs.commitMessage On any implementation that supports this extended attribute, writing text to this

extended attribute shall trigger a filesystem sync, using the provided text as the
comment tag for the index written to the medium. A filesystem sync is an
operation that causes all in-memory filesystem changes to be flushed to the
storage medium followed by writing of an LTFS index. The sync operation is not
required to produce a consistent LTFS Volume, but shall ensure that sufficient
data is written to the medium so as to allow the LTFS Volume to be recovered to
a consistent state without loss of data.

Note that in contrast to ltfs.sync, writing to this extended attribute shall always
cause an index to be written to the storage medium, even when there are no
changed objects in the filesystem.

Reading this extended attribute shall return the commit message in the most
recent LTFS index on the storage medium.

ltfs.indexVersion LTFS format version string for the Index. This string provides a human-readable
identifier for the LTFS format version that generated the Index.

ltfs.indexType Either “Full” or “Incr”, describing the most recent index on the media.
ltfs.indexCreator Creator string for the Index. This string provides a human- readable identifier for

the product that generated the Index. As defined in Section 7.2 Creator format.
ltfs.indexGeneration Last LTFS Index generation number written to media.
ltfs.indexLocation Location of the last Index on the media in the form ‘p:l’, where p is an alphabetic

character value indicating the internal LTFS partition identifier, and l is the
logical block number within the partition. For example, the value ‘a:1000’
indicates that the last Index starts at logical block 1000 on partition a.

ltfs.indexPrevious Location of the previous Full Index on the media in the form ‘p:l’, where p is an
alphabetic character value indicating the internal LTFS partition identifier, and l
is the logical block number within the partition. For example, the value ‘b:55’
indicates that the previous Full Index starts at logical block 55 on partition b.

ltfs.indexPreviousIncremental Location of the previous Incremental Index on the media since the preceding
Full Index, in the form ‘p:l’ as for ltfs.indexPrevious. Reported as the value ‘z:0’
if there has not been an Incremental Index since the last Full Index.

ltfs.incrIndexCount Number of Incremental Indexes on the media since the last Full Index.
ltfs.indexTime Date and time of when last LTFS Index was written to media.
ltfs.labelVersion LTFS format version string for the LTFS label. This string provides a human-

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

68 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Extended Attribute Value description
readable identifier for the LTFS format version that generated the LTFS label.

ltfs.labelCreator Creator string for the LTFS Label. This string provides a human- readable
identifier for the product that generated the LTFS Label. As defined in Section
7.2 Creator format.

ltfs.partitionMap The on media partition layout for the LTFS Volume. Value is of the form
“W:x,Y:z” where W and Y have the value ‘I’ indicating an index partition, or ‘D’
indicating a data partition. x and y are an alphabetic character value indicating
the internal LTFS partition identifier. For example, the value “I:a,D:b” indicates
that LTFS Partition ‘a’ is used as the index partition, and LTFS Partition ‘b’ is
used as the data partition.

ltfs.policyAllowUpdate Indicates whether the data placement policy for the volume may be updated.
ltfs.policyExists Indicates whether a data placement policy has been set for the volume.
ltfs.policyMaxFileSize Maximum file size for files that match the data placement policy for the volume.
ltfs.sync On any implementation that supports this extended attribute, writing any value to

this extended attribute shall trigger a filesystem sync, except as noted below. A
filesystem sync is an operation that causes all in-memory filesystem changes to
be flushed to the storage medium followed by writing of an LTFS index. The
sync operation is not required to produce a consistent LTFS Volume, but shall
ensure that sufficient data is written to the medium so as to allow the LTFS
Volume to be recovered to a consistent state without loss of data. An
implementation may define its own commit message to be used in the index
written by this operation.

If there are no changed objects in the filesystem (i.e. the most recent index on
the storage medium is consistent with the in-memory index) then an
implementation is not required to write another index.

