INTERNATIONAL ISO/IEC
STANDARD 19500-2

Second edition
2012-04-15

Information technology — Object
Management Group — Common Qbject
Request Broker Architecture (CORBA) —

Part 2:
Interoperability

Technologies de l'infermation — OMG (Object Management Group) —
CORBA (Common/®Object Request Broker Architecture) —

Partie 2: Interopérabilité

Reference number
ISO/IEC 19500-2:2012(E)

©|SO/IEC 2012

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +4122749 01 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Table of Contents

FOreWOrd ..., IX
Introduction ..o Xi
1 BCOPE ol e e 1
2 Conformance and Complianceh7 o, 1
2.1 Unreliable Multicastcccoooiiiiii i e, 2

3 INormative References ..o e, 2
3.1 Other Specificationscccc. i b, 3

4 Terms and definitions ...« i e, 3
4.1 Recommendations | International Standards....................... oo, 4

4.2 Terms Defined in thissPart of ISO/IEC 19500..........cccoeeeveeifoeeennnnnns 4

4.3 Keywords for Requirment statementsieiei o, 5

5 Symbols (and abbreviated terms)co 6
6 Interoperability Overviewcccoooeiiiiiiiiiee e, 7
6.1 GEREIAL......ueii e b 7
6-2-Elements of Interoperabilityccoooveiiiiirii b, 7

6.2.1 ORB Interoperability Architectureccccooviiieee o, 7

0.2.2 Mter-ORB BIUTE SUPPOIT oo ie e e e eeenneeeaeees 7

6.2.3 General Inter-ORB Protocol (GIOP) ... 8

6.2.4 Internet Inter-ORB Protocol (HOP)®uuiiiiiiiiiiiiiiiiiiiieeeeeeeeees 8

6.2.5 Environment-Specific Inter-ORB Protocols (ESIOPS)ovviiiiiieenennnnn. 9

6.3 Relationship to Previous Versions of CORBAcccooviiiiiiiinn. 9

6.4 Examples of Interoperability Solutionsccccooeiiiiiiiiiieenn. 10

B.4.1 EXAMPIE 1 e a e 10

B.4.2 EXAMPIE 2 ... 10

© ISO/IEC 2012 - Al rights reserved iii

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

6.4.3 Example 3
6.4.4 Interoperability Compliance
6.5 Motivating Factors

6.5.1 ORB Implementation Diversity
6.5.2 ORB Boundaries
6.5.3 ORBs Vary in Scope, Distance, and Lifetime

7

6.6 Interoperability Design Goals
6.6.1 Non-Goals

DRB Interoperability Architecture

7.1 Overview

7.1.1 Domains
7.1.2 Bridging Domains

7.2 ORBs and ORB Services

7.2.1 The Nature of ORB Services
7.2.2 ORB Services and Object Requests
7.2.3 Selection of ORB Services

7.3 Domains

7.3.1 Definition of a Domain
7.3.2 Mapping Between Domains: Bridging

7.4 Interoperability Between ORBs
7.4.1 ORB Services and Domains
7.4.2 ORBs and Domains
7.4.3 Interoperability Approaches
7.4.4 PolicysMediated Bridging
7.4.5 Configurations of Bridges in Networks

7.5 Object-Addressing

7.52-Domain-relative Object Referencing
7.5.2 Handling of Referencing Between Domains

7.6 An Information Model for Object References

'761 \'I\'Ihai' Infarmation Nao Bridaas Naad?

......................... ges-Need? e
7.6.2 Interoperable Object References: IORs

7.6.3 I0OR Profiles
7.6.4 Standard IOR Profiles
7.6.5 IOR Components
7.6.6 Standard IOR Components
7.6.7 Profile and Component Composition in IORs
7.6.8 I0OR Creation and Scope
7.6.9

Stringified Object References

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

7.6.10 ODJECt URLS ...cvviiiiiiiie ettt e 33
7.7 Service CONEXLcccoeeeieiee e e e 37
7.7.1 Standard Service CoNtextSoooiiiiiiiiiiiiiee e 38
7.7.2 Service Context Processing RUIEScoiiiiiiiiiiiiiiee e 40
7.8 Coder/Decoder INterfacescoveeiiiiiiiiiiieeeece e 40
78t Codectmterface T e, 40
7.8.2 CodecC FaCtOryccceeeeeeeiiiieiiiiieceeeceee e 42
7.9 Feature Support and GIOP Versions..........c.cccuveeeeevvmiebinee b, 43
7.10 Code Set CONVErSIONcceevveeeiiiieeeeeeeeeeeeeieiiii s e e e eeeeeeecheenennnns 45
7.10.1 Character Processing Terminologyccccceeeee @edereeeeeeeennneee o, 45
7.10.2 Code Set Conversion FrameworkcccooeeomeeSevieeiiiieeeeveccee o 48
7.10.3 Mapping to Generic Character Environmentscccccooeeeei 54
7.10.4 Example of Generic Environment Mapping\=.........cccoeeeeeiiiececcc o 56
7.10.5 Relevant OSFM Registry Interfaces .0 s 56

8 Building Inter-ORB Bridges%.ccovvvveviiiiiiiiiieeeeeee e, 63
8.1 INtrodUCHION ... S e b 63
8.2 In-Line and Request-LevelBridgingcccoovveviiiiiiiiinicee b, 63
8.2.1 IN-liN€ Bridgingcccc it e 64
8.2.2 Request-level Bridgiflgcccoovviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e e 64
8.2.3 Collocated ORBS ... ciiiiiiii e e e e 65
8.3 Proxy Creation.and Management............ccoooveiiiiiiiveeiienee b, 66
8.4 Interface-specific Bridges and Generic Bridgesc..........foeeeee. 66
8.5 Building Generic Request-Level Bridges........ccccccevvvviieeeivicifevnnnnn. 66
8.6 Bridging'Non-Referencing Domainsccocevveviieveeinceee v, 67
8.7 Bootstrapping Bridgescooeeuiiiiiiiiiiiiieeeee e b 68
9 General Inter-ORB Protocol ..., 69
S I I Y72 V1 69
9.2 Goals of the General Inter-ORB Protocolcccooovviiiiiiiiieeeeennnnn. 69
9.3 GIOP OVEIVIEW ...ttt e e 69
9.3.1 Common Data Representation (CDR)cccccooeiiiiiiiiiiiiiicceeeee e 70
9.3.2 GIOP MeSSage OVEIVIEWccooiiiiiiiiiiiiiiiiiiiii ettt ettt 70
9.3.3 GIOP Message Transfer ... 71
9.4 CDR Transfer SYNtaxccooe oo 71

© ISO/IEC 2012 - All rights reserved v

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

9.4.1 PrimitiVe TYPES ittt 72
9.4.2 OMG IDL CoNStructed TYPES ...uuuuiiiiieieieeeeeeeeeeeeeeeeitcee e s e e e e e e e e e e eeeeeennens 77
9.4.3 ENCapsUlationoooiiiiii e 79
9.4.4 ValUE TYPES oottt e e e e e e 80
9.4.5 PSeUdO-ODbjJECt TYPES ..coovviiiiiiiiicee et e e ee e eeaaans 87
9.4.6 ODbjJeCt REfErENCESuuiiiiiiiiiiiiieee e 93
A7 Abstractinterfaces T e 93
9.5 GIOP Message FOrmatsucoeiiieieeiiieeceeiceee e Gt e h e 93
9.5.1 GIOP Message Headerccccceeveiiiiiiiiiiiiiiiiii e e 94
9.5.2 Request MeSSaQecoooevveeviiiiiiieiiiiieeeeeeeiee e e e e 96
9.5.3 Reply MESSAQEcovvvuiiiiiiiiiieeeeeeeeee e et e 99
9.5.4 CancelRequest MeSSAgecccevviviiiiiiiiiiiiiiiis s B e 102
9.5.5 LocateRequest Messagecccocceevvvviveeiee s, Lo e 103
9.5.6 LocateReply Messageccoooovviiiiiiieeccc i e 104
9.5.7 CloseConnection MeSSagecccccevvepebd v e 106
9.5.8 MessageError Messagecooooeveeeiit N Triiieeeeeceiiee e eeeeeen o 106
9.5.9 Fragment Messageccccceeeveeeee i e 106
9.6 GIOP Message Transport........c5ds i b 107
9.6.1 Connection Managementou.. oo e, 108
9.6.2 Message Orderingitlee e e 109
9.7 Object Location............xf e 110
9.8 Internet Inter-ORB Protocol (IIOP).........coviiviiiiiie 111
9.8.1 TCP/IP Connection USAgeccevviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 111
9.8.2 IIOP IOR PrOfil€S ...vvvvveeeieiiiiiiiieee e et e et eeiree e e e e e 112
9.8.3 IIOP IOR Profile Componentsccccceeeeeeeeeeeeieieeceeeieeeeeee e 114
9.9 Bi-Directional GIOPoooviiiiiiiiiiieeeeee e s 115
9.9.1 Bi-directional HHOPcccuiiiiiiiiiiiiiiieee e e 117
9.10 Bi-directional GIOP poliCy........ccooeeveeiiiiiiiiieeicccceeeeiceeeee e, 118
St I P 1/ [|] PO RUUREPPPPINN USSR 118
9111 GIOP MOAUIE ... e 118
9.11.2 HOP MOQUIE ...t e e e 123
9.11.3 BiDirPolicy MOQUIE rrrrerererrrrerererrererererrerererrerererrererererrerererrerererede s 124
10 Secure Interoperabilitycoooeviiiiii 125
(O B V=T YT R 125
10.1.1 ASSUMPLIONS ... e et e e e e e e e e eaeens 126
10.2 Protocol Message Definitionsuueueiiiiniiiiiiiiiee 127
10.2.1 The Security Attribute Service Context Elementcccoeviiiininnnn, 127

vi © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.2.2 SAS context_data Message Body TYPESccoviiiiiiiviiiiiiiiiiieiieeeeeeeee 127
10.2.3 Authorization Token Format ..., 132
10.2.4 Client Authentication Token Format ..., 133
10.2.5 Identity ToKen FOrmatoooiiiiiiiiiiiii e 135
10.2.6 Principal Names and Distinguished Namescciiiiiiieiiiin. 136
10.3 Security Attribute Service Protocol............cccccoeviiiiiiiiiiiiinnn. 137
10.3.1 Compound Mechanismsccooeuvvieeeeeiiiiieeeeeeeeiieeeeeeeeee S 137
10.3.2 Session SemMantiCsoovvvviiiiiiieeeieeeeeeeeceeeeeeee e N 141
10.3.3 TSS State Machine ..oV e 143
10.3.4 CSS State Machineoovveviiiiiiiieiiiieeieeeeeeeee e e 146
10.3.5 ContextError Values and Exceptionscoooemedeneeeeeneenic o, 149
10.4 Transport Security Mechanisms 5, 150
10.4.1 Transport Layer Interoperabilitycc... e e 150
10.4.2 Transport Mechanism Configuration ...\ e 150
10.5 Interoperable Object References.....o. i, 151
10.5.1 Target Security Configuration 0 ..., 151
10.5.2 Client-side Mechanism Selection.........cccooveiiiiiiiiiiiie 160
10.5.3 Client-Side Requirements andd_ocation Bindingcccccccc. levnnnnnnn, 161
10.5.4 Server Side Considerationcooeiieeeieieiiieeeeeeecceeeeeee e 162
10.6 Conformance Levels.... & e, 162
10.6.1 Conformance Level Oy .i......oovveeiiiiiiiiieeeeeeeeeeeeceee e e 162
10.6.2 Conformance Level ... e 163
10.6.3 Conformance Level 2ccooooimiiiiiiiiiieee e e 163
10.6.4 Stateful ConformancCecccceeeeeiiieiiiiiiiieeeecee e e, 164
10.7 Sample Message Flows and Scenariosccoeevvveeeeeenifennnnn. 164
10.7.1 Confidentiality, Trust in Server, and Trust in Client Established
iN the'CoNNECHIONooiiiiceee e 165
10.7.2 Confidentiality and Trust in Server Established in the Connection -
Stateless Trust in Client Established in Service ContextJ........... 167
10-7.3 Confidentiality, Trust in Server, and Trust in Client Established in
the Connection Stateless Trust Association Established in Service

(028 | 174
10.9.1 Module GSSUP - Username/Password GSSAPI Token Formats 174
10.9.2 Module CSI - Common Secure Interoperabilitycccccceviiiiiiiiinnnnn. 175
10.9.3 Module CSIIOP - CSlv2 IOR Component Tag Definitions 179

© ISO/IEC 2012 - Al rights reserved Vii

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

viii

An

11 Unreliable Multicast Inter-ORB Protocol 183
111 INtrOdUCHION ... e 183
1111 PUIPOSE ..ottt et e e e et e e e e et e e e e e e st e e eaeeens 183
11.1.2 MIOP PACKEL ..ottt e e e e e 183
11.1.3 Packet COlECLONooeeiiiiieiec e 183
Tt A PacketHeater o s 184
11.1.5 Joining an IP/Multicast Groupccccoeevvviiiiiiiccceeeee 0 185
11.1.6 Quality Of Serviceccccouviiiiiiiiiii S 186
11.1.7 Delivery RequiremMentsccccoeeiiiiiiiiiiiiiieeeeeee s e eeee e 186

11.2 MIOP Object Model ...t e 186
11.2.1 Definitioncoooeiiiiiiii e A e e 186
11.2.2 Unreliable IP/Multicast Profile Body (UIPMC, ProfileBody)|........... 187
11.2.3 Group IOR ..o O e e 188
11.2.4 Extending PortableServer::POA to include’Group Operations ..J........... 190
11.2.5 MIOP GateWaycoeeveiiiiiiiiiieee e N e e eeciiieeee e e e e ssinneeee e e e esse feeee e 194
11.2.6 Multicast Group Manager50 e 194
11.2.7 MIOP URL .ooeiiiiiiieeeeeeeee e et e 210

11.3 ReqUESt ISSUEScooveiei i e f e 211
11.3.1 GIOP Request Message Compatibilityccoooiiiiiiiiiiiccc e, 211
11.3.2 MIOP Request EfficienCy........cccoooeeiiiiiiiiiicieeeeeeeeeeeeeeee e, 211
11.3.3 Client USe CaseS ...k ccccueniiiiiiiiiiiiiiieeeeeee e e e e e e eesesessneeneeeeeeee e e e ae e 212
11.3.4 Server Use Casescooviiiiiiiiiiiiicee e eeean e 213

11.4 Consolidated IDIS.........o o 213
11.4.1 OMG IDL 1t e e e e e e s e e snnne e e e e e e e fere e e 213
nex A - Legal Information..............cccooooiin e 221
nex B - Acknowledgementsccccooviiiiie e 225

An

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

Foreword

00-2:2012(E)

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical

o Eoch soaralhar bhods, totaractad 10 o

committeg
to be repr
ISO, also
matters of]

Internatiof

The main
technical
approval |

Attention
shall not 1

ISO/IEC 1
Object Mz
of the OM
Interopera

ISO/IEC 1

ISO/IEC

cubiactforwhich-atachinical gasaattao boc haooan actablcha
S—EacH- oo erooayHitereSteath-a-Suojectror-wrtena—teeniicar Htteenasoeeh tEOTSHe:

psented on that committee. International organizations, governmental and non-governmental,,in|l4
fake part in the work. ISO collaborates closely with the International Electrotechnical Comfiissio
electrotechnical standardization.

O

hal Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

task of technical committees is to prepare International Standards. Draft International Standards a
ommittees are circulated to the member bodies for voting. Publication asgan International Standd
y at least 75 % of the member bodies casting a vote.

is drawn to the possibility that some of the elements of this document/may be the subject of pate
¢ held responsible for identifying any or all such patent rights,

nagement Group (OMGQG), following the submission and.processing as a Publicly Available Specif
G Common Object Request Broker Architecture (CORBA) specification Part 2 Version 3.1 COR
bility.