Reading this extended attribute shall trigger the same behavior.

ltfs.volumeBlocksize Blocksize for the LTFS Volume specified at format time.
ltfs.volumeCompression Compression setting for the LTFS Volume.
ltfs.volumeFormatTime Date and time when the LTFS Volume was formatted.
ltfs.volumeName Name of the LTFS Volume.
ltfs.volumeSerial Serial number for the LTFS Volume specified at format time.
ltfs.volumeUUID UUID for the LTFS Volume.
ltfs.mamBarcode The MAM attribute value stored as BARCODE
ltfs.mamApplicationVendor The MAM attribute value stored as APPLICATION VENDOR
ltfs.mamApplicationVersion The MAM attribute value stored as APPLICATION VERSION
ltfs.mamApplicationFormat
Version

The MAM attribute value stored as APPLICATION FORMAT VERSION

ltfs.volumeLockState Reflects the protected state of the volume (see Section 9.2.19 Volume Advisory
Locking). A value of 0 means the volume may be modified; a non-zero value
indicates that the volume has been locked against further modifications.

This attribute may be written to change the volumelockstate element in the
index; the implementation should update the corresponding MAM attribute
accordingly (see Section 10.5).

An application may report various forms of protection by encoding them into
these bit fields:

Bit 31 ... 8 7 6 5 4 3 2 1 0

Field 0
(Reserved) IPPWE DPPWE PWE PERSWP PRMWP

Physical
Write

Protect

Perm-
Locked Locked

The Locked and PermLocked bits correspond to the index information described

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 69
Version 2.5.1
© ISO 2021 – All rights reserved

Extended Attribute Value description
in Section 9.2.4 for the volumelockstate element and are mutually exclusive.

The Physical Write Protect bit should be reported as 1 if writing to the volume
has been prevented by some physical means (for example sliding a Protect tab
on a tape cartridge). It cannot be changed by writing this attribute and should be
ignored in that case.

The Persistent Write Protect (PERSWP) and Permanent Write Protect
(PRMWP) bits should be reported as 1 if the tape drive has been set into the
corresponding mode. Note that support for PERSWP and PRMWP is
dependent on the underlying tape drive technology. An application may support
changing PERSWP and PRMWP, contingent on the underlying device also
supporting those fields. Refer to the T10 draft specification SSC4 Section
4.2.16 “Write Protection” for further details.

The Index Partition Permanent Write Error (IPPWE) and Data Partition
Permanent Write Error (DPPWE) bits should be reported as 1 if the tape drive
encountered a permanent write error whilst writing in the corresponding partition.

The non-partition-specific Permenent Write Error (PWE) bit is preserved for
backwards compatibility with version 2.3 but is deprecated for implementations
claiming compliance with version 2.4 of the specification. IPPWE and/or DPPWE
should be used instead (based on the value stored in the MAM attribute 1623h,
see Section 10.5 Volume Advisory Locking).

The IPPWE, DPPWE and PWE bits cannot be changed by writing this attribute,
and should be ignored in that case. If one or more of these bits are reported as
one then the Locked bit should also be reported as 1.

NOTE 1: The USER MEDIUM TEXT LABEL MAM attribute is available as ltfs.volumeName.

NOTE 2: The VEAs ltfs.softwareVendor, ltfs.softwareProduct, ltfs.softwareVersion, and ltfs.softwareFormatSpec refer to the
currently executing software, whereas the above names ltfs.mamApplicationVendor etc refers to the values stored in the MAM
at format time.

NOTE 3: Setting or updating the VEA ltfs.mamBarcode after the volume has been formatted should update the MAM attribute
but shall not modify the VOL1 label nor the value reported for the VEA ltfs.volumeSerial.

C.5 Media Metadata

Table C. 5 describes the extended attribute values for media metadata.

Table C. 5 — Reserved extended attribute definitions: Media metadata

Extended Attribute Value description
ltfs.mediaBeginningMediumPasses Total number of times the beginning of medium position

has been passed. If the storage hardware cannot report
this data the value will be −1.

ltfs.mediaDataPartitionAvailableSpace Total available space in the Data Partition on the medium.
Value is an integer count measured in units of 1048576
bytes.

ltfs.mediaDataPartitionTotalCapacity Total capacity of the Data Partition on the medium. Value is
an integer count measured in units of 1048576 bytes.

ltfs.mediaDatasetsRead Total number of datasets read from the medium over the
lifetime of the media. If the storage hardware cannot report
this data the value will be −1.

ltfs.mediaDatasetsWritten Total number of datasets written to the medium over the
lifetime of the media. If the storage hardware cannot report
this data the value will be −1.

ltfs.mediaEfficiency An overall measure of the condition of the loaded media.
The value 0x00 indicates that the condition is unknown.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

70 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Extended Attribute Value description
The range of known values is from 0x01 (best condition) to
0xFF (worst condition). If the storage hardware cannot
report this data the value will be −1.

ltfs.mediaIndexPartitionAvailableSpace Total available space in the Index Partition on the medium.
Value is an integer count measured in units of 1048576
bytes.

ltfs.mediaIndexPartitionTotalCapacity Total capacity of the Index Partition on the medium. Value
is an integer count measured in units of 1048576 bytes.

ltfs.mediaLoads Number of times the media has been loaded in a drive. For
example, with tape media this will be the tread count. If the
storage hardware cannot report this data the value will be
−1.

ltfs.mediaMBRead Total number of megabytes of logical object data read from
the medium after compression over the lifetime of the
media. The value shall be rounded up to the next whole
megabyte. The value reported shall include bytes read as
part of reading filemarks from the media. If the storage
hardware cannot report this data the value will be −1.

ltfs.mediaMBWritten Total number of megabytes of logical object data written to
the medium after compression over the lifetime of the
media. The value shall be rounded up to the next whole
megabyte. The value reported shall include bytes written
as part of writing filemarks to the media. If the storage
hardware cannot report this data the value will be −1.

ltfs.mediaMiddleMediumPasses Total number of times the physical middle position of the
user data region of medium has been passed. If the
storage hardware cannot report this data the value will be
−1.

ltfs.mediaEncrypted True if the Medium is encrypted or False if not.
ltfs.mediaPermanentReadErrors Total number of unrecovered data read errors over the

lifetime of the media. This is the total number of times that
a read type command terminated with a sense key of
MEDIUM ERROR, HARDWARE ERROR, or equivalent
over the media life. If the storage hardware cannot report
this data the value will be −1.

ltfs.mediaPermanentWriteErrors Total number of unrecovered data write errors over the
lifetime of the media. This is the total number of times that
a write type command terminated with a sense key of
MEDIUM ERROR, HARDWARE ERROR, or equivalent
over the media life. If the storage hardware cannot report
this data the value will be −1.

ltfs.mediaPreviousPermanentReadErrors Total number of unrecovered read errors that occurred
during the previous load of the media. This is the total
number of times that a read type command terminated with
a sense key of MEDIUM ERROR, HARDWARE ERROR,
or equivalent during the previous load session. If the
storage hardware cannot report this data the value will be
−1.

ltfs.mediaPreviousPermanentWriteErrors Total number of unrecovered write errors that occurred
during the previous load of the media. This is the total
number of times that a write type command terminated with
a sense key of MEDIUM ERROR, HARDWARE ERROR,
or equivalent during the previous load session. If the
storage hardware cannot report this data the value will be
−1.

ltfs.mediaRecoveredReadErrors Total number of recovered read errors for the lifetime of the
media. If the storage hardware cannot report this data the
value will be −1.

ltfs.mediaRecoveredWriteErrors Total number of recovered data write correction errors over
the lifetime of the media. If the storage hardware cannot

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 71
Version 2.5.1
© ISO 2021 – All rights reserved

Extended Attribute Value description
report this data the value will be −1.

ltfs.mediaStorageAlert A 64bit value containing alert flags for the storage system.
For data tape media this value is equal to the standard
tape alert flags. The standard tape alert flags are cleared
when read, but this flag’s values are latched after a flag is
raised once. When a 64bit value is written to this EA the
flags that correspond to the 1 bits written are cleared; this
is the only way that flags are cleared. If the storage
hardware cannot report this data the value will be the string
“UNKNOWN”.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

72 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Annex D (informative) Example of Valid Simple Complete LTFS Volume

Figure D. 1 shows the content of a simple LTFS volume. This volume contains three files “A”, “B”, and
“C”. File “A” is comprised of three extents. Files “B” and “C” each have one extent.