9500-2 is related to:

+ ITU-T Recommendation X.902 (1995)4ISO/IEC 10746-2:1996, Information Technology - Open
Processing - Reference Model: Foundations

 ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information Technology - Open
Processing - Reference Modé€ls ‘Architecture

 ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1997, Information Technology - Open D
Processing - Interface Definition Language

« ISO/IEC 19500-2, Information Technology - Open Distributed Processing - CORBA Specificatio
CORBA Interfaces

« ISO/IECy19500-3, Information Technology - Open Distributed Processing - CORBA Specificatio
CORBA Components

has the right
aison with
h (IEC) on all

dopted by the
rd requires

nt rights. ISO

9500-2 was prepared by Technical Committee ISO/IEC JTC1, Information technology, in collaborjation with the

ication (PAS)

BA

Distributed

Distributed

stributed

h Part 1:

h Part 3:

9500 consists of the following parts, under the general title Information technology - Open distr|

ibuted

processing - CORBA specification:

« Part 1: CORBA Interfaces
« Part 2: CORBA Interoperability

« Part 3: CORBA Components

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

It is the common core of the CORBA specification. Optional parts of CORBA, such as mappings to particular
programming languages, Real-time CORBA extensions, and the minimum CORBA profile for embedded systems are
documented in the other specifications that together comprise the complete CORBA specification. Please visit the
CORBA download page at http://www.omg.org/technology/documents/corba_spec_catalog.htm to find the complete
CORBA specification set.

Apart from this Foreword, the text of this International Standard is identical with that for the OMG specification for
CORBA, y3—+t3Part2-

X © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for this standardization and
ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture within which support of distribution, interoperability and portability

can be intpgrated.

RM-ODP [Part 2 (ISO/IEC 10746-2) defines the foundational concepts and modeling framework for deseribi

systems.
of cases,
identical
with appr

RM-ODP

foundational concepts and framework defined in Part 2. Given the relation between UML as a modeling lang

3 of the R
specificati

This Inter]
defines a t
functions
technolog

Context

The key t
following

he scopes and objectives of the RM-ODP Part 2 and the UML, while related, are not the, same and

e RM-ODP Part 2 and the UML specification use the same term for concepts which are related
c.g., interface). Nevertheless, a specification using the Part 2 modeling concepts,can be expresse
priate extensions (using stereotypes, tags, and constraints).

Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed systems, expressed

M-ODP standard, it is easy to show that UML is suitable as a notation ‘for the individual viewpo
ons defined by the RM-ODP.

hational Standard for CORBA Interfaces is a standard for the technology specification of an ODI
echnology to provide the infrastructure required to suppoft functional distribution of an ODP systd
fequired to manage physical distribution, communicatiehs, processing and storage, and the roles
 objects in supporting those functions.

of CORBA

understanding the structure of the CORBA architecture is the Reference Model, which consists
components:

+ Object Request Broker, whichenables objects to transparently make and receive requests and re
distributed environment.(It is'the foundation for building applications from distributed objects and
interoperability between applications in hetero- and homogeneous environments. The architecturg
specifications of the.Object Request Broker are described in this manual.

« Object Servicés, a collection of services (interfaces and objects) that support basic functions for 4
implementing-objects. Services are necessary to construct any distributed application and are alway
of applicatien domains. For example, the Life Cycle Service defines conventions for creating, delg
and moeving objects; it does not dictate how the objects are implemented in an application. Specif}
Objeet Services are contained in CORBAservices: Common Object Services Specification.

ng distributed
I, in a number
but not

i using UML

using the
uage and Part
int

system. It
m, specifying
pf different

of the

ponses in a
for
and

sing and

's independent
ting, copying,
cations for

«Common Facilities, a collection of services that many applications may share, but which are not 4

s fundamental

as the Object Services. For instance, a system management or electronic mail facility could be cla

ssified as a

common facility. Information about Common Facilities will be contained in CORBAfacilities: Common

Facilities Architecture.

« Application Objects, which are products of a single vendor on in-house development group that controls their
interfaces. Application Objects correspond to the traditional notion of applications, so they are not standardized

by OMG. Instead, Application Objects constitute the uppermost layer of the Reference Model.

© ISO/IEC 2012 - All rights reserved

Xi

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

The Object Request Broker, then, is the core of the Reference Model. It is like a telephone exchange, providing the basic
mechanism for making and receiving calls. Combined with the Object Services, it ensures meaningful communication
between CORBA-compliant applications.

The architecture and specifications described in this standard are aimed at software designers and developers who want to
produce applications that comply with OMG specifications for the Object Request Broker (ORB), or this standard (ISO/
IEC 19500). The benefit of compliance is, in general, to be able to produce interoperable applications that are based on

oot Thao DD oo doc thao o oob o cac ey ool

distributed
receive re
distributed

This Part

environments and seamlessly interconnects multiple object systems.

bf this International Standard includes a non-normative annex.

1t 1 liacotc o0 o 415z gaa ol t: d
—rteroperating-objeets—he-ORB-provides—the-mechantsms-by—-whitch-objeets—transparentiysrake requests an

ponses. Hence, the ORB provides interoperability between applications on different machines, in fieterogeneous

Xii

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

INTERNATIONAL STANDARD

ISO/IEC 19500-2:2012(E)

Information technology - Object Management Group

Common Object Request Broker Architecture (CORBA), Interoperability

1

This part
distributeq
approach
range of 1

This part

This part
14752. Oy
location tifansparency in ODP systems.

2

An ORB 1

Scope

Of
Int

Th
an

TH
th

Th
red

In
bri
1dd

b ISO/IEC 19500 specifies a comprehensive, flexible approach to supporting networks of,'object
across and managed by multiple, heterogencous CORBA-compliant Object Request Brokérs (O
o inter-ORB operation is universal, because elements can be combined in many waysto satisfy

eeds.

b ISO/IEC 19500 covers the specification of:
B interoperability architecture
er-ORB bridge support

e General Inter-ORB Protocol (GIOP) for object request broker (ORB) interoperability. GIOP can bd
connection-oriented transport protocol that meets a minimal set of assumptions defined by this stan|

e Internet Inter-ORB Protocol (IIOP), a specific mapping.of the GIOP which runs directly over conne
Internet Protocol and the Transmission Control Proto¢ol (TCP/IP connections).

e CORBA Security Attribute Service (SAS) protdcol and its use within the CSIv2 architecture to add
uirements of CORBA security for interoperable‘authentication, delegation, and privileges.

bt ISO/IEC 19500 provides a widely impléemented and used particularization of ITU-T Rec. X.93
en Distributed Processing - Protocol, Support for Computational Interactions. It supports interopq

Conformance and Compliance

s considered tovbe interoperability-compliant when it meets the following requirements:

the CORBA, Core part, standard APIs are provided by an ORB to enable the construction of request-le
dges. APIs are defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, and by
ntitysoperations described in the Interface Repository clause of this book.

5 that are
RBs). The
L very broad

mapped onto
dard.

ictions that use

ress the

1 | ISO/IEC
rability and

vel inter-ORB
the object

Ar

! I ARR-D 1 Ian T 1 1 Rl 1 I ARR-I 1 1 1
HITCIICTU HIICT=URD T'TOLOCOT (1TUT) { CAPIAIICU IIT UIT D UITUITE IIIICT=URD DITUZTS CIdUsST) UCLIICS d

ransfer syntax

and message formats (described independently as the General Inter-ORB Protocol), and defines how to transfer
messages via TCP/IP connections. The IIOP can be supported natively or via a halfbridge.

Support for additional Environment Specific Inter-ORB Protocols (ESIOPs) and other proprietary protocols is optional in
an interoperability-compliant system. However, any implementation that chooses to use the other protocols defined by the
CORBA interoperability specifications must adhere to those specifications to be compliant with CORBA interoperability.

Figure 6.2 on page 12 shows examples of interoperable ORB domains that are CORBA-compliant. These compliance
points support a range of interoperability solutions. For example, the standard APIs may be used to construct “half
bridge” to the IIOP, relying on another “half bridge” to connect to another ORB. The standard APIs also support

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

construction of “full bridges,” without using the Internet IOP to mediate between separated bridge components. ORBs
may also use the Internet IOP internally. In addition, ORBs may use GIOP messages to communicate over other network
protocol families (such as Novell or OSI), and provide transport-level bridges to the ITIOP.

The GIOP is described separately from the IIOP to allow future specifications to treat it as an independent compliance

point.

21

Summar;j

An interfa

Propose

The MIOJ

Jnreliable Multicast

y of Optional Verses Mandatory Interfaces

ce to an MIOP gateway should be considered an optional interface within the MIOP specificatio

H Compliance Points

specification is a single, optional compliance point within the CORBA, Core specification.

Changes to Other OMG Specifications

This part

module |
cons
cons
cons

b

3

The follov

edition cif]
applies.

IT
Fo

IT
Ar

IT

f ISO/IEC 19500 contains an extension to the IOP module.

PP {

t Profileld TAG_UIPMC = 3;

t Componentld TAG_GROUP = 39;

t Componnetld TAG_GROUP_IIOP =40

Normative References

hing referenced documents are.indispensable for the application of this document. For dated refere
ed applies. For undated refetences, the latest edition of the referenced document (including any 3

|J-T Recommendadtion X.902 (1995) | ISO/IEC 10746-2:1996, Open Distributed Processing - Referer
indations

|J-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Open Distributed Processing - Referer
Chitecttire

[

nces, only the
mendments)

ce Model:

ce Model:

Definition

| J~F.Recommendation X.920 (1999) | ISO/IEC 10750:1999, Open Distributed Processing - Interface

Language

ITU-T Recommendation X.931(2000) | ISO/IEC 14752:2000, Open Distributed Processing - Protocol Support for
Computational Interactions

ISO/IEC 8859-1: 1998, Information Technology - 8-bit single byte coded graphic character sets - Part 1: Latin alphabet
No. 1

ISO/IEC 10646-1:1993 Information Technology - Universal Multiple-Octect coded character set (UCS) - Part 1:
Architecture and Basic Multilingual Plane

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

ISO/IEC 10646-1: 1993/Amd 1:1996 Transformation Format for 16 planes of group 00 (UTF - 16)
ISO/IEC 10646-1: 1993/Amd 2:1996 UCS Transformation Format 8 (UTF - 8)

pas/2011-08-07

00-2:2012(E)

ISO/IEC 19500-1: 2011 Open Distributed Processing - CORBA Specification Part 1: CORBA Interfaces,

3.1

ST
ST
(ON

RH
M

WV

[S
frq

[F
Wi
[R
sp
W

frq

[D
av

D 007 (also, RFC 793), Transmission Control Protocol, J. Postel, Internet Engineering Task Force;, S
D 005 (also, RFC 791), Internet Protocol, J. Postel, Internet Engineering Task Force, Sept. [L981
F Character and Code Set Registry, OSF DCE FRC 40.1 (Public Version), S. (Martin). ©'Donnell, Ju

C Runtime Support For 18N Characters - Functional Specification, OSF DCE SIG RFC 41.2, M. R
ickey, November 1994.

AV2I]Object Management Group, “Java to IDL,” available from http://www.omg.org/spec/JAV21/1.4
DRBASEC]Object Management Group, “Security Service,” available-from http://www.omg.org/speq

SMOTS]Object Management Group, “Additional Structuring’Mechanisms for the OTS,” available fj
w.omg.org/spec/OTS/

RANS]Object Management Group, “Transaction Service,” available from http://www.omg.org/spec

REWALL]Object Management Group, “CORBA(Firewall Traversal Specification,” available from |
w.omg.org/members/cgi-bin/doc?ptc/04-04-05.pdf

"CP] Object Management Group, “CORBA / TC Interworking and SCCP-Inter ORB Protocol (SCC
m http://www.omg.org/spec/SCCP

[CORBA] Object Management Group, “Fault Tolerant Corba,” clause 23 of CORBA 3.0.3, availablg
rw.omg.org/cgi-bin/doc?formal/2004-03-01

[CORBA] Object Management Group, “Real-Time CORBA, version 1.2,” available from http://wwy
bc/RT/

ATM] Object Management Group, “Wireless Access and Telecom Mobility in CORBA, Version 1.2
m http://www:omg.org/spec/ WATM/

COMI] Object Management Group, “Interoperability with non-CORBA Systems” clause 20 of COR
hilable from http://www.omg.org/cgi-bin/doc?formal/2004-03-01

[T

ept. 1981

he 1994.

bmagna, R.

/SEC/

om http://

TRANS/

ttp://

P),” available

from http://

v.omg.org/

” available

BA 3.0.3,

BAST Object Management Group, “Telecommunications Service Access and Subscription Specificat

on,” available

from http://www.omg.org/spec/TSAS/

IETF RFC2119, “Key words for use in RFCs to Indicate Requirement Levels,” S. Bradner, March 1997 (http://ietf.org/
rfc/rfc2119)

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

4 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

41 Recommendations | International Standards

This Reconmendation | International Standard makes use of the following terms defined in ITU-T Rec, X.902 | ISO/IEC
10746-2:

* behavior

« interface

« ingtance
» obfect

e service
* stafe

* trahsparency
e type

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.903 | ISO/IEC
10746-3:

« opgration

« stub

4.2 Terms Defined in this Part of ISO/IEC 19500

adapter Same as object adapter.

attribute An identifiable association between an object and a value. An attribute A is ade visable
to clients as a pair of operations: get A and set A. Readonly attributes onlly generate a
get operation.

client The code or process that invokes an operation on an object.

data type A categorization of values operation arguments, typically covering both bghavior and
representation (i.e., the traditional no-OO programming language notion of type.)

domain A concept important to interoperability, it 1S @ diSTtinct SCope, within which common
characteristics are exhibited, common rules observed, and over which a distribution
transparency is preserved.

dynamic invocation Constructing and issuing a request whose signature is possibly not known until run-time.

dynamic skeleton An interface-independent kind of skeleton, used by servers to handle requests whose
signatures are possibly not known until run-time.

4 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

implementation A definition that provides the information needed to create an object and allow the object
to participate in providing an appropriate set of services. An implementation typically
includes a description of the data structure used to represent the core state associated
with an object, as well as definitions of the methods that access that data structure. It will
also typically include information about the intended interface of the object.

interfade repository A storage place for interface information.

interface type A type satisfied by any object that satisfies a particular interface.

interoperability The ability for two or more ORBs to cooperate to deliver requests to the pfoper object.
Interoperating ORBs appear to a client to be a single ORB.

language binding or The means and conventions by which a programmer writing-in a specific programming

mapping language accesses ORB capabilities.

method An implementation of an operation. Code that may be executed to perforn] a requested

service. Methods associated with an object maybé.structured into one or mqre programs.

object adapter The ORB component which provides objeet'reference, activation, and stat¢ related
services to an object implementation. There’may be different adapters proyided for
different kinds of implementations.

object implementation Same as implementation.

object neference A value that unambiguously.idéntifies an object. Object references are nevier reused to
identify another object.

objref An abbreviation for objéct reference

ORB care The ORB component which moves a request from a client to the appropijiate adapter
for the target object.

request A message . issued by a client to cause a service to be performed.

results The information returned to the client, which may include values as well af status

infermation indicating that exceptional conditions were raised in attemptinig to perform
the fequested service.

server A process implementing one or more operations on one or more objects.

signatufe Defines the parameters of a given operation including their number order, d4ta types, and
passing mode; the results if any; and the possible outcomes (normal vs. excgptional) that
might occur.

skeletop The object-interface-specific ORB component which assists an object adapfer in passing
requests to particular methods.

synch rtrnous request A request where the client pauses to wait for completion of the request. Cqntrast with
dbfbll L/d D)’ll\zlll ULIUusS lb\.iubbt aud UllU'WCL)’ l\z\.ibl\/bt.

value Any entity that may be a possible actual parameter in a request. Values that serve to

identify objects are called object references.

4.3 Keywords for Requirment statements

The keywords “must,” “must not,” “shall,” “shall not,” “should,” “should not,” and “may” in this International Standard
are to be interpreted as described in IETF RFC 2119.