Figure D.1 — Content of a simple LTFS volume

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 73
Version 2.5.1
© ISO 2021 – All rights reserved

Annex E (informative) Complete Example LTFS Full Index

This annex shows a complete example of an LTFS Full Index that includes the important features of
the Index format.

In this index:

• The file directory2/binary_file.bin has a length (20000000 bytes) greater than that of its
extent list (10485760 bytes). The extra length is implicitly filled with zero bytes as
described in Section 6.1 Extent Lists.

• Block 8 of partition ‘b’ is shared. The first 720000 bytes of the block are used by
directory2/binary_file.bin and directory2/binary_file2.bin. The next 105008 bytes are
used only by directory2/binary_file2.bin. This form of sharing data between files is
described in Section 6.3.4 Shared Data.

• The file partialfile.bin was still open for writing at the time that the index was written. The
length and extent information reflect the file properties at that point in time. A cleanly
unmounted volume would not have any open files so the openforwrite element (see
Section 9.2.9) would not normally be present.

<?xml version="1.0" encoding="UTF-8"?>
<ltfsindex version="2.5.0">
 <creator>IBM LTFS 2.5.0 - Linux - ltfs</creator>
 <volumeuuid>5d217f76-53e6-4d6f-91d1-c4213d94a742</volumeuuid>
 <generationnumber>3</generationnumber>
 <updatetime>2018-10-01T11:45:27.150534438Z</updatetime>
 <location>
 <partition>a</partition>
 <startblock>6</startblock>
 </location>
 <previousgenerationlocation>
 <partition>b</partition>
 <startblock>20</startblock>
 </previousgenerationlocation>
 <allowpolicyupdate>true</allowpolicyupdate>
 <dataplacementpolicy>
 <indexpartitioncriteria>
 <size>1048576</size>
 <name>*.txt</name>
 </indexpartitioncriteria>
 </dataplacementpolicy>
 <highestfileuid>11</highestfileuid>
 <directory>
 <fileuid>1</fileuid>
 <name>LTFS Volume Name</name>
 <readonly>false</readonly>
 <creationtime>2013-02-16T19:13:42.986549106Z</creationtime>
 <changetime>2013-02-16T19:13:47.517309274Z</changetime>
 <modifytime>2013-02-16T19:13:47.517309274Z</modifytime>
 <accesstime>2013-02-16T19:13:42.986549106Z</accesstime>
 <backuptime>2013-02-16T19:13:42.986549106Z</backuptime>
 <contents>
 <directory>
 <fileuid>2</fileuid>
 <name>directory1</name>
 <readonly>false</readonly>
 <creationtime>2013-02-16T19:13:43.006599071Z</creationtime>
 <changetime>2013-02-16T19:13:48.524075283Z</changetime>
 <modifytime>2013-02-16T19:13:46.514736591Z</modifytime>
 <accesstime>2013-02-16T19:13:43.006599071Z</accesstime>
 <backuptime>2013-02-16T19:13:43.006599071Z</backuptime>
 <extendedattributes>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