© ISO/IEC 2012 - All rights reserved 5

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

5

For the purposes of this International Standard, the following abbreviations apply:

ADT
CSIv2
CCCS
CCS
CDR
CMIR
CNCS
CORBA
DCE
ESIOP
OMG
GIOP
IDL
IIOP
IOR
ORB
SAS
SCCS
SMIR
SNCS
TCS
TCS-C
TCS-W
VSCID

Symbols (and abbreviated terms)

Abstract Data Type

Common Secure Interoperability, version 2

Client Conversion Code Sets
Conversion Code Sets

Common Data Representation
Client Makes it Right

Client Native Code Set

Common Object Request Broker Architecture
Distributed Computing Environment
Environment Specific Inter-ORB Protocol
Object Management Group

General Inter-ORB Protocol
Interface Definition Language
Internet Inter-ORB Protocol
Interoperable Object Reference
Object Request Broker

Security Attribute Service

Server Conversion, Code Sets

Server Makes It'Right

Server Native ‘Code Set
Transnmiission Code Set

Char Transmission Code Set

Wchar Transmission Code Set

Vender Service Context codeset ID

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

6 Interoperability Overview

6.1 General

ORB interoperability specifies a comprehensive, flexible approach to supporting networks of objects that are distributed

across an
universal

6.2

The elem
« O]
« In
+ (g
In additio]

particular

6.2.1

The ORB
for identil
achieve ir

Specifically, the architecture introduces the concepts of immediate and mediated bridging of ORB domaing

Inter-ORH
can be us

By use off
as what p

The I1OP
This appr

The IIOP
IIOP inte1

managed by multiple, heterogeneous CORBA-compliant ORBSs. The approach to “interORbabi
because its elements can be combined in many ways to satisfy a very broad range of needs.

Elements of Interoperability

bnts of interoperability are as follows:

RB interoperability architecture

er-ORB bridge support

neral and Internet Inter-ORB Protocols (GIOPs and I1OPs)

h, the architecture accommodates Environment Specific Inter-ORB Protocols (ESIOPs) that are g
environments such as DCE.

DRB Interoperability Architecture

Interoperability Architecture provides a conéeptual framework for defining the elements of interg
ying its compliance points. It also charact@rizes new mechanisms and specifies conventions necd
teroperability between independently produced ORBs.

Protocol (IIOP) forms the common basis for broad-scope mediated bridging. The inter-ORB br
pd to implement both immédiate bridges and to build “half-bridges” to mediated bridge domains.

bridging techniques,.ORBs can interoperate without knowing any details of that ORB’s implemg
hirticular IPC or protocols (such as ESIOPs) are used to implement the CORBA specification.

may be used . in'bridging two or more ORBs by implementing “half bridges” that communicate u
bach works{for'both stand-alone ORBs, and networked ones that use an ESIOP.

may also*be used to implement an ORB’s internal messaging, if desired. Since ORBs are not requ
nally;-the goal of not requiring prior knowledge of each others’ implementation is fully satisfied

ity” is

ptimized for

perability and
ssary to

. The Internet
dge support

ntation, such

sing the IIOP.

red to use the

6.2.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of domains for ORB-specific information.
Such domains can include object reference domains, type domains, security domains (e.g., the scope of a Principal
identifier), a transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many cases, this is the preferable approach.
This is not always true, however, since organizations often need to establish local control domains.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

When information in an invocation must leave its domain, the invocation must traverse a bridge. The role of a bridge is
to ensure that content and semantics are mapped from the form appropriate to one ORB to that of another, so that users of

any given

ORB only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APIs and conventions to enable the easy construction of
interoperability bridges between ORB domains. Such bridge products could be developed by ORB vendors, Sieves,

system int

egrators, or other third-parties.

Because the extensions required to support Inter-ORB Bridges are largely general in nature, do not impact

operation,
support. G
scripting 1

The inter-
Compone
CORBA

6.2.3 ¢
The Gene
a set of m
and is des
It does no
easy to inj
performan

While ver
allow easy

6.2.4

The Inter]

connectiofs. The IIOP specifies astandardized interoperability protocol for the Internet, providing “out of

interopera
also be us

The proto
unless an
In that ser

Internet Inter-ORB Protocol (IIOP)®

and can be used for many other purposes besides building bridges, they are appropriate for.all G
ther applications include debugging, interposing of objects, implementing objects with iaterprete
pnguages, and dynamically generating implementations.

DRB bridge support can also be used to provide interoperability with non-CORBA-systems, such
it Object Model (COM). The ease of doing this will depend on the extent to whieh those systems g
bject Model.

General Inter-ORB Protocol (GIOP)

al Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax (low-level data repre
pssage formats for communications between ORBs. The GIOP i1s specifically built for ORB to OR|
gned to work directly over any connection-oriented transport protocol that meets a minimal set of

require or rely on the use of higher level RPC mechanisms. The protocol is simple, scalable, an
plement. It is designed to allow portable implemeéntations with small memory footprints and reas
ce, with minimal dependencies on supporting software other than the underlying transport layer.

sions of the GIOP running on different transports would not be directly interoperable, their comm
and efficient bridging between such networking domains.

et Inter-ORB Protocol (IIOP)® element specifies how GIOP messages are exchanged using TCP

ion with other compatible ORBs based on the most popular product- and vendor-neutral transpof
ed as the protocol between half-bridges (see below).

ol is designed to be suitable and appropriate for use by any ORB to interoperate in Internet Prof
hlternative protocol is necessitated by the specific design center or intended operating environmen
se itrepresents the basic inter-ORB protocol for TCP/IP environments, a most pervasive transpo

other ORB
RBs to
rs and

s Microsoft’s
onform to the

entation) and
B interactions
assumptions.
d relatively
onable

pnality would

1P
the box”
t layer. It can

ocol domains
t of the ORB.
rt layer.

The ITIOP’

5 reldtionship to the GIOP is similar to that of a specific language mapping to OMG IDL; the GIOP may be

mapped onto a number of different transports, and specifies the protocol elements that are common to all such mappings.
The GIOP by itself, however, does not provide complete interoperability, just as IDL cannot be used to build complete
programs. The ITIOP and other similar mappings to different transports, are concrete realizations of the abstract GIOP
definitions, as shown in Figure 6.1 on page 9.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

Mandatory for CORBA

Figure 6.1
6.2.5

This part
(ESIOPs),
distributin|

Because o
support sp

While ES]
general O
bridges to

6.3

The ORB
ORB Sery
architectu
ways in w
ORB:s.

APIs incly
support re

ISO/IEC 19500-2:2012(E)

CORBA/IDL

N

ESIOD

TOTOTS

other GIOP
mappings...

- Inter-ORB Protocol Relationships
Environment-Specific Inter-ORB Protocols (ESIOPs)

bt ISO/IEC 19500 also makes provision for an open-ended set of\Environment-Specific Inter-OR
Such protocols would be used for “out of the box™ interoperation at user sites where a particular
2 computing infrastructure is already in general use.

f the opportunity to leverage and build on facilities provided by the specific environment, ESIO}
ecialized capabilities such as those relating to seeurity and administration.

OPs may be optimized for particular environnrents, all ESIOP specifications will be expected to ¢
RB interoperability architecture conventions to enable easy bridging. The inter-ORB bridge supp
be built between ORB domains that usgithe IIOP and ORB domains that use a particular ESIOP

Relationship to Previous Versions of CORBA

Interoperability Architecture/builds on Common Object Request Broker Architecture by adding {
ices and their domainss(ORB Services are described in “ORBs and ORB Services” on page 16).
e defines the problem'of ORB interoperability in terms of bridging between those domains, and d
hich those bridges ¢an be constructed. The bridges can be internal (in-line) and external (request

ded in the interoperability specifications include compatible extensions to previous versions of (
(quest-level bridging:

B Protocols
networking or

s might

onform to the
brt enables

he notion of
The

lefines several
Hlevel) to

'ORBA to

A

Dynamic Skeleton Interface (DSI) is the basic support needed for building request-level bridges. It is

he server-side

analogue of the Dynamic Invocation Interface and in the same way it has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to the Dynamic Skeleton Interface clause.

APIs for managing object references have been defined, building on the support identified for the Relationship

Service. The APIs are defined in Object Reference Operations in the ORB Interface clause of Part 1 of this
International Standard (ISO/IEC 19500-1). The Relationship Service is described in the Relationship Service
specification; refer to CosObjectldentity Module in that specification.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

6.4

Examples of Interoperability Solutions

The elements of interoperability (Inter-ORB Bridges, General and Internet Inter-ORB Protocols, Environment-Specific
Inter-ORB Protocols) can be combined in a variety of ways to satisfy particular product and customer needs. This sub

clause pro

6.4.1

vides some examples.

Example 1

ORB prod
with comy
environmg
support.

6.4.2

ORB prod

uct A is designed to support objects distributed across a network and provide “out of the hox™ in
atible ORBs from other vendors. In addition it allows bridges to be built between it and other O
nt-specific or proprietary protocols. To accomplish this, ORB A uses the IIOP and provides inte

=xample 2

uct B is designed to provide highly optimized, very high-speed support\for objects located on a si

teroperability
RBs that use
-ORB bridge

hgle machine.

For examyple, to support thousands of Fresco GUI objects operated on at neat-function-call speeds. In addifion, some of

the object
accessed.
“distributd

6.4.3

ORB prod
protocol b
ORB C is
inter-ORB
provides t
ORBs.

6.4.4

An ORB i

In
bril
idg
19

Interoperability Compliance

will need to be accessible from other machines and objects on other machines will need to be i
To accomplish this, ORB A provides a half-bridge to support the Internet IOP for communicatiot
d” ORBs.

=xample 3

uct C is optimized to work in a particular operating environment. It uses a particular environmer
ased on distributed computing services thatiare commonly available at the target customer sites.

bridge support and a companion half-bridge product (supplied by the ORB vendor or some thirg
he connection to other ORBs. The half-bridge uses the IIOP to enable interoperability with other

s considered to, be_interoperability-compliant when it meets the following requirements:

he CORBA Cere part, standard APIs are provided by an ORB to enable the construction of request-1g
dges. ARls dre defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, and by
ntitysoperations described in the Interface Repository clause of Part 1 of this International Standard
500-L):

hfrequently
h with other

t-specific
[n addition,

expected to interoperate with other arbitrary ORBs from other vendors. To accomplish this, ORB C provides

|-party)
compatible

vel inter-ORB
the object
ISO/IEC

An Internet Inter-ORB Protocol (IIOP) (explained in the Building Inter-ORB Bridges clause) defines a transfer syntax

and message formats (described independently as the General Inter-ORB Protocol), and defines how to transfer
messages via TCP/IP connections. The IIOP can be supported natively or via a half-bridge.

Support for additional ESIOPs and other proprietary protocols is optional in an interoperability-compliant system.
However, any implementation that chooses to use the other protocols defined by the CORBA interoperability

specificati

Figure 6.2

10

ons must adhere to those specifications to be compliant with CORBA interoperability.

on page 12 shows examples of interoperable ORB domains that are CORBA-compliant.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

These compliance points support a range of interoperability solutions. For example, the standard APIs may be used to
construct “half bridges” to the IIOP, relying on another “half bridge” to connect to another ORB. The standard APIs also
support construction of “full bridges,” without using the Internet IOP to mediate between separated bridge components.
ORBs may also use the Internet IOP internally. In addition, ORBs may use GIOP messages to communicate over other
network protocol families (such as Novell or OSI), and provide transport-level bridges to the ITOP.

The GIOP is described separately from the IIOP to allow future specifications to treat it as an independent compliance
point.

© ISO/IEC 2012 - Al rights reserved 11

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

ORB Domains ORB Domains
lIoP DCE-CIOP
CORBA V2.0 Interoperable
IOP
CORBA V2.0 Interoperable.
Half
Bridge
IOP Other
Protocol*)

CORBA V2.0 Interoperable

*e.g. Proprietary protocol or
GIOP OSI mapping

Figure 6.2 - Examples of CORBA Interoperability Compliance

12

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

6.5

This sub ¢

6.5.1

Today, there a

technique;
microseco

high levelp

highly opf

The mark
kinds of ¢
informatid

6.5.2

Even whe
different

For securij
another. F
to restrict
separate,
private obj
will want

Supportin,
unwise to
impractica
environmg
existing o

Managem
decentrali
location a

6.5.3

ISO/IEC 19500-2:2012(E)

Motivating Factors

lause explains the factors that motivated the creation of interoperability specifications.

ORB Implementation Diversity

are many di O) AW a Va] ed arge di in
is evident. For example, the time for a request ranges over at least 5 orders of magnitude, from
nds to several seconds. The scope ranges from a single application to enterprise networks.cSome
of security, others are more open. Some ORBs are layered on a particular widely used.protocol

imized, proprietary protocols.

bt for object systems and applications that use them will grow as object systems<are-able to be ap
pmputing. From application integration to process control, from loosely coupled’operating systen
n superhighway, CORBA-based object systems can be the common infrastructure.

DRB Boundaries

h it is not required by implementation differences, there are other reasons to partition an environ
RBs.

ty reasons, it may be important to know that it is not génerally possible to access objects in one
br example, an “internet ORB” may make public information widely available, but a “company Ol
what information can get out. Even if they usedsthe same ORB implementation, these two ORBs

jects from outside. Even though individualkebjects should protect themselves, prudent system adi
to avoid exposing sensitive objects to attacks from outside the company.

b multiple ORBs also helps handlexthe difficult problem of testing and upgrading the object systen
test new infrastructure without-limiting the set of objects that might be damaged by bugs, and it
1 to replace “the ORB” everywhere simultaneously. A new ORB might be tested and deployed if
nt, interoperating with the eXisting ORB until either a complete switch is made or it incrementally
he.

bnt issues may alsoymotivate partitioning an ORB. Just as networks are subdivided into domains
red control ofidatabases, configurations, resources, management of the state in an ORB (object r
hd translation information, interface repositories, per-object data) might also be done by creating

DRBs Vary in Scope, Distance, and Lifetime

plementation

a few
ORBs have
others use

plied to more
ns to the

ment into

domain from
RB” will want
would be

o that the company could allow access to public objects from inside the company without allowing access to

ninistrators

h. It would be
may be

| the same
displaces the

to allow
tference
sub-ORBs.

Even in a single computing environment produced by a single vendor, there are reasons why some of the objects an
application might use would be in one ORB, and others in another ORB. Some objects and services are accessed over
long distances, with more global visibility, longer delays, and less reliable communication. Other objects are nearby, are
not accessed from elsewhere, and provide higher quality service. By deciding which ORB to use, an implementor sets

expectatio

ns for the clients of the objects.

One ORB might be used to retain links to information that is expected to accumulate over decades, such as library
archives. Another ORB might be used to manage a distributed chess program in which the objects should all be destroyed
when the game is over. Although while it is running, it makes sense for “chess ORB” objects to access the “archives
ORB,” we would not expect the archives to try to keep a reference to the current board position.

© ISO/IEC 2012 - All rights reserved

13

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

6.6

Interoperability Design Goals

Because of the diversity in ORB implementations, multiple approaches to interoperability are required. Options identified

in previou

.

s versions of CORBA include:

ORB to that used by another.

Protocol Translation, where a gateway residing somewhere in the system maps requests from the format used by one

Ré|
for

Al
im|
wi

In general
between t
bridge bet

This Inter:
interopera

The folloy

.

Thi
sol

Th
im|

Int]
the

Al
C(

na

6.6.1

The follov

Su

ference Embedding, where invocation using a native object reference delegates to a special objectwh
ward that invocation to another ORB.

ernative ORBs, where ORB implementations agree to coexist in the same address space so\¢asily tha
plementation can transparently use any of them, and pass object references created by eneg’ORB to ar
hout losing functionality.

there is no single protocol that can meet everyone’s needs, and there is no single means to intef
vo different protocols. There are many environments in which multiple protocols exist, and therg
ween environments that share no protocols.

hational Standard adopts a flexible architecture that allows a wid¢bvariety of ORB implementatio
fe and that includes both bridging and common protocol elements.

ving goals guided the creation of interoperability specifications:

e architecture and specifications should allow high-performance, small footprint, lightweight interop
utions.

e design should scale, should not be unduly difficult to implement, and should not unnecessarily rest
plementation choices.

croperability solutions should be able to'\work with any vendors’ existing ORB implementations with
ir CORBA-compliant core feature sef;those implementations are diverse.

operations implied by the CORBA object model (i.e., the stringify and destringify operations defing
DRBA:ORB pseudo-object(and all the operations on CORBA:Object) as well as type management
rrowing, as needed by the C:++ mapping) should be supported.

Non-Goals

ying were taken into account, but were not goals:

pportAor Security

ose job is to

t a client or
other ORB

operate
are ways to

hs to

erability

Fict

respect to

d on the
(e.g.,

Su

pport for future ORB Services

14

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

7

71

ISO/IEC 195

ORB Interoperability Architecture

Overview

00-2:2012(E)

The original Interoperablllty RFP defines 1nteroperab111ty as the ablhty for a client on ORB A to invoke an OMG IDL-

defined ope ther identifies
general re qulrements 1nclud1ng in partlcular:

+ Abjlity for two vendors” ORBs to interoperate without prior knowledge of each other’s implementation.

* Support of all ORB functionality.

* Prgservation of content and semantics of ORB-specific information across ORB boundari¢s (for example, security).
In effect, the requirement is for invocations between client and server objects to be independent of whether they are on
the same ¢r different ORBs, and not to mandate fundamental modifications to existing ORB products.
7.1.1 Domains
The CORBA Object Model identifies various distribution transparencie$.that must be supported within a single ORB

environmg
transparen

In this ard
rules are
with trans

Domains
installatio

“run-timeT

time” cha
domains.

Within a
network a

type supp
domain m|

shared.

7.1.2

nt, such as location transparency. Elements of ORB fungtignality often correspond directly to su
cies. Interoperability can be viewed as extending transparéncies to span multiple ORBs.

hitecture a domain is a distinct scope, within whigh_eertain common characteristics are exhibited
bserved over which a distribution transparency(s preserved. Thus, interoperability is fundament:
parently crossing such domain boundaries.

end to be either administrative or techrielogical in nature, and need not correspond to the boundar
. Administrative domains include naming domains, trust groups, resource management domains
characteristics of a system. Technelogy domains identify common protocols, syntaxes, and simi
acteristics. In many cases, the @eed for technology domains derives from basic requirements of

ingle ORB, most domains are likely to have similar scope to that of the ORB itself: common objg
Hdresses, security mechanisms, and more. However, it is possible for there to be multiple domain
rted by a given ORB: internal representation on different machine types, or security domains. C

Bridging Domains

Ch

and common
nlly involved

es of an ORB
and other
lar “build-
dministrative

ct references,
s of the same
pnversely, a

py span severalbORBs: similar network addresses may be used by different ORBs, type identifiefs may be

The abstract architecture describes ORB interoperability in terms of the translation required when an object request
traverses domain boundaries. Conceptually, a mapping or bridging mechanism resides at the boundary between the
domains, transforming requests expressed in terms of one domain’s model into the model of the destination domain.

The concre

te architecture identifies two approaches to inter-ORB bridging:

+ At application level, allowing flexibility and portability.
« At ORB level, built into the ORB itself.

© ISO/IEC 2012 - All rights reserved

15

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

7.2 ORBs and ORB Services

The ORB Core is that part of the ORB which provides the basic representation of objects and the commun

ication of

requests. The ORB Core therefore supports the minimum functionality to enable a client to invoke an operation on a

server object, with (some of) the distribution transparencies required by CORBA.

An object request may have 1mphclt attrlbutes whlch affect the way in Wthh it is communlcated though not the way in

which a clies
These feafures are prov1ded by “ORB Serv1ces
or in othet
ORB Sery

which will in some ORBs be layered as internal services
cases be incorporated directly into an ORB’s core. It is an aim of this part of ISO/IEC 19500 to
ices to be defined in the future, without the need to modify or enhance this architecture;

Within a s
private mg
them, mug

ingle ORB, ORB services required to communicate a request will be implemented @nd (implicitly
nner. For interoperability between ORBs, the ORB services used in the ORBs, andthe correspond
t be identified.

7.2.1 The Nature of ORB Services

ORB Servjices are invoked implicitly in the course of application-level intetactions. ORB Services range fi|
fundamenfal mechanisms such as reference resolution and message encéding to advanced features such as
security, tfansactions, or replication.

An ORB $ervice is often related to a particular transparency. For'example, message encoding — the marsh4
unmarshaling of the components of a request into and out of\message buffers — provides transparency of tH
representation of the request. Similarly, reference resolution supports location transparency. Some transpare

security, afe supported by a combination of ORB Services and Object Services while others, such as replic
involve inferactions between ORB Services themselves.
ORB Servjices differ from Object Services in thatthey are positioned below the application and are invoked

Security i§ an example of service with"both ORB Service and normal Object Service components, the ORH
being thoge associated with transparently authenticating messages and controlling access to objects while t
administrdtion and managemént) functions resemble conventional Object Services.

7.2.2 RB Seryvices and Object Requests
Interoperapility-between ORBs extends the scope of distribution transparencies and other request attributes|
multiple QRBs.This requires the establishment of relationships between supporting ORB Services in the d

éh replication.

bver the core,
hllow for new

invoked in a
ence between

pm
support for

ling and

e

hcies, such as
ation, may

transparently
Object

components
he necessary

to span
fferent ORBs.

In order to discuss how the relationships between ORB Services are established, it is necessary to describe
view of how an operation invocation is communicated from client to server object.

an abstract

1. The client generates an operation request, using a reference to the server object, explicit parameters, and an implicit
invocation context. This is processed by certain ORB Services on the client path.
2. On the server side, corresponding ORB Services process the incoming request, transforming it into a form directly

suitable for invoking the operation on the server object.

16

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

3.

ISO/IEC 195

The server object performs the requested operation.

4. Any result of the operation is returned to the client in a similar manner.

00-2:2012(E)

The correspondence between client-side and server-side ORB Services need not be one-to-one and in some circumstances
may be far more complex. For example, if a client application requests an operation on a replicated server, there may be

multiple s

In other ¢
authentical

7.2.3

The ORB
Stal
« Dy
Ad

Within a s
and how t
The same
the reques
of request

In princip
ORBs, sef
transparen
transparen

A client (
object. Co
administra
sides of th
services 14

7.3

From a co
client and

erver-side ORB service instances, possibly interacting with each other.

iSes, such as security, client-side or server-side ORB Services may interact with Object Services
tion servers.

Selection of ORB Services

Services used are determined by:
tic properties of both client and server objects; for example, whether a server is replicated.
hamic attributes determined by a particular invocation context; for example{ whether a request is tran

ministrative policies (e.g., security).

ingle ORB, private mechanisms (and optimizations) can be used, to establish which ORB Service]
hey are provided. Service selection might in general requir€ negotiation to select protocols or pro
is true between different ORBs: it is necessary to agree which ORB Services are used, and how ea
t. Ultimately, these choices become manifest as one or more protocols between the ORBs or as tr

5.

e, agreement on the use of each ORB Service.eafbe independent of the others and, in appropriate
vices could be layered in any order or in any grouping. This potentially allows applications to spq
cies according to their requirements, althiough at this time CORBA provides no way to penetrate
cies.

RB must be able to determine which ORB Services must be used in order to invoke operations

rrespondingly, where a client.requires dynamic attributes to be associated with specific invocatio
tive policies dictate, it must-be possible to cause the appropriate ORB Services to be used on cli
e invocation path. Whére this is not possible - because, for example, one ORB does not support
quired - either the dnteéraction cannot proceed or it can only do so with reduced facilities or tran

Domains

mputational viewpoint, the OMG Object Model identifies various distribution transparencies whi

such as

sactional.

5 are required
tocol options.
ch transforms
hinsformations

y constructed
cify selective
its

n a server
ns, or

bnt and server
the full set of
parencies.

th ensure that

seryer/objects are presented with a uniform view of a heterogeneous distributed system. From a

viewpoint

however, the system is not wholly uniform. There may be distinctions of location and possibly

engineering
any others

such as processor architecture, networking mechanisms and data representations. Even when a single ORB
implementation is used throughout the system, local instances may represent distinct, possibly optimized scopes for some

aspects of

ORB functionality.

© ISO/IEC 2012 - All rights reserved

17

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Representation Representation

Networking

Securib
24

Figure 7.1 - Different Kinds of Domains can Coexist

Interoperapility, by definition, introduces further distinctions, notably between the scopes associated with gach ORB. To
describe both the requirements for interoperability and some of the solutions, this architecture introduces tle concept of
domains tp describe the scopes and their implications.

Informally, a domain is a set of objects sharing a common characteristic or abiding by common rules. It is|a powerful
modeling foncept that can simplify the analysis and description of complex systems. There may be many types of
domains (f.g., management domains, naming domains, language domains,-and technology domains).

7.3.1 Definition of a Domain

Domains 3llow partitioning of systems into collections of components that have some characteristic in confmon. In this
architectufe a domain is a scope in which a collection of objgets, said to be members of the domain, is asspciated with
some common characteristic; any object for which the assoc¢iation does not exist, or is undefined, is not a member of the
domain. A domain can be modeled as an object and may be itself a member of other domains.

It is the sdopes themselves and the object associations or bindings defined within them which characterize aldomain. This
informatidn is disjoint between domains. Howeyver, an object may be a member of several domains, of simjlar kinds as
well as of|different kinds, and so the sets.of members of domains may overlap.

The concdpt of a domain boundary ig"defined as the limit of the scope in which a particular characteristic {s valid or
meaningfyl. When a characteristic in one domain is translated to an equivalent in another domain, it is conjvenient to
consider if as traversing the botndary between the two domains.

Domains gre generally either/administrative or technological in nature. Examples of domains related to ORB
interoperapility issues are:

* Referencing(domain — the scope of an object reference.

» Representation domain — the scope of a message transfer syntax and protocol.

» Network addressing domain — the scope of a network address.

» Network connectivity domain — the potential scope of a network message.
» Security domain — the extent of a particular security policy.
» Type domain — the scope of a particular type identifier.

» Transaction domain — the scope of a given transaction service.

Domains can be related in two ways: containment, where a domain is contained within another domain, and federation,
where two domains are joined in a manner agreed to and set up by their administrators.

18 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

7.3.2 Mapping Between Domains: Bridging

00-2:2012(E)

Interoperability between domains is only possible if there is a well-defined mapping between the behaviors of the
domains being joined. Conceptually, a mapping mechanism or bridge resides at the boundary between the domains,
transforming requests expressed in terms of one domain’s model into the model of the destination domain. Note that the
use of the term “bridge” in this context is conceptual and refers only to the functionality that performs the required
mappings between distinct domains. There are several implementation options for such bridges and these are discussed

elsewhere

For full in
domains W
as far as t
such a sup

A special

IEC 19500 assumes that both domains are strictly compliant with the CORBA Objeet‘Model and the COR|

specificati
Repository
aspects of]

7.4

An ORB ¢
the ORB j
environmg
ORBs “tr{

Note that
work as e
unidirecti
because o
could not

Without 1
discussion

7.41

In this ard
associated|

teroperability, it is essential that all the concepts used in one domain are transformable into.cong
Fith which interoperability is required, or that if the bridge mechanism filters such a coreept out, 1
he supported objects are concerned. In other words, one domain may support a sup€rior service {|
erior functionality will not be available to an application system spanning those/demains.

case of this requirement is that the object models of the two domains need._to be compatible. Thi

ons. This includes the use of OMG IDL when defining interfaces, the\use of the CORBA Core I
y, and other modifications that were made to CORBA. Variances from.this model could easily com
interoperability.

nteroperability Between ORBs

provides the mechanisms by which objects transparently make and receive requests and response
rovides interoperability between applications on, different machines in heterogeneous distributed|
nts...” ORB interoperability extends this defidition to cases in which client and server objects on
nsparently make and receive requests.”

0 direct consequence of this transparency requirement is that bridging must be bidirectional: that
fectively for object references passed as parameters as for the target of an object invocation. We|
nal (e.g., if one ORB could only-be a client to another), then transparency would not have been
bject references passed as paranicters would not work correctly: ones passed as “callback objects,’
be used.

ss of generality, mostof this text focuses on bridging in only one direction. This is purely to sin

DRB Services and Domains

hitecture, different aspects of ORB functionality - ORB Services - can be considered independen
with different domain types. The architecture does not, however, prescribe any particular decom

s, and does not imply that unidirectional connectivity satisfies basic interoperability requirements.

epts in other
nothing is lost
b others, but

s part of ISO/
BA

hterface
promise some

. In so doing,

different

is, it must
re bridging
provided

for example,

plify

D

tly and
position of

ORB functionality and interoperability into ORB Services and corresponding domain types. There is a range of
possibilities for such a decomposition:

1.

The simplest model, for interoperability, is to treat all objects supported by one ORB (or, alternatively, all ORBs of a

given type) as comprising one domain. Interoperability between any pair of different domains (or domain types) is
then achieved by a specific all-encompassing bridge between the domains. (This is all CORBA implies.)

More detailed decompositions would identify particular domain types - such as referencing, representation, security,

and networking. A core set of domain types would be pre-determined and allowance made for additional domain
types to be defined as future requirements dictate (e.g., for new ORB Services).

© ISO/IEC 2012 - All rights reserved

19

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC

7.4.2

19500-2:2012(E)

ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those which can arise with a single type of ORB

(e.g., apr

oduct). For example:

* Two installations of the ORB may be installed in different security domains, with different Principal identifiers.
Requests crossing those security domain boundaries will need to establish locally meaningful Principals for the caller

ide

* Di

bou

Conversel
products).

* Th
* Th

diff

Additiona
between W
interaction]
within any

entirely a

or that the

These obs
interopera
best be ch

743

When an
relevant e
mediated

—

erent installations might assign different type identifiers for equivalent types, and so requests crossin
ndaries would need to establish locally meaningful type identifiers (and perhaps more).

, not all of these problems need to appear when connecting two ORBs of a different type (e.g.,
Examples include:

¢y could be administered to share user visible naming domains, so that naming domains do not need |

¢y might reuse the same networking infrastructure, so that messages could be\sent without needing to

erent connectivity domains.

problems can arise with ORBs of different types. In particular, they,may support different concej
hich there are no direct or natural mappings. CORBA only spécifies the application level view g
s, and requires that distribution transparencies conceal a whole’range of lower level issues. It fo
particular ORB, the mechanisms for supporting transpaféneies are not visible at the application{
matter of implementation choice. So there is no guarantee that any two ORBs support similar int
re is necessarily a straightforward mapping between those models.

prvations suggest that the concept of an ORB (instance) is too coarse or superficial to allow detail
bility issues between ORBs. Indeed, it becomes clear that an ORB instance is an elusive notion:
practerized as the intersection or coincidence of ORB Service domains.

Interoperability Approaches

nteraction takes place acro§sj a 'domain boundary, a mapping mechanism, or bridge, is required t
ements of the interaction‘as they traverse the boundary. There are essentially two approaches to
bridging and immedidte'bridging. These approaches are described in the following sub clauses.

Domain Domain

Domain Domain

S [

Interop

o type domain

wo different

bridging.
bridge

bts or models,
f object

lows that
level and are
ernal models

ed analysis of
t can perhaps

transform
chieving this:

NS

Mediated Bridging Immediate Bridging

Figure 7.2 - Two bridging techniques, different uses of an intermediate form agreed on between the two domains.

7.4.3.1 Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are transformed, at the boundary of each
domain, between the internal form of that domain and an agreed, common form.

Observati

20

ons on mediated bridging are as follows:

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

implementations to a universal standard.

There can be more than one common form, each oriented or optimized for a different purpose.