74 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

 <xattr>
 <key>binary_xattr</key>
 <value type="base64">yDaaBPBdIUqMhg==</value>
 </xattr>
 <xattr>
 <key>empty_xattr</key>
 <value/>
 </xattr>
 </extendedattributes>
 <contents>
 <directory>
 <fileuid>3</fileuid>
 <name>subdir1</name>
 <readonly>false</readonly>
 <creationtime>2013-02-16T19:13:46.514736591Z</creationtime>
 <changetime>2013-02-16T19:13:46.514736591Z</changetime>
 <modifytime>2013-02-16T19:13:46.514736591Z</modifytime>
 <accesstime>2013-02-16T19:13:46.514736591Z</accesstime>
 <backuptime>2013-02-16T19:13:46.514736591Z</backuptime>
 <contents/>
 </directory>
 </contents>
 </directory>
 <directory>
 <fileuid>4</fileuid>
 <name>directory2</name>
 <readonly>false</readonly>
 <creationtime>2013-02-16T19:13:43.007872849Z</creationtime>
 <changetime>2013-02-16T19:13:46.512350773Z</changetime>
 <modifytime>2013-02-16T19:13:46.512350773Z</modifytime>
 <accesstime>2013-02-16T19:13:43.007872849Z</accesstime>
 <backuptime>2013-02-16T19:13:43.007872849Z</backuptime>
 <contents>
 <file>
 <fileuid>5</fileuid>
 <name>sparse_file.bin</name>
 <length>20000000</length>
 <readonly>false</readonly>
 <creationtime>2013-02-16T19:13:45.012828533Z</creationtime>
 <changetime>2013-02-16T19:13:46.509553802Z</changetime>
 <modifytime>2013-02-16T19:13:46.509553802Z</modifytime>
 <accesstime>2013-02-16T19:13:45.012828533Z</accesstime>
 <backuptime>2013-02-17T19:15:34.032137221Z</backuptime>
 <extentinfo>
 <extent>
 <partition>b</partition>
 <startblock>8</startblock>
 <byteoffset>0</byteoffset>
 <bytecount>720000</bytecount>
 <fileoffset>0</fileoffset>
 </extent>
 <extent>
 <partition>b</partition>
 <startblock>18</startblock>
 <byteoffset>0</byteoffset>
 <bytecount>600000</bytecount>
 <fileoffset>720000</fileoffset>
 </extent>
 <extent>
 <partition>b</partition>
 <startblock>9</startblock>
 <byteoffset>271424</byteoffset>
 <bytecount>9165760</bytecount>
 <fileoffset>1375000</fileoffset>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 75
Version 2.5.1
© ISO 2021 – All rights reserved

 </extent>
 </extentinfo>
 </file>
 <file>
 <fileuid>6</fileuid>
 <name>binary_file2.bin</name>
 <length>825008</length>
 <readonly>false</readonly>
 <creationtime>2013-02-16T19:13:46.512350773Z</creationtime>
 <changetime>2013-02-16T19:13:46.513510263Z</changetime>
 <modifytime>2013-02-16T19:13:46.513510263Z</modifytime>
 <accesstime>2013-02-16T19:13:46.000000000Z</accesstime>
 <backuptime>2013-02-16T19:13:46.512350773Z</backuptime>
 <extentinfo>
 <extent>
 <partition>b</partition>
 <startblock>8</startblock>
 <byteoffset>0</byteoffset>
 <bytecount>825008</bytecount>
 <fileoffset>0</fileoffset>
 </extent>
 </extentinfo>
 </file>
 </contents>
 </directory>
 <file>
 <fileuid>7</fileuid>
 <name>testfile.txt</name>
 <length>5</length>
 <readonly>false</readonly>
 <creationtime>2013-02-16T19:13:44.009581288Z</creationtime>
 <changetime>2013-02-16T19:13:49.532111261Z</changetime>
 <modifytime>2013-02-16T19:13:49.532111261Z</modifytime>
 <accesstime>2013-02-16T19:13:49.527726902Z</accesstime>
 <backuptime>2013-02-16T19:13:44.009581288Z</backuptime>
 <extendedattributes>
 <xattr>
 <key>author_name</key>
 <value>Michael Richmond</value>
 </xattr>
 </extendedattributes>
 <extentinfo>
 <extent>
 <partition>a</partition>
 <startblock>4</startblock>
 <byteoffset>0</byteoffset>
 <bytecount>5</bytecount>
 <fileoffset>0</fileoffset>
 </extent>
 </extentinfo>
 </file>
 <file>
 <fileuid>8</fileuid>
 <name>read_only_file</name>
 <length>0</length>
 <readonly>true</readonly>
 <creationtime>2013-02-16T19:13:47.517309274Z</creationtime>
 <changetime>2013-02-16T19:13:47.519534438Z</changetime>
 <modifytime>2013-02-16T19:13:47.000000000Z</modifytime>
 <accesstime>2013-02-16T19:13:47.000000000Z</accesstime>
 <backuptime>2013-02-16T19:13:47.517309274Z</backuptime>
 <extendedattributes>
 <xattr>
 <key>author_name</key>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