00-2:2012(E)

The scope of agreement of a common form can range from a private agreement between two particular ORB/domain

If there is more than one possible common form, then which is used can be static (e.g., administrative policy agreed

between ORB vendors, or between system administrators) or dynamic (e.g., established separately for each object, or

on

En
(su

each invocation).

bineering of this approach can range from n-line specitically compiled (compare to stubs) or generic
Ch as encryption routines), to intermediate bridges to the common form.

7.4.3.2 |
With im

domain, d
Observati

Th
spe

thig.

Th
chq
ned

As a gene
between (]

7.4.3.3 L

Logically,
is used. H
machine 1
engineerir
respect to
perspectivj

For examyjj
within the
between t
the enging
implemen
domain of

mediate Bridging

diate bridging, elements of the interaction relevant to the domain are transformed; at' the boundj
rectly between the internal form of one domain and the internal form of the other!

ns on immediate bridging are as follows:

s approach has the potential to be optimal (in that the interaction is not mediated via a third party, an
cifically engineered for each pair of domains) but sacrifices flexibility‘and generality of interoperabi

s approach is often applicable when crossing domain boundaries-that are purely administrative (i.e.,
nge of technology). For example, when crossing security adniinistration domains between similar Ol
essary to use a common intermediate standard.

RB/domain implementations.

ocation of Inter-Domain Functionalijty:

an inter-domain bridge has components in both domains, whether the mediated or immediate brid
pwever, domains can span ORB boundaries and ORBs can span machine and system boundaries;
hay support, or a process may have access to more than one ORB (or domain of a given type). F
g viewpoint, this means that the components of an inter-domain bridge may be dispersed or co-1
ORBs or systems. It also' means that the distinction between an ORB and a bridge can be a matt
: there is a duality between viewing inter-system messaging as belonging to ORBs, or to bridge

ORB and thus-be invisible as far as ORB interoperability is concerned. A similar situation arises

vo ORBs-er{domains is implemented wholly within a process or system that has access to both.

ering issues of inter-domain bridging are confined, possibly to a single system or process. If it we|
all bridging in this way, then interactions between systems or processes would be solely within
ORB.

library code

ry of each

d can be
ity to achieve

here is no
RBs, it is not

ral observation, the two approaches can become almost indistinguishable when private mechanisms are used

bing approach
conversely, a
rom an
bcated, with
er of

5.

le, if a single ORB) encompasses two security domains, the inter-domain bridge could be implenjented wholly

vhen a bridge
n such cases,
re practical to
a single

7.4.3.4 Bridging Level

As noted at the start of this sub clause, bridges may be implemented both internally to an ORB and as layers above it.

These are

called respectively “in-line” and “request-level” bridges.

Request-level bridges use the CORBA APIs, including the Dynamic Skeleton Interface, to receive and issue requests.
However, there is an emerging class of “implicit context” which may be associated with some invocations, holding ORB
Service information such as transaction and security context information, which is not at this time exposed through
general purpose public APIs. (Those APIs expose only OMG IDL-defined operation parameters, not implicit ones.)

© ISO/IEC 2012 - All rights reserved

21

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Rather, the precedent set with the Transaction Service is that special purpose APIs are defined to allow bridging of each
kind of context. This means that request-level bridges must be built to specifically understand the implications of bridging

such ORB

Service domains, and to make the appropriate API calls.

7.4.4 Policy-Mediated Bridging

An assum;

tion made through most of this part of ISO/IEC 19500 is that the existence of domain boundari

s should be

transparen
then there

Realistica
goals. Bri
constrainej
policies m

Security p
domain-bd
accessible

Such polig
be an app
organizati

Request-1g
without lo
policies.

745 |

In the cas
others, an
serve.) Thj
network p
one comnj

t to requests: that the goal of interoperability is to hide such boundaries. However, if this werecaly
would be no real need for those boundaries in the first place.

ly, administrative domain boundaries exist because they reflect ongoing differences in organizatio
loing the domains will in such cases require policy mediation. That is, inter-domaid, tratfic will n
d, controlled, or monitored; fully transparent bridging may be highly undesirablé~Resource man
ay even need to be applied, restricting some kinds of traffic during certain periods.

olicies are a particularly rich source of examples: a domain may need te’ audit external access, o1
sed access control. Only a very few objects, types of objects, or classifications of data might be
through a “firewall.”

y-mediated bridging requires a bridge that knows something about the traffic being bridged. It co

bn-specific, off-the-shelf, or anywhere in between.

vel bridges, which use only public ORB APIs, easily~support the addition of policy mediation ¢
5s of access to any other system infrastructure that'may be needed to identify or enforce the appi

Configurations of Bridges in\Networks

b of network-aware ORBs, we anticipate that some ORB protocols will be more frequently bridg
1 so will begin to serve the role-of “backbone ORBs.” (This is a role that the ITOP is specifically
is use of “backbone topology” is true both on a large scale and a small scale. While a large scalg
rovider could define itStown backbone ORB, on a smaller scale, any given institution will probal
ercially available QRB as its backbone.

vays the goal,

hal policies or
eed to be
lgement

to provide
externally

nld in general

ication-specific policy, and many policy-mediated bridges<ould be parts of applications. Those fnight be

mponents,
opriate

ed to than

expected to
public data
ly designate

22

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

Figure 7.3 - An ORB chosen as a backbone will connect other ORBs through bridges, both

Adopting

typical ne

rather thajp combinatorial.)

In large ¢
network r
supplant t

7.5

The Objedt Model in “The Objéet Model” clause of Part 1 of this International Standard (ISO/IEC 19500-
object refgrence as an object-name that reliably denotes a particular object. An object reference identifies th

each time

The fundamental ORB, interoperability requirement is to allow clients to use such object names to invoke

objects in
Providing

ISO/IEC 19500-2:2012(E)

ORB A ORB B

Backbone ORB

ORB D ORBC

full-bridges and half-bridges.

work organizations. (That is, it allows the number of bridges to be proportional to the number o

utes, because the bridges naturally fit'in locations where connectivity was already indirect, and
he existing network firewalls.

Dbject Addressing

the reference is.used in a request, and an object may be denoted by multiple, distinct references.

other QRBS. Clients do not need to distinguish between references to objects in a local ORB or in
this transparency can be quite involved, and naming models are fundamental to it.

p backbone style architecture is a standard administrative technique for managing networks. It hds the
consequerfce of minimizing the number of bridges needed, while at the same time making the ORB topolo

by match
" protocols,

nfigurations, it will be common to notice-that adding ORB bridges doesn’t even add any new “Hops” to

hugment or

) defines an
c same object

perations on
a remote one.

This sub catse-diseussesmodelsfornaming-entittestnnultiple-domainsand-transformations-eofsaehnames as they
cross the domain boundaries. That is, it presents transformations of object reference information as it passes through
networks of inter-ORB bridges. It uses the word “ORB” as synonymous with referencing domain; this is purely to

simplify the discussion. In other contexts, “ORB” can usefully denote other kinds of domain.

© ISO/IEC 2012 - All rights reserved

23

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

7.5.1

Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from other ORBs, when discussing object
references from multiple ORBs one must always associate the object reference’s domain (ORB) with the object reference.
We use the notation D0.R0 to denote an object reference R0 from domain DO; this is itself an object reference. This is
called “domain-relative” referencing (or addressing) and need not reflect the implementation of object references within

any ORB.

At an imp,
that is, ins
including

7.5.2

When a bijidge hands an object reference to an ORB, it must do so in a form understdod by that ORB: the oY

must be ir
bridge mul

Several b4
used, and
ramificati

1. d
b
2. R

1d

(R

DO

Figure 7.4 - Reference.encapsulation adds domain information during bridging

3.

D
H
q

-

ap entirely different proxy reference into the new domain. The bridge must then manage state on beha

[ementation level, associating an object reference with an ORB is only important at an interHORH
ide a bridge. This is simple, since the bridge knows from which ORB each request (or response)
hny object references embedded in it.

dandling of Referencing Between Domains

the recipient ORB’s native format. Also, in cases where that object origiriated from some other
St associate each newly created “proxy” object reference with (what it)sees as) the original objec

sic schemes to solve these two problems exist. These all have advantages in some circumstances
in arbitrary combination with each other, since CORBA object-references are opaque to applicati
ns of each scheme merits attention, with respect to scaling ‘and administration. The schemes inc

bject Reference Translation Reference Embedding: The bridge can store the original object reference

fidged object reference, map these references fromtone ORB’s format to the other’s, and vice versa.

eference Encapsulation: The bridge can aveid holding any state at all by conceptually concatenating
entifier to the object name. Thus if a referénce DO.R, originating in domain D0, traversed domains D
b identified in D4 as proxy reference @3.d2.d1.d0.R, where dn is the address of Dn relative to Dn+1.

d0d1 d2 d3 Q

omain Réfexence Translation: Like object reference translation, this scheme holds some state in the Y
oweyeT; 1t supports sharing that state between multiple object references by adding a domain-based 1
the.proxy (which still holds the original reference, as in the reference encapsulation scheme). It ach

boundary;
came,

ject reference
ORB, the
t reference.

; all can be
ons. The
ude:

tself, and pass
f of each

a domain
... D4 it could

ridge.
oute identifier
eves this by

fovading encoded domain route information each time a domain boundary is traversed; thus if a refer

pnce DO.R,

p

originating in domain D0, traversed domains D1...D4 it would be identified in D4 as (d3, x3).R, and in D2 as
(d1,x1).R, and so on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair (dn-1, xn-1).

Figure 7.5 - Domain Reference Translation substitutes domain references during bridging

24

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

4. Reference Canonicalization: This scheme is like domain reference translation, except that the proxy uses a “well-
known” (e.g., global) domain identifier rather than an encoded path. Thus a reference R, originating in domain D0

would be identified in other domains as DO.R.

Observations about these approaches to inter-domain reference handling are as follows:

Naive application of reference encapsulation could lead to arbitrarily large references. A “topology service” could

optimize cycles within any given encapsulated reference and eliminate the appearance of references to local objects as

alidn references.

A tppology service could also optimize the chains of routes used in the domain reference translation sch
links in such chains are re-used by any path traversing the same sequence of domains, such optimization
particularly high leverage.

With the general purpose APIs defined in CORBA, object reference translation can be supported even by
speifically intended to support efficient bridging, but this approach involves the moststate in intermedig
with reference encapsulation, a topology service could optimize individual object references. (APIs are
Dyhamic Skeleton Interface and Dynamic Invocation Interface.)

Th
rep

Re
the

b chain of addressing links established with both object and domain reference translation schemes my
resented as state within the network of bridges. There are issues assaciated with managing this state.

ference canonicalization can also be performed with managed hierarchical name spaces such as those
Internet and X.500 naming.

7.6

This sub dlause provides a simple, powerful information~-model for the information found in an object refe

n Information Model for Object References

eme. Since the
has

¥ ORBs not
ite bridges. As
lefined by the

st be

now in use on

ence. That

model is ihtended to be used directly by developers of bridging technology, and is used in that role by the IIOP, described

in the General Inter-ORB Protocol clause of this standard, Object References.

7.6.1 hat Information Do Bridges Need?

The folloying potential information abeut object references has been identified as critical for use in bridgi
technologjes:

* Is if null? Nulls only need to be transmitted and never support operation invocation.

t type is it? Many-ORBs require knowledge of an object’s type in order to efficiently preserve the in|
typg systems.

t protocalsare supported? Some ORBs support objrefs that in effect live in multiple referencing dor
clignts the'choice of the most efficient communications facilities available.

t.ORB Services are available? As noted in Selection of ORB Services on page 17, several different

ng

tegrity of their

hains, to allow

ORB Services

mignt be mvolved 1 an mvocation. Froviding miormation about those services 1n a standardized way could in many

cases reduce or eliminate negotiation overhead in selecting them.

7.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference,” (IOR) data structure has been provided. This data
structure need not be used internally to any given ORB, and is not intended to be visible to application-level ORB

programmers. It should be used only when crossing object reference domain boundaries, within bridges.

© ISO/IEC 2012 - All rights reserved

25

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

This data structure is designed to be efficient in typical single-protocol configurations, while not penalizing multiprotocol
ones.

module IOP { /I IDL

/I Standard Protocol Profile tag values

Profitetd;

tag;
profile_data;

type_id;
profiles;

typedef unsigned long Componentid;
typedef CORBA::OctetSeq ComponentData;

struct TaggedComponent {
Jomponentid tag;
QomponentData component_data;

b

typedef sequence<TaggedComponent> TaggedComponentSeq;
typedef sequence <TaggedComponent> MultipleComponentProfile;
typedef CORBA::OctetSeq ObjectKey;

5

7.6.3 IOR Profiles

Object references have at least one tagged profile. Each profile supports one or more protocols and encapsulates all the
basic information the protocols it supports need to identify an object. Any single profile holds enough information to
drive a complete invocation using any of the protocols it supports; the content and structure of those profile entries are
wholly specified by these protocols.

When a specific protocol is used to convey an object reference passed as a parameter in an IDL operation invocation (or
reply), an IOR which reflects, in its contained profiles, the full protocol understanding of the operation client (or server in
case of reply) may be sent. A receiving ORB which operates (based on topology and policy information available to it) on

26 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

profiles rather than the received IOR as a whole, to create a derived reference for use in its own domain of reference, is
placing itself as a bridge between reference domains. Interoperability inhibiting situations can arise when an orb sends an
IOR with multiple profiles (using one of its supported protocols) to a receiving orb, and that receiving orb later returns a

derived reference to that object, which has had profiles or profile component data removed or transformed from the
original IOR contents.

To assist in classifying behavior of ORBS i
the confor i fg e

* Fu
intg
tha
Lin
intg
wh

—

NOTE: C
for the 110
deprecated
require F

An ORB
categorize
protocol s
profile frqg
profile in
system ex

Each prof
IIOP IOR

0x80000000 through Oxffffffff are reservéd for future use, and are not currently available for assignment.

Null objeq
single terr]
or to cons|
type, and
reasons oy
problems
an Interfa

type.

|

| IOR conformance requires that an orb which receives an IOR for an object passed to it through'that
roperability protocol, shall recover the original IOR, in its entirety, for passing as a referenceto-that
orb through that same protocol.

hited-Profile IOR conformance requires that an orb which receives an IOR passed to itthrough a givg
roperability protocol, shall recover all of the standard information contained in the, JOR profile for ti
enever passing a reference to that object, using that same protocol, to another ORB:

nformance to IIOP versions 1.0, 1.1, and 1.2 only requires support of limitéd-Profile IOR conforman
P IOR profile. However, due to interoperability problems induced by kimited-Profile IOR conformal
by the CORBA 2.4 specification for an orb to not support Full IOR €enformance. Some future IIOP
IOR conformance.

ay be unable to use any of the profiles provided in an IOR. for various reasons which may be b
d as transient ones like temporary network outage, and_non-transient ones like unavailability of
bftware in the ORB. The decision about the categoryof outage that causes an ORB to be unable
m an IOR is left up to the ORB. At an appropriate.point, when an ORB discovers that it is unab
an IOR, depending on whether it considers thewrfeason transient or non-transient, it should raise t
ception TRANSIENT with standard minor_code 2, or IMP_LIMIT with the standard minor code

le has a unique numeric tag, assigned by the OMG. The ones defined here are for the IIOP (see
Profile Components, on page 114) and for use in “multiple component profiles.” Profile tags in {

t references are indicated by an empty set of profiles, and by a “Null” type ID (a string that con
hinating character). Type IDs may only be “Null” in any message, requiring the client to use existi
plt the object, to deterinine interface types supported. The type ID is a Repository ID identifying
s provided to allow-©ORBs to preserve strong typing. This identifier is agreed on within the bridg
tside the scopérof this interoperability specification, needs to have a much broader scope to addi
n system eyolution and maintenance. Type IDs support detection of type equivalence, and in cor
e Repository, allow processes to reason about the relationship of the type of the object referred to

n such bridging roles, two classes of IOR conformance may be associated with

ORB
object from

n ORB
at protocol,

e, specifically
nce, it is now
versions could

oadly
ppropriate
to use any

€ to use any
he standard
l.

Clause 9.8.3,
he range

ains only a
hg knowledge
the interface
re and, for
ess various
junction with
and any other

The type |

Dy if provided by the server, indicates the most derived type that the server wishes to publish, af]

the time the

reference is generated. The object’s actual most derived type may later change to a more derived type. Therefore, the type
ID in the IOR can only be interpreted by the client as a hint that the object supports at least the indicated interface. The
client can succeed in narrowing the reference to the indicated interface, or to one of its base interfaces, based solely on

the type ID in the IOR, but must not fail to narrow the reference without consulting the object via the

113

“ get interface” pseudo-operations.

is

a” or

ORBs claiming to support the Full-IOR conformance are required to preserve all the semantic content of any IOR
(including the ordering of each profile and its components), and may only apply transformations which preserve

semantics

(e.g., changing Byte order for encapsulation).

© ISO/IEC 2012 - All rights reserved

27

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

For example, consider an echo operation for object references:
interface Echoer {Object echo(in Object 0);};

Assume that the method body implementing this “echo” operation simply returns its argument. When a client application
invokes the echo operation and passes an arbitrary object reference, if both the client and server ORBs claim support to
Full IOR conformance, the reference returned by the operation is guaranteed to have not been semantically altered by

either client or server ORB That is, all its proﬁles will remain intact and in the same order as they were present when the
reference pa erRes 3 ’ S at, for example,
a client cgn safely store an ob]ect reference in a naming service and get that reference back agam later without losing

informatidn inside the reference.

7.6.4 $Standard IOR Profiles

module IDP {
const Profileld TAG_INTERNET_IOP = 0;
const Profileld TAG_MULTIPLE_COMPONENTS = 1;
const Profileld TAG_SCCP_IOP = 2;
const Profileld TAG_UIPMC = 3;
b

7.6.4.1 The TAG_INTERNET_IOP Profile

The TAG|INTERNET_IOP tag identifies profiles that support:the Internet Inter-ORB Protocol. The Profil¢Body of this
profile, dgscribed in detail in IIOP IOR Profiles on page 1123 ¢0ntains a CDR encapsulation of a structure fontaining
addressing and object identification information used by ITOP. Version 1.1 of the TAG_INTERNET_IOP frofile also
includes a| sequence<TaggedComponent> that can‘contain additional information supporting optional [IOP features,
ORB servjces such as security, and future protocol eXtensions.

Protocols pther than IIOP (such as ESIOPs and other GIOPs) can share profile information (such as object|identity or
security irfformation) with IIOP by encoding their additional profile information as components in the
TAG_INTERNET_IOP profile. All TAG_INTERNET_IOP profiles support IIOP, regardless of whether they also

support additional protocols. Interopérable ORBs are not required to create or understand any other profile| nor are they

required t¢ create or understand any of the components defined for other protocols that might share the
TAG_INTERNET_IOP profileSyith IIOP.

The profile_data for the TAG_INTERNET_IOP profile is a CDR encapsulation of the IIOP::ProfileBody_1_1 type,
described [in IIOP IOR.Profiles on page 112.

7.6.4.2 The TAGEMULTIPLE_COMPONENTS Profile

The TAG|MULTIPLE_ COMPONENTS tag indicates that the Value encapsulated is of type
MultipleCe he vhich must be
specified by the protocol using th1s proﬁle This proﬁle may be used to carry IOR components as spec1ﬁed in IOR
Components on page 29.

The profile_data for the TAG_MULTIPLE_COMPONENTS profile is a CDR encapsulation of the
MultipleComponentProfile type shown above.

7.6.4.3 The TAG_SCCP_IOP Profile
See the OMG specification [SCCP] and Annex A of Part 2 of this International Standard for additional information.

28 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

7.6.4.4 The TAG_UIPMC Profile

The TAG_UIPMC tag is used by MIOP. See clause 11 of this Part of this International standard and Annex A of Part 2 of
this International Standard for additional information.

7.6.5

IOR Components

TaggedC
identified
assigned 1

Specificat,

Co

Str
as

if d
Ser

Prd
oth|

A

~

Specificat|
specify, fd
(MANDA
conformar

7.6.6

The folloy
TAG_MULTIPLE_COMPONENTS profiles, and may apply to IIOP, other GIOPs, ESIOPs, or other proto
must not drop these components from an existing IOR.

et T TAG INTERNET 0Pt TAG —MULTIPLE COMPONENTS ;
by unique numeric tags using a namespace distinct form that is used for profile tags. Component
y the OMG.

ons of components must include the following information:

mponent ID: The compound tag that is obtained from OMG.

cture and encoding: The syntax of the component data and the encoding rules. If the component val
CDR encapsulation, the IDL type that is encapsulated and the GIOP versior which is used for enco
ifferent than GIOP 1.0, must be specified as part of the component definition:

hantics: How the component data is intended to be used.

tocols: The protocol for which the component is defined, and whether it is intended that the componet
er protocols.

nost once: whether more than one instance of this component can be included in a profile.

ons of protocols must describe how the components.affect the protocol. In addition, a protocol d
r each TaggedComponent, whether inclusion of the component in profiles supporting the protocd
TORY PRESENCE) or not required (OPTIONAL PRESENCE). An ORB claiming to support Fu
ice shall not drop optional components, once they have been added to a profile.

Standard IOR Components

ying are standard IOR compeneits that can be included in TAG_INTERNET_IOP and

00-2:2012(E)

les are
tags are

ue is encoded
ling the value,

it be usable by

efinition must
1 is required
11-IOR

ols. An ORB

const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid

TAG_ORB_TYPE = 0;
TAG_CODE_SETS = 1;

TAG_POLICIES = 2;
TAG_ALTERNATE_|IOP_ADDRESS = 3;

=17-

TAG_SEC_NAME = 14;
TAG_SPKM_1_SEC_MECH =15;
TAG_SPKM_2_SEC_MECH = 16;
TAG_KerberosV5_SEC_MECH = 17;
TAG_CSI_ECMA_Secret_SEC_MECH = 18;
TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;
TAG_SSL_SEC_TRANS = 20;
TAG_CSI_ECMA_Public_SEC_MECH = 21;
TAG_ GENERIC_SEC_MECH = 22;

© ISO/IEC 2012 - All rights reserved 29

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

const Componentld TAG_FIREWALL_TRANS = 23;
const Componentld TAG_SCCP_CONTACT_INFO = 24;
const Componentld TAG_JAVA_CODEBASE = 25;
const Componentld TAG_TRANSACTION_POLICY = 26;
const Componentld TAG_MESSAGE_ROUTERS = 30;
const Componentld TAG_OTS_POLICY = 31;

const Componentld TAG_INV_POLICY = 32;
const€omponenttd—TAG—€SI—SEEMECH HST=33—
const Componentld TAG_NULL_TAG = 34;

const Componentld TAG_SECIOP_SEC_TRANS = 35;

const Componentld TAG_TLS_SEC_TRANS = 36;

const Componentld TAG_ACTIVITY_POLICY = 37;

const Componentld TAG_RMI_CUSTOM_MAX_STREAM_FORMAT = 38;
const Componentld TAG_GROUP = 39;

const Componentld TAG_GROUP_IIOP = 40;

const Componentld TAG_PASSTHRU_TRANS = 41;

const Componentld TAG_FIREWALL_PATH = 42;

const Componentld TAG_IIOP_SEC_TRANS =43;

const Componentld TAG_INET_SEC_TRANS = 123;

7.6.6.1 TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the-particular kind of ORB an object reference is coming from, to
work around problems with that particular ORB, or exploit shared efficiencies.

The TAG]ORB_TYPE component has an associated value of type unsigned long, encoded as a CDR encapsulation,
designatinjg an ORB type ID allocated by the OMG for the ORB type of the originating ORB. Anyone may register any
ORB typep by submitting a short (one-pardgraph) description of the ORB type to the OMG, and will receive a new ORB
type ID inf return. A list of ORB type-déseriptions and values will be made available on the OMG web seryer.

The TAG]ORB_TYPE component ean appear at most once in any IOR profile. For profiles supporting IIQP 1.1 or
greater, itlis optionally present:

7.6.6.2 TAG_ALTERNATE_IIOP_ADDRESS Component

In cases where the same object key is used for more than one internet location, the following standard IOR {Component is
defined fofr suppertin IIOP version 1.2.

The TAG|ALTERNATE_IIOP_ADDRESS component has an associated value of type:

struct {
string HostID,
unsigned short Port

b

encoded as a CDR encapsulation.

30 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Zero or more instances of the TAG_ALTERNATE_IIOP_ADDRESS component type may be included in a version 1.2
TAG_INTERNET_IOP Profile. Each of these alternative addresses may be used by the client orb, in addition to the host
and port address expressed in the body of the Profile. In cases where one or more TAG_ALTERNATE_IIOP_ADDRESS
components are present in a TAG_INTERNET_IOP Profile, no order of use is prescribed by Version 1.2 of IIOP.

7.6.6.3 Other Components
ThefOllO' andard componen are specified in vario OM neci ations:

+ TAIG_CODE_SETS - See CodeSet Component of IOR Multi-Component Profile in clause 7.10.2.4.inthis part of this
Intgrnational Standard.

* TAG_POLICIES - Sece the “CORBA Messaging” clause of ISO/IEC 19500-1.

+ TAIG_SEC_NAME - Sce the Mechanism Tags sub clause of [CORBASEC].
 TAG_ASSOCIATION_OPTIONS - See the Tag Association Options sub clause of {CORBASEC].
+ TAG_SSL_SEC_TRANS - Sce the Mechanism Tags sub clause of [CORBASEC].

+ TAG_GENERIC_SEC_MECH and all other tags with names in the form-FAG * SEC MECH - See the
“Miechanism Tags” sub clause of [CORBASEC].

« TAG_FIREWALL_SEC - See [FIREWALL)].

* TAG_SCCP_CONTACT_INFO - See [SCCP].

+ TAG_JAVA_CODEBASE - Sce [JAV2I].

+ TAG_TRANSACTION_POLICY - See [TRANS].

+ TAG_MESSAGE_ROUTERS - Sece the “CORBAMessaging” clause of ISO/IEC 19500-1.
+ TAG_OTS_POLICY - See [TRANS].

* TAG_INV_POLICY - Sece [TRANS].

« TAG_INET_SEC_TRANS - See [CORBASEC].

* TAG_CSI_SEC_MECH_LIST;TAG_NULL_TAG, TAG_SECIOP_SEC_TRANS, TAG_TLS_SEC_TRANS -
Seq the “Secure Interoperability” clause 10 in this part of this International Standard.

. TAG_ACTIVITY_POLICY. - See [ASMOTS].
. TAG_RMI_CUSTOM_MAX_STREAM_FORMAT - Sce [JAV2I].

* TAG_GROUP and. TAG_GROUP_IIOP - See the “Unreliable Multicast Inter-ORB Protocol” clause [l 1 in this part
of this Internatiohal Standard.

+ TAG_IIOP.SEC_TRANS - Sce the “Secure Interoperability” clause 10 in this part of this Internationgl Standard.

7.6.7 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not depend on information contained in
another profile.

2. Any invocation uses information from exactly one profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a single profile, possibly with some
information (e.g., components) shared between the protocols, as specified by the specific protocols.

© ISO/IEC 2012 - All rights reserved 31

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

4. Unless otherwise specified in the definition of a particular profile, multiple profiles with the same profile tag may be
included in an IOR.

5. Unless otherwise specified in the definition of a particular component, multiple components with the same
component tag may be part of a given profile within an IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared between multiple protocols. Multiple
such profiles may exist in an IOR.

7. The definition of each protocol using a TAG_MULTIPLE_COMPONENTS profile must specify whi¢h components
itluses, and how it uses them.

0
)

rofile and component definitions can be either public or private. Public definitions are those"whose tdg and data
rmat is specified in OMG documents. For private definitions, only the tag is registerédywith OMG.

—n

9. Ppblic component definitions shall state whether or not they are intended for use by, protocols other than the one(s)
for which they were originally defined, and dependencies on other components.

The OM(j is responsible for allocating and registering protocol and component-tags. Neither allocation not registration
indicates gny “standard” status, only that the tag will not be confused with ofher'tags. Requests to allocate tags should be
sent to tag request@omg.org.

7.6.8 IOR Creation and Scope

IORs are ¢reated from object references when required to ctess some kind of referencing domain boundary. ORBs will
implement object references in whatever form they find appropriate, including possibly using the IOR stru¢ture. Bridges
will normally use IORs to mediate transfers where thatstandard is appropriate.

7.6.9 $tringified Object References

Object refprences can be “stringified” (tyrned into an external string form) by the ORB::0bject_to_string operation,
and then ‘|destringified” (turned back-inte a programming environment’s object reference representation) uging the
ORB::strjng_to_object operation.

There can|be a variety of reagons why being able to parse this string form might not help make an invocat{fon on the
original object reference:

* Ideptifiers embedded in the string form can belong to a different domain than the ORB attempting to degtringify the
objgct reference:

» Th¢ ORBs\in question might not share a network protocol, or be connected.

* Sedurity/constraints may be placed on object reference destringification.

Nonetheless, there is utility in having a defined way for ORBs to generate and parse stringified IORs, so that in some
cases an object reference stringified by one ORB could be destringified by another.

To allow a stringified object reference to be internalized by what may be a different ORB, a stringified IOR representation
is specified. This representation instead establishes that ORBs could parse stringified object references using that format.
This helps address the problem of bootstrapping, allowing programs to obtain and use object references, even from
different ORBs.

The following is the representation of the stringified (externalized) IOR:

32 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

(1) <oref> ::= <prefix> <hex_Octets>

(2) <prefix> ::= <i><o><r>*“:”

(3) <hex_Octets> ::= <hex_Octet> {<hex_Octet>}*

(4) <hex_Octet>::= <hexDigit> <hexDigit>

(5) <hexDigit> ::= <digit> | <a> | | <c> | <d> | <e> | <f>
(6) <digit>::=“0"|“17|“2” | “3”|“4” | “5” |

(7) B s -
(8) <J>::= “a” | “A”

(9) ::=“b” | “B”

(10) dqc>::= “c” | “C”

(11) qd>::= “d” | “D”

(12) qe>::= “e” | “E”

(13) 49f>:=“f" | “F”

(14) qi>: =" | “I”

(15) qo0>:: =“0” | “O”

(16) qr>:: =“r’ | “R”

NOTE: The case for characters in a stringified IOR is not significant.

The hexadecimal strings are generated by first turning an object réference into an IOR, and then encapsulating the IOR

using the pncoding rules of CDR, as specified in GIOP 1.0. (See“clause 9.4, CDR Transfer Syntax, on pag¢ 71 for more
informatidn.) The content of the encapsulated IOR is then turned into hexadecimal digit pairs, starting with|the first octet
in the encgpsulation and going until the end. The high fourbits of each octet are encoded as a hexadecimal figit, then the
low four Bits.

7.6.10 Dbject URLs

To addres$ the problem of bootstrapping and allow for more convenient exchange of human-readable objegt references,
ORB::string_to_object allows UREs\in the corbaloc and corbaname formats to be converted into object references.