76 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

 <value>Brian Biskeborn</value>
 </xattr>
 </extendedattributes>
 </file>
 <file>
 <fileuid>9</fileuid>
 <name>symlink_file</name>
 <length>27</length>
 <readonly>false</readonly>
 <creationtime>2013-02-16T19:49:11.247309274Z</creationtime>
 <changetime>2013-02-16T19:49:11.249534438Z</changetime>
 <modifytime>2013-02-16T19:49:11.000000000Z</modifytime>
 <accesstime>2013-02-16T19:49:11.000000000Z</accesstime>
 <backuptime>2013-02-16T19:49:11.247309274Z</backuptime>
 <extendedattributes>
 <xattr>
 <key>author_name</key>
 <value>David Pease</value>
 </xattr>
 </extendedattributes>
 <symlink>directory2/binary_file2.bin</symlink>
 </file>
 <file>
 <fileuid>10</fileuid>
 <name percentencoded="true">Testfile%3A1.txt</name>
 <length>13652</length>
 <readonly>false</readonly>
 <creationtime>2014-07-02T09:13:27.730249274Z</creationtime>
 <changetime>2014-07-02T09:13:27.749534438Z</changetime>
 <modifytime>2014-07-02T09:13:27.000000000Z</modifytime>
 <accesstime>2014-07-02T09:13:27.000000000Z</accesstime>
 <backuptime>2014-07-02T09:13:27.730249274Z</backuptime>
 <extendedattributes>
 <xattr>
 <key>author_name</key>
 <value>Chris Martin</value>
 </xattr>
 <xattr>
 <key percentencoded="true">Sample%3Aencoded_name</key>
 <value>Value: is never %-encoded!</value>
 </xattr>
 </extendedattributes>
 <extentinfo>
 <extent>
 <partition>b</partition>
 <startblock>20</startblock>
 <byteoffset>0</byteoffset>
 <bytecount>13652</bytecount>
 <fileoffset>0</fileoffset>
 </extent>
 </extentinfo>
 </file>
 <file>
 <fileuid>11</fileuid>
 <name>partialfile.bin</name>
 <length>10485760</length>
 <readonly>false</readonly>
 <openforwrite>true</openforwrite>
 <creationtime>2016-02-05T11:45:27.123449274Z</creationtime>
 <changetime>2016-02-05T11:45:27.150534438Z</changetime>
 <modifytime>2016-02-05T11:45:27.150534438Z</modifytime>
 <accesstime>2016-02-05T11:45:27.150534438Z</accesstime>
 <backuptime>2016-02-05T11:45:27.150534438Z</backuptime>
 <extentinfo>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 77
Version 2.5.1
© ISO 2021 – All rights reserved

 <extent>
 <partition>b</partition>
 <startblock>21</startblock>
 <byteoffset>0</byteoffset>
 <bytecount>10485760</bytecount>
 <fileoffset>0</fileoffset>
 </extent>
 </extentinfo>
 </file>
 </contents>
 </directory>
</ltfsindex>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

78 SNIA Standard LTFS Format Specification
 Version 2.5.1

© ISO 2021 – All rights reserved

Annex F (normative) Interoperability Recommendations

This annex describes recommended practices to enable LTFS interoperability.

F.1 Spanning Files across Multiple Tape Volumes in LTFS

LTFS is designed so that tape volumes are self-contained and self-describing. However, there may be
times when a file simply does not fit on a single tape and it is necessary to span the file across two or
more tapes. A standard method of identifying such files and indicating where the other segments of
them may be found is important to guarantee interoperability between LTFS implementations.

The term spanned file refers to a file which is represented by multiple files segments, each typically
on a separate tape volume. The term file segment refers to a file on a single LTFS volume which is
actually a part of a spanned file.

F.1.1 File Naming
A file segment shall have a name that consists of the true (base) file name with a suffix that identifies
the file as a segment of a spanned file. The format of the suffix shall be:

-LTFSsegn where capitalization is as shown and n is the segment number. Segment numbering shall
start at 1 for the first segment of the file (i.e., file offset 0), and increment by 1 for each subsequent
segment (in increasing file offset order).

For example, if the true name of a file is foo.txt, and the file is spanned into two segments, the first
segment name shall be foo.txt-LTFSseg1 and the second shall be foo.txt-LTFSseg2. The original file
name can always be found by stripping the suffix from the stored name.