If conversjion fails, string_to_object raises a BAD_PARAM exception with one of following standard m|nor codes, as
appropriafe:

Minor Code Deséription

7 strinig_to_object conversion failed due to bad scheme name

8 string_to_object conversion failed due to bad address

9 string to object conversion failed due to bad schema specific part
10 string_to_object conversion failed due to non-specific reason

7.6.10.1 corbaloc URL

The corbaloc URL scheme provides stringified object references that are more easily manipulated by users than IOR
URLSs. Currently, corbaloc URLs denote objects that can be contacted by IIOP or resolve_initial_references. Other
transport protocols can be explicitly specified when they become available. Examples of IIOP and
resolve_initial_references (rir:) based corbaloc URLs are:

© ISO/IEC 2012 - All rights reserved 33

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

corbaloc::555xyz.com/Prod/TradingService
corbaloc:iiop:1.1@555xyz.com/Prod/TradingService
corbaloc::555xyz.com,:556xyz.com:80/Dev/INameService
corbaloc:rir:/TradingService

corbaloc:rir:/NameService
corbaloc:iiop:192.168.14.25:555/NameService
corbaloc::[1080::8:800:200C:417A]:88/DefaultEventChannel

A corbalpc URL contains one or more:

* profocol identifiers

» profocol specific components such as address and protocol version information

When the rir protocol is used, no other protocols are allowed. After the addressing information, a corbalgc URL ends
with a single object key. The full syntax is:

<corlaloc>
<obj |addr_list>
<obj|addr>
<prot_addr>

“corbaloc:”<obj_addr_list>[“/"<key_string>]
[<obj_addr> “,”]* <obj_addr>

= <prot_addr> | <future_prot_addr>

= <rir_prot_addr> | <iiop_prot_addr>

= <rir_prot_token>":”
- [13 ri r”

= <iiop_id><iiop_addr>

=" | <iiop_prot_token>”:”

“iiop”

[<version> <host>[“:"” <port>]]

= DNS_style_host name | ip_address

= DNS_style<host_name | IPv4_address
| "["" IPv6_address "1"
= <major>".” <minor> “@” | empty_string
= number
=.number
=)number

= <future_prot_id><future_prot_addr>
= <future_prot_token>":”

= possible examples: “atm” | “dce”

= protocol specific address

Where:

=<string>tempty_string

obj_addr_list: comma-separated list of protocol id, version, and address information. This list is used in an
implementation-defined manner to address the object An object may be contacted by any of the addresses and protocols.

NOTE: If the rir protocol is used, no other protocols are allowed.

obj_addr: A protocol identifier, version tag, and a protocol specific address. The comma °,” and ‘/* characters are
specifically prohibited in this component of the URL.

34

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

rir_prot_addr: resolve_initial_references protocol identifier. This protocol does not have a version tag or address.
See 7.6.10.2, ’corbaloc:rir URL’.

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-style host name or IP address. See
corbaloc:iiop URL on page 35 for the iiop specific definitions.

future_prot_addr: a placeholder for future corbaloc protocols.

future_p
future_p

future_p
“1.1@55"

key_strin

The key_ptring corresponds to the octet sequence in the object_key member of a2 GIOP Request or Lod

header as
away fron
Character:

The key_ptring is not NUL-terminated.

7.6.10.2

The corbaloc:rir URL is defined to allow access to;the ORB’s configured initial references through a URL

address sy

<rir_
<rir_

Where:

rir_prot_|
used.

rir_prot_|

For a corl
<key_str

Ot_id: token representing a protocol terminated with a
rot_token: token representing a protocol. Currently only “iiop” and “rir” are defined.

ot_addr: a protocol specific address and possibly protocol version information. An example of t
bXyz.com.”

g: a stringified object key.

defined in 15.4 of CORBA 2.3. The key_string uses the escape conventions described in RFC
| octet values that cannot directly be part of a URL. US-ASCII alphanumeric characters are not g
outside this range are escaped, except for the following:

‘ “/” | [T L} ‘ “r)79| I3} | “@75 ‘ “&” | [73 1) | 4649 | “$” |
| 73Rt | [T3EL) | [RH | [Tk ‘ 13 31} | [7321) | “(“ | “)79

corbaloc:rir URL

ntax is:

brot_addr> = <rir_prot.token>":"

brot_token> = “rir”

addr: resolve_initial_references protocol identifier. There is no version or address informati

foken: Thetoken “rir” identifies this protocol.

baloc:rir URL, the <key_string> is used as the argument to resolve_initial_references. An
ng> is interpreted as the default “NameService.”

his for iiop is

tateRequest
396 to map
scaped.

The protocol

n when rir is

empty

The rir protocol cannot be used with any other protocol in a URL.

7.6.10.3 corbaloc:iiop URL

The corbaloc:iiop URL is defined for use in TCP/IP- and DNS-centric environments The full protocol address syntax is:

<iiop
<iiop
<iiop
<iiop

_prot_addr> = <iiop_id><iiop_addr>

_id> = <iiop_default> | <iiop_prot_token>":”
_default> =«

_prot_token> = “iiop”

© ISO/IEC 2012 - All rights reserved

35

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

<iiop_addr> = [<version> <host> [“:” <port>]]
<host> = DNS_style_host_name | IPv4_address
| "[" IPv6_address "1"

<version> = <major> “.” <minor> “@” | empty_string

<port> = number

<major> = number

<minor> = number
Where:
iiop_prof_addr: iiop protocol identifier, version tag, and address containing a DNS-style host namge-er IP
iiop_id: tpkens recognized to indicate an iiop protocol corbaloc.

iiop_defa
iiop_prot
iiop_add
host: DN

version:
assumed.

IPv4_adq

IPv6_adg
in RFC 23

port: port

7.6.10.4

The only 1
the host a
messages

A normal
agents thaj
respond tg

7.6.10.5

ult: default token indicating iiop protocol, “:”.

| token: iiop protocol token, “iiop.”

Fess: a single address.

S-style host name or IP address. If not present, the local host is assumed.

p major and minor version number, separated by ‘. and folowed by ‘@’. If the version is absen

ress: numeric IPv4 address (dotted decimal notation).

ress: numeric IPv6 address (colon separated hexadecimal or mixed hexadecimal/decimal notatio
73).

number the agent is listening on (see bélow). Default is 2809.

corbaloc Server Implementation

equirements on an object advertised by a corbaloc URL are that there must be a software agen
nd port specified by the URL. This agent must be capable of handling GIOP Request and Loca
fargeted at the object key specified in the URL.

t respond to GIOP Request messages with Reply messages with a LOCATION_FORWARD
GIOP LocateRequest messages with LocateReply messages.

corbaname URL

The corbp

address.

, 1.0 is

h as described

listening on
teRequest

ICORBA server mects’ these criteria. It is also possible to implement lightweight object location forwarding

status, and

name URL scheme is described in the Naming Service specification. It extends the capabilities

of the

corbaloc scheme to allow URLs to denote entries in a Naming Service. Resolving corbaname URLs does not require

a Naming

Service implementation in the ORB core. Some examples are:

corbaname::5550bjs.com#al/string/path/to/obj

This URL

specifies that at host 5550bjs.com, an object of type NamingContext (with an object key of

NameService) can be found, or alternatively, that an agent is running at that location which will return a reference to a
NamingContext. The (stringified) name a/string/path/to/obj is then used as the argument to a resolve operation on

that Nami

36

ngContext. The URL denotes the object reference that results from that lookup.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

corbaname:rir:#a/local/obj

This URL specifies that the stringified name a/local/obj is to be resolved relative to the naming context returned by
resolve_.initial_references(“NameService”).

7.6.10.6 Future corbaloc URL Protocols
This part of ISO/IEC 19500 only defines use of iiop with corbaloc. New protocols can be added to corbaloc as required.

in corbaloc

bvide these or

and passing
umptions:

aslan OMG IDL

Each new|protocol must implement the <future_prot_addr> component of the URL and define described
URL on ppge 33.
A possibl¢ example of a future corbaloc URL that incorporates an ATM address is:
corbaloc:iiop:xyz.com,atm:E.164:358.400.1234567/dev/test/objectX
7.6.10.7 Future URL Schemes
Several cyrrently defined non-CORBA URL scheme names are reserved. Implementations may choose to pr|
other URIL schemes to support additional ways of denoting objects with URLS.
Table 7.1 [ists the required and some optional formats.
Table 7.1
Scheme Description Status
IOR: Standard stringified IOR format Required
corbaloc Simple object reference. rir: must,be-supported. Required
corbanare: CosName URL Required
file:// Specifies a file containitig-a URL/IOR Optional
ftp:// Specifies a file containing a URL/IOR that is accessible via ftp protocol. Optional
http:/ Specifies an HTTP URL that returns an object URL/IOR. Optional
7.7 Bervice Context
Emerging|specifications for Object Services occasionally require service-specific context information to be passed
implicitly [with requests and replies. The Interoperability specifications define a mechanism for identifying
this servide-specific context information as “hidden” parameters. The specification makes the following as
* ObleetSe
data type.

ORB APIs will be provided that will allow services to supply and consume context information at appropriate points in

the

process of sending and receiving requests and replies.

It is an ORB’s responsibility to determine when to send service-specific context information, and what to do with such
information in incoming messages. It may be possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of service-specific context, but nevertheless still be able to successfully reply to

the

message.

© ISO/IEC 2012 - All rights reserved

37

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

As shown in the following OMG IDL specification, the IOP module provides the mechanism for passing Object Service—
specific information. It does not describe any service-specific information. It only describes a mechanism for transmitting
it in the most general way possible. The mechanism is currently used by the DCE ESIOP and could also be used by the
Internet Inter-ORB protocol (IIOP) General Inter-ORB Protocol (GIOP).

Each Object Service requiring implicit service-specific context to be passed through GIOP will be allocated a unique
service context ID value by OMG. Service context ID values are of type unsigned long. Object service specifications
are responsible-for-deseribins—theireontextinformationassinste-OM a-types;-one-data-type-asseetgted with each

ef unsigned long Serviceld;
ef CORBA::OctetSeq ContextData;

type
type

ServiceContext {
erviceld context_id;
ContextData context_data;

typedef sequence <ServiceContext>ServiceContextList;

5

The contekt data for a particular service will be encoded as specified for its service-specific OMG IDL definftion, and that
encoded r¢presentation will be encapsulated in the context_data member of IOP::ServiceContext (sce
Encapsulation on page 79). The context_id member contains the service ID value identifying the service ind data

format. C¢ntext data is encapsulated in octet sequences to permit ORBs to handle context data without unmgrshaling, and
to handle pnknown context data types.

During request and reply marshaling, ORBs will collect all service context data associated with the Requesq or Reply in a
ServiceContextList, and include it in-the generated messages. No ordering is specified for service context data within
the list. The list is placed at the beginning of those messages to support security policies that may need to ppply to the

majority df the data in a request (including the message headers).

Each Objdct Service requiring-implicit service-specific context to be passed through GIOP will be allocatefl a unique

service coptext ID value by the OMG. Service context ID values are of type unsigned long. Object service ppecifications
are responfsible for deseribing their context information as single OMG IDL data types, one data type associgted with each
service coptext ID.

The high-¢rder 24 bits of a service context ID contain a 24-bit vendor service context codeset ID (VSCID); [the low-order
8 bits confainithe rest of the service context ID. A vendor (or group of vendors) who wishes to define a spgcific set of
service context IDs should obtain a unique VSCID from the OMG, and then define a specific set of service context IDs
using the VSCID for the high-order bits.

The VSCIDs of zero to 15 inclusive (0x000000 to 0x00000f) are reserved for use for OMG-defined standard service
context IDs (i.e., service context IDs in the range 0-4095 are reserved as OMG standard service contexts).

7.7.1 Standard Service Contexts

module IOP { // 1IDL
const Serviceld TransactionService = 0;

38 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

const Serviceld CodeSets = 1;

const Serviceld ChainBypassCheck = 2;
const Serviceld ChainBypassinfo = 3;

const Serviceld LogicalThreadld = 4;

const Serviceld BI_DIR_IIOP = 5;

const Serviceld SendingContextRunTime = 6;
const Serviceld INVOCATION_POLICIES =7;
cons i =

Serviceld UnknownExce_ptionInfo =9;

cons

const Serviceld RTCorbaPriority = 10;

const Serviceld RTCorbaPriorityRange = 11;
const Serviceld FT_GROUP_VERSION = 12;
const Serviceld FT_REQUEST = 13;

const Serviceld ExceptionDetailMessage = 14;
const Serviceld SecurityAttributeService = 15;

Serviceld ActivityService = 16;

Serviceld RMICustomMaxStreamFormat = 17;
Serviceld ACCESS_SESSION_ID = 18;
Serviceld SERVICE_SESSION_ID = 19;
Serviceld FIREWALL_PATH = 20;

Serviceld FIREWALL_PATH_RESP = 21;

b

» TrgnsactionService identifies a CDR encapsulatign of the CosTransactions::PropogationContext defined in
the|Object Transaction Service specification [TRANS].

+ CodeSets identifies a CDR encapsulation.ofthe CONV_FRAME::CodeSetContext defined in GIQP Code Set
Service Context on page 51.

+ DCOM-CORBA Interworking uses three service contexts as defined in “DCOM-CORBA InterworkingT in [DCOMI].
They are:

ChainBypassCheck, which carries a CDR encapsulation of the struct CosBridging::ChainBypassCheck.
This is carried only in @.Request message as described in [DCOMI].

ChainBypasslinfo, which carries a CDR encapsulation of the struct CosBridging::ChainBypgassinfo. This
is carried only,ina’/Reply message as described in [DCOMI].

LogicalThreadld, which carries a CDR encapsulation of the struct CosBridging::LogicalThreadld as
describgd in [DCOMI].

» BI|DIRIIOP identifies a CDR encapsulation of the IOP::BiDirllOPServiceContext defined in thd General Inter-
ORIB Rretocol clause of this part in this International Standard.

« SendingContextRunTime identifies a CDR encapsulation of the IOR of the SendingContext::RunTime object.
See the Value Type Semantics clause (Part 1 of this International Standard).

* For information on INVOCATION_POLICIES refer to the CORBA Messaging clause of Part 1 of this International
Standard.

* For information on FORWARDED_IDENTITY refer to the Firewall Traversal specification ((FIREWALL]).

» UnknownExceptioninfo identifies a CDR encapsulation of a marshaled instance of a java.lang.throwable or one
of its subclasses as described in the Java to IDL Mapping specification [JAVAZ2I].

* For information on RTCorbaPriority refer to the Real-time CORBA specification [RTCORBA].

© ISO/IEC 2012 - All rights reserved 39

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

* For information on RTCorbaPriorityRange refer to the Real-time CORBA specification [RTCORBA].
+ FT_GROUP_VERSION, FT_REQUEST - refer to the Fault Tolerant CORBA [FTCORBA].

+ ExceptionDetailMessage identifies a CDR encapsulation of a wstring, encoded using GIOP 1.2 with a TCS-W of
UTF-16. This service context may be sent on Reply messages with a reply_status of SYSTEM_EXCEPTION or
USER_EXCEPTION. The usage of this service context is defined by language mappings.

» SecurityAttributeService - refer to the Secure Interoperability clause of this Part of this International Standard.
. AjivityService - refer to the Additional Structuring Mechanisms for OTS specification [ASMOTS].
* R

» AQCESS_SESSION_ID and SERVICE_SESSION_ID - refer to the Telecommunication‘Service Agcess and
Sulbpscription Specification [TSAS}.

* FIREWALL_PATH and FIREWALL_PATH_RESP - refer to the Firewall Traversah$pecification ((FIREWALL]).

ICustomMaxStreamFormat - refer to the Java to IDL Language Mapping specification [JAVA2]].

7.7.2 $Bervice Context Processing Rules

Service cqntext IDs are associated with a specific version of GIOP, but willcalways be allocated in the OMG service
context rahge. This allows any ORB to recognize when it is receiving a $tandard service context, even if itf has been
defined infa version of GIOP that it does not support.

The folloying are the rules for processing a received service context:
» Th¢ service context is in the OMG defined range:

4 If it is valid for the supported GIOP version, thewit must be processed correctly according to the rules associated
with it for that GIOP version level.

4 If it is not valid for the GIOP version, then it may be ignored by the receiving ORB; however, it must be passed on
through a bridge and must be made available to interceptors. No exception shall be raised.

» Th¢ service context is not in the OMG-detfined range:

1 The receiving ORB may choose-to ignore it, or process it if it “understands” it; however, the servicg context must
be passed on through a bridge and must made available to interceptors.

7.8 Coder/Decoder Interfaces

The formdts of IOR components and service context data used by ORB services are often defined as CDR ¢ncapsulations
encoding |nstances ©f IDL defined data types. The Codec provides a mechanism to transfer these compongnts between
their IDL [data typesand their CDR encapsulation representations.