F.1.2 File Location
Each segment of a spanned file shall have the same directory path on its respective LTFS volume.
For example, if the fully qualified LTFS path name to foo.txt-LTFSseg1 is /user/data/foo.txt-LTFSseg1,
then the fully qualified path name to foo.txt-LTFSseg2 shall be /user/data/foo.txt-LTFSseg2.

F.1.3 Segment References
Each segment shall be accompanied on its tape volume by a reference to the prior segment and a
reference to the next segment, as appropriate. The implementation of these references shall be a
symbolic link containing the fully qualified path to the referenced segment. For example, if
/user/data/foo.txt-LTFSseg1 is on tape volume 001005 and /user/data/foo.txt-LTFSseg2 is on tape
volume 001006, there shall be a symbolic link on tape 001005 named /user/data/foo.txt-LTFSseg2,
whose target value is /001006/user/data/foo.txt-LTFSseg2. Similarly, there shall be a symbolic link on
tape 001006 named /user/data/foo.txt-LTFSseg1, whose target value is /001005/user/data/foo.txt-
LTFSseg1. For files that span more than two tapes (so that multiple preceding and following
segments exist for some tapes), the implementation may optionally include segment references to all
other segments, but shall minimally include prior and next references (as appropriate).

F.1.4 Extended Attributes
To allow easy identification of spanned file segments, to enable efficient access to those segments,
and to verify the correctness of the segmentation, each spanned file segment shall be accompanied
by an extended attribute. The name of this extended attribute shall be ltfs.spannedFileOffset, and its
value shall be the logical file offset of the first byte of the segment relative to the full file. A file that is
not a segment of a spanned file shall not have an ltfs.spannedFileOffset attribute.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

ISO/IEC 20919:2021(E)

LTFS Format Specification SNIA Standard 79
Version 2.5.1
© ISO 2021 – All rights reserved

Representation of Spanned File Segment Offset Extended Attribute:

<xattr>
 <key>ltfs.spannedFileOffset</key>
 <value>offset</value>
</xattr>

Where;

 offset = the logical file offset of the first byte of the file segment (decimal representation)

Example:

<xattr>
 <key>ltfs.spannedFileOffset</key>
 <value>800</value>
</xattr>

In this example, the length of file foo.txt is 1000 bytes, and the length of segment foo.txt-LTFSseg1 is
800 bytes. The value of the ltfs.spannedFileOffset attribute for file foo.txt-LTFSseg1 shall be 0 and the
value of the ltfs.spannedFileOffset attribute for file foo.txt-LTFSseg2 shall be 800 as shown above.

F.1.5 File Operations
LTFS file system implementations that support creating or modifying spanned files are not required to
support the renaming of spanned files nor the random overwrite of bytes within a spanned file. They
should support appending to the end of a spanned file and truncation of spanned files (which may be
immediately followed by an append), as well as any other file system operations supported for non-
spanned files. For every segment of the file, the attributes of the segment represent the state of the
file at the time that the segment was written.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 20
91

9:2
02

1

https://iecnorm.com/api/?name=a81f2f7519879cd8d11912b7fb6c4e79

	1 Introduction
	2 Scope
	2.1 Versions
	2.2 Conformance

	3 Normative references
	4 Definitions and Acronyms
	4.1 Definitions
	4.1.1
	4.1.2
	4.1.3
	4.1.4
	4.1.5
	4.1.6
	4.1.7
	4.1.8
	4.1.9
	4.1.10
	4.1.11
	4.1.12
	4.1.13
	4.1.14
	4.1.15
	4.1.16
	4.1.17
	4.1.18
	4.1.19
	4.1.20
	4.1.21
	4.1.22
	4.1.23
	4.1.24
	4.1.25
	4.1.26

	4.2 Acronyms

	5 Volume Layout
	5.1 LTFS Partitions
	5.2 LTFS Constructs
	5.2.1 Label Construct
	5.2.2 Data Extent
	5.2.3 Index Construct

	5.3 Partition Layout
	5.4 Index Layout
	5.4.1 Generation Number
	5.4.2 Self Pointer
	5.4.3 Back Pointer

	6 Data Extents
	6.1 Extent Lists
	6.2 Extents Illustrated
	6.2.1 Starting and ending Data Extent with full block
	6.2.2 Starting Data Extent with full block and ending with fractional block
	6.2.3 Starting and ending Data Extent in mid-block

	6.3 Files Illustrated
	6.3.1 Simple Files
	6.3.2 Shared Blocks
	6.3.3 Sparse Files
	6.3.4 Shared Data

	7 Data Formats
	7.1 Boolean format
	7.2 Creator format
	7.3 Extended attribute value format
	7.4 Name format
	7.5 Name pattern format
	7.6 String format
	7.7 Time stamp format
	7.8 UUID format

	8 Label Format
	8.1 Label Construct
	8.1.1 VOL1 Label
	8.1.2 LTFS Label
	8.1.3 Managing LTFS Labels

	9 Index Format
	9.1 Index Construct
	9.2 Index
	9.2.1 Example Full Index omitting the body
	9.2.2 Example Incremental Index omitting the body
	9.2.3 Required elements for every index
	9.2.4 Optional elements for every index
	9.2.5 Example Full Index that omits the Preface section
	9.2.6 Required directory elements for a Full Index
	9.2.7 Optional directory elements for a Full Index
	9.2.8 Required file elements for a Full Index
	9.2.9 Optional file elements for a Full Index
	9.2.10 extendedattributes elements
	9.2.11 Required and Optional elements for Incremental Indexes
	9.2.12 Example Incremental Index that omits the Preface section
	9.2.13 Managing LTFS Indexes
	9.2.14 Data Placement Policy
	9.2.15 Data Placement Policy Alteration
	9.2.16 Allow Policy Update is set
	9.2.17 Allow Policy Update is unset
	9.2.18 Data Placement Policy Application
	9.2.19 Volume Advisory Locking

	10 Medium Auxiliary Memory
	10.1 Volume Change Reference
	10.2 Volume Coherency Information
	10.3 Use of Volume Coherency Information for LTFS
	10.4 Use of Host-type Attributes for LTFS
	10.4.1 Application Vendor
	10.4.2 Application Name
	10.4.3 Application Version
	10.4.4 Text Localization Identifier
	10.4.5 User Medium Text Label
	10.4.6 Barcode
	10.4.7 Media Pool
	10.4.8 Application Format Version
	10.4.9 Medium Globally Unique Identifier
	10.4.10 Media Pool Globally Unique Identifier
	10.4.11 Example attributes

	10.5 Volume Advisory Locking

	Annex A (normative) LTFS Label XML Schema
	Annex B (normative) LTFS Index XML Schemas
	B.1 LTFS Full Index XML Schema
	B.2 LTFS Incremental Index XML Schema

	Annex C (normative) Reserved Extended Attribute definitions
	C.1 Software Metadata
	C.2 Drive Metadata
	C.3 Object Metadata
	C.4 Volume Metadata
	C.5 Media Metadata

	Annex D (informative) Example of Valid Simple Complete LTFS Volume
	Annex E (informative) Complete Example LTFS Full Index
	Annex F (normative) Interoperability Recommendations
	F.1 Spanning Files across Multiple Tape Volumes in LTFS
	F.1.1 File Naming
	F.1.2 File Location
	F.1.3 Segment References
	F.1.4 Extended Attributes
	F.1.5 File Operations
	F.1.6 Examples
	F.1.6.1 Example 1
	F.1.6.2 Example 2
	F.1.6.3 Example 3

	F.2 File Permissions in LTFS
	F.2.1 Unix Permissions:
	F.2.2 POSIX ACLs:
	F.2.3 NFSv4 ACLs:
	F.2.4 NTFS ACLs:

	F.3 Storing File Hash Values in LTFS
	F.3.1 Extended Attributes
	F.3.2 Representation

	F.4 LTFS Media Pools
	F.4.1 Media Pool Membership of a Volume
	F.4.1.1 Media Pool MAM Attributes

	Annex G (informative) Character representations
	Annex H (informative) Incremental Indexes
	H.1 Background
	H.2 Backwards Compatibility
	H.3 Traversing the Index Back Pointer Chain
	H.4 Incremental Index Format
	H.5 Processing Incremental Indexes
	H.6 Miscellaneous

	Annex I (informative) Bibliography
	Blank Page