A Codeclis‘gbtained from the CodecFactory. The CodecFactory is obtained through a call to

ORB::resutve_initial_references(“CodecFactory™):

7.8.1 Codec Interface

module IOP {
local interface Codec {
exception InvalidTypeForEncoding {};
exception FormatMismatch {};
exception TypeMismatch {};

40 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

CORBA::OctetSeq encode (in any data)
raises (InvalidTypeForEncoding);

any decode (in CORBA::OctetSeq data)
raises (FormatMismatch);

CORBA::OctetSeq encode_value (in any data)
raises (InvalidTypeForEncoding);

any decode_value (

b
b

7.8.1.1 Eixceptions

InvalidTyjpeForEncoding

—iimCORBA-OctetSeqdata;
in CORBA::TypeCode tc)
raises (FormatMismatch, TypeMismatch);

This exception is raised by encode or encode_value when the type is invalid,for the encoding. For exainple, this
exception [is raised if the encoding is ENCODING_CDR_ENCAPS version-.0 and a type that does not ekist in that

version, sfich as wstring, is passed to the operation.

FormatMismatch

This exception is raised by decode or decode_value when the data in the octet sequence cannot be decpded into an

any.

TypeMismatch

This exception is raised by decode_value when fhe given TypeCode does not match the given octet sequence.

7.8.1.2 Qperations

encode

Convert tije given any into an ectet sequence based on the encoding format effective for this Codec. This ¢peration may

raise InvalidTypeForEncoding.

Parametpr: data

The data, in the form of an any, to be encoded into an octet sequence.

Return Value:

An octet sequence containing the encoded any. This octet sequence confains both the
TypeCode and the data of the type.

decode

Decode the given octet sequence into an any based on the encoding format effective for this Codec. This operation
raises FormatMismatch if the octet sequence cannot be decoded into an any.

Parameter: data

The data, in the form of an octet sequence, to be decoded into an any.

Return Value:

An any containing the data from the decoded octet sequence.

© ISO/IEC 2012 - All rights reserved

41

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

encode_value

Convert the given any into an octet sequence based on the encoding format effective for this Codec. Only the data from
the any is encoded, not the TypeCode. This operation may raise InvalidTypeForEncoding.

Parameter: data The data, in the form of an any, to be encoded into an octet sequence.

Return Value: An octet sequence containing the data from the encoded any

decode_yalue

Decode the given octet sequence into an any based on the given TypeCode and the encoding format effegtive for this
Codec. This operation raises FormatMismatch if the octet sequence cannot be decoded intovan any.

Parametérs:
data The data, in the form of an octet sequence, to.be’decoded into an any.
tc The TypeCode to be used to decode the-data.

Return Value: An any containing the data from the,decoded octet sequence.

7.8.2 Codec Factory

module IDP {
typedef short EncodingFormat;
const EncodingFormat ENCODING_CDR_ENCAPS = 0;

struct Encoding {
BncodingFormat format;
tet major_version;

tet minor_version;

5

locallinterface CodecFactory {

ekception UnknownEncoding {};
Codec create codec (in Encoding enc)
raises (UnknownEncoding);

7.8.2.1 Encoding Structure

The Encoding structure defines the encoding format of a Codec. It details the encoding format, such as CDR
Encapsulation encoding, and the major and minor versions of that format. The encodings which shall be supported are:

« ENCODING_CDR_ENCAPS, version 1.0;
+ ENCODING_CDR_ENCAPS, version 1.1;
+ ENCODING_CDR_ENCAPS, version 1.2;
+ ENCODING_CDR_ENCAPS for all future versions of GIOP as they arise.

42 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

Vendors are free to support additional encodings.

7.8.2.2 CodecFactory Interface

create_codec

Create a Codec of the given encoding.

ISO/IEC 19500-2:2012(E)

This opergtion raises UnknownEncoding if this factory cannot create a Codec of the given encoding.
Parametr: enc The Encoding for which to create a Codec.
Return Value: A Codec obtained with the given encoding.
7.9 Feature Support and GIOP Versions
The assocjation of service contexts with GIOP versions, (along with some other 'supported features tied to [GIOP minor
version), is shown in Table 7.2.
Table 7.2 | Feature Support Tied to Minor GIOP Version Number
Feature V1.0 | V11 | V1.2 V1.3 V1.4
TransagtionService Service Context yes yes yes yes yes
CodeSetq Service Context yes yes yes yes
DCOM Bridging Service Contexts: yes yes yes
ChainBypassCheck
ChainBypassInfo
Logical Threadld
Object by Value Service Context: yes yes yes
SendingContextRunTime
Bi-Directional IIOP Service Context: yes yes yes
BI_DIR_IIOP
Asynch Messaging Service. Context: optional$ yes yes
INVOCATION_POLICIES
Firewall Service Context: optional® | yes yes
FORWARDED' IDENTITY
Java Language Throwable Service Context: ves ves yes
UnknownExceptionInfo
Realtime CORBA Service Contexts optional optional optional
RTCorbaPriority (Realtime | (Realtime | (Realtime
RTCorbaPriorityRange CORBA | CORBA | CORBA
only) only) only)
ExceptionDetailMessage Service Context optional yes yes
FT_GROUP_VERSION optional$$ yes yes

© ISO/IEC 2012 - All rights reserved

43

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Table 7.2 Feature Support Tied to Minor GIOP Version Number (Continued)

Feature V1.0 | V11 | V1.2 V1.3 V1.4
FT REQUEST optional$$ yes yes
SecurityAttributeService optional$$ yes yes
ActivityService optional$$ yes yes
IOR components in IIOP profile yes yes yes yes
TAG ORB_TYPE yes yes yes yes
TAG_CODE_SETS yes yes yes yes
TAG_AILTERNATE IIOP_ADDRESS yes yes yes
TAG_ASSOCIATION_ OPTION yes yes yes yes
TAG_SE[C NAME yes yes yes yes
TAG_SSL. SEC_TRANS yes yes yes yes
TAG_GHNERIC SEC MECH yes yes yes yes
TAG_* BEC MECH yes yes yes yes
TAG_JAVA CODEBASE yes yes yes
TAG FIREWALL TRANS optional® | yes yes
TAG_SC[CP_CONTACT_INFO optional® | yes yes
TAG _TRIANSACTION POLICY optional® | yes yes
TAG_MKESSAGE _ROUTERS optional$ yes yes
TAG_OTS_POLICY optional$ yes yes
TAG_INV_POLICY optional$ yes yes
TAG_INET SEC TRANS optional$ yes yes
Extended IDL data types yes yes yes yes
Bi-Direc‘ional GIOP Features yes yes yes
Value ty;}es and Abstract Interfaces yes yes yes
TAG CYl SEC_MECH LIST optional®® | yes yes
TAG NULL, TAG optional$$ yes yes
TAG_SECIOP_SEC_TRANS, TAG ITOP_SEC_TRANS optional™™ | yes yes
TAG TLS SEC TRANS optional$$ yes yes
TAG _ACTIVITY POLICY optional®® | yes yes
_component yes yes
tk_abstract_interface optional$$ yes yes
tk local interfacel
44 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Table 7.2 Feature Support Tied to Minor GIOP Version Number (Continued)
Feature V1.0 | V11 | V1.2 V1.3 V1.4
tk_component yes yes
tk_home
tk_event
_repositogy—id yes
IPV6 addresses in IOR yes
TAG _GROUP, TAG_GROUP_IIOP and TAG UIPMC + Group optional
features
RMICusfomMaxStreamFormat optional
TAG_RMI _CUSTOM_MAX_STREAM FORMAT
NOTE: $ PSAll features that have been added after CORBA 2.3 have been marked as optional in GIOP 1.2. These features
cannot be fompulsory in GIOP 1.2 since there is no way to incorporate them in deployed implementations of 1.2. However, in
order to hdve the additional features of CORBA 2.4 work properly these optional features must be supported by the GIOP 1.2
implementation connecting CORBA 2.4% or later ORBs.

7.10

7.10.1

This sub d
of this claj

7.10.1.1

A finite s{
19500, thg
of charact
used in Jaj

7.10.1.2

A set of u
set and its
abbreviati

Code Set Conversion

Character Processing Terminology

lause introduces a few terms and explainsta few concepts to help understand the character proce
Lse.

Character Set
t of different characters used\for the representation, organization, or control of data. In this part

er sets are the English.alphabet, Kanji or sets of ideographic characters, corporate character sets
pan), and the charaCters needed to write certain European languages.

Coded Character Set, or Code Set

hambiguous rules that establishes a character set and the one-to-one relationship between each ch
bit representation or numeric value. In this part of ISO/IEC 19500, the term “code set” is used §
bndforthe term “coded character set.” Examples include ASCII, ISO 8859-1, JIS X0208 (which in

sing portions

pf ISO/IEC

term “character set” is used’without any relationship to code representation or associated encoding. Examples

commonly

aracter of the
S an
tludes Roman

kanit

characters

Jananes
= S

e hiragana Greek characters—Japanese eteVand-Unicode
dpahese—Hgdhd—Greek—cadracters—Japanes St oRtcoae:

*eothi s

7.10.1.3 Code Set Classifications

Some language environments distinguish between byte-oriented and “wide characters.” The byte-oriented characters are
encoded in one or more 8-bit bytes. A typical single-byte encoding is ASCII as used for western European languages like
English. A typical multi-byte encoding that uses from one to three 8-bit bytes for each character is eucJP (Extended

UNIX Code - Japan, packed format) as used for Japanese workstations.

© ISO/IEC 2012 - All rights reserved

45

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chinese, Japanese, etc., where the number
of combinations offered by 8 bits is insufficient and a fixed-width encoding is needed. A typical example is Unicode (a
“universal” character set defined by the Unicode Consortium, which uses an encoding scheme identical to ISO 10646
UCS-2, or 2-byte Universal Character Set encoding). An extended encoding scheme for Unicode characters is UTF-16
(UCS Transformation Format, 16-bit representations).

The C language has data types char for byte-oriented characters and wehar_t for wide characters. The language
definition fe states-that-the—sizesfor-these-characters-are—mplementation—dependent—Some—en ORI s do not

distinguish between byte-oriented and wide characters (e.g., Ada and Smalltalk). Here again, the size of a ¢haracter is
implementation-dependent. The following table illustrates code set classifications as used in this document

Table 7.3 | Code Set Classification

Orientation Code Element Encoding | Code Set Examples C|Data Type
byte-oriepted single-byte ASCII, ISO 8859-1 (Latin-1), EBCDIC, ... clllar
multi-byte UTF-8, eucJP, Shift-JIS, JIS, Bigs, .. char[]
non-bytetoriented fixed-length ISO 10646 UCS-2 (Unicode), ISO 10646 UCS-4, wehar_t
UTF-16, ...

7.10.1.4 Narrow and Wide Characters

Some language environments distinguish between “narrow” and “wide” characters. Typically the narrow characters are
considered to be 8-bit long and are used for western Europeanylanguages like English, while the wide charpcters are 16-
bit or 32-Bit long and are used for languages like Chinese,Japanese, etc., where the number of combination offered by 8
bits are ingufficient. However, as noted above there ares¢ommon encoding schemes in which Asian characteys are encoded
using mulfi-byte code sets and it is incorrect to assume that Asian characters are always encoded as “wide’ characters.

Within thip text, the general terms “narrow character” and “wide character” are only used in discussing ONIG IDL.

7.10.1.5 Char Data and Wchar Data

The phrasg “char data” in this text reférs to data whose IDL types have been specified as char or string| Likewise
“wchar dpta” refers to data whose IDL types have been specified as wehar or wstring.

7.10.1.6 Byte-Oriented Code Set

An encoding of charaetets where the numeric code corresponding to a character code element can occupy pne or more
bytes. A Qyte as usedyin this part of ISO/IEC 19500 is synonymous with octet, which occupies 8 bits.

7.10.1.7 Multi-Byte Character Strings
A charact i i Sus i tes is called a

multi-byte character string. Typically, wide characters are converted to this form from a (fixed-width) process code set
before transmitting the characters outside the process (see below about process code sets). Care must be taken to correctly
process the component bytes of a character’s multi-byte representation.

7.10.1.8 Non-Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character code element can occupy fixed 16 or 32
bits.

46 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

7.10.1.9 Char and Wchar Transmission Code Set (TCS-C and TCS-W)

These two terms refer to code sets that are used for transmission between ORBs after negotiation is completed. As the
names imply, the first one is used for char data and the second one for wehar data. Each TCS can be byte-oriented or
non-byte oriented.

7.10.1.10

Process Code Set and File Code Set

Processes
representa
outside th

When a p
(possibly

unless oth
when a cl

7.10.1.11
A native
native cod

7.10.1.12

A transmi
and a serV
char data

Figure 7.6

The intent
does allov
transmissi
better suit

7.10.1.13
With resp

tion and manipulation. This internal format is called a “process code set.” The process code IsetA
b process, and hence to the interoperation between CORBA clients and servers through theitresp

ocess needs to write international character information out to a file, or communicate with anoth
bver a network), it typically uses a different encoding called a “file code set.” In thispart of ISO
erwise indicated, all references to a program’s code set refer to the file code sef)neot the process d
ent and server are located physically on the same machine, it is possible for them to use different]

Native Code Set

ode set is the code set that a client or a server uses to communicate) with its ORB. There might |
e sets for char and wechar data.

Transmission Code Set

ksion code set is the commonly agreed upon encoding used for character data transfer between a
er’s ORB. There are two transmission code sets established per session between a client and its s
(TCS-C) and the other for wehar data (TCS,W.). Figure 7.6 illustrates these relationships:

client process

- Transmission Code Sets

transmission native

code sets

native
ORB

ORB

server p|

code set code set

is for TCS-C to be byte-oriented and TCS-W to be non-byte-oriented. However, this part of IS(
both types of charaeters to be transmitted using the same transmission code set. That is, the sel
pn code set is orthogonal to the wideness or narrowness of the characters, although a given code
ed for eithef narrow or wide characters.

Conversion Code Set (CCS)

generally represent international characters in an internal Tixed-width format which allows for effficient

s irrelevant
ective ORBs.

er process
1IEC 19500,

ode set. Even
file code sets.

€ separate

client’s ORB
erver, one for

rocess ,

/TEC 19500
ection of a
set may be

hn convert all

pot o’ a particular ORB’s native code set, the set of other or target code sets for which an ORB ¢

code poin

s or character encodings between the native code set and that target code set. For each code set 1in

this CCS, the

ORB maintains appropriate translation or conversion procedures and advertises the ability to use that code set for
transmitted data in addition to the native code set.

© ISO/IEC 2012 - All rights reserved

47

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

7.10.2 Code Set Conversion Framework

7.10.2.1 Requirements

The file code set that an application uses is often determined by the platform on which it runs. In Japan, for example,
Japanese EUC is used on Unix systems, while Shift-JIS is used on PCs. Code set conversion is therefore required to

enable interoperab
conversiogof-ee

Alutomatic code set conversion. To facilitate development of CORBA clients and servers; the ORB sh
ahy necessary code set conversions automatically and efficiently. The IDL type ogtet can be used if n
prevent conversions.

pcale support. An internationalized application determines the code set.in use by examining the LO(Q
(ysually found in the LANG environment variable), which may be changed dynamically at run time by
xample LOCALE strings are fr FR.ISO8859-1 (French, used in Franc€ with the ISO 8859-1 code set
(Japanese, used in Japan with the EUC code set and X11RS5 convéntions for LOCALE). The conversid
should allow applications to use the LOCALE mechanism to-indicate supported code sets, and thus sel
cpde set from the registry.

(MIR and SMIR support. The conversion framework.should be flexible enough to allow conversion ta

ility across these platforms. This part of ISO/IEC 19500 defines a framework for the automatic

1. The

uld perform
pcessary to

ALE string

' the user.

and ja_JP.ujis
n framework
ect the correct

be performed

efther on the client or server side. For example, if aielient is running in a memory-constrained environinent, then it is

dgsirable for code set converters to reside in the’server and for a Server Makes It Right (SMIR) convers
b¢ used. On the other hand, if many servers are*executed on one server machine, then converters shou
efich client to reduce the load on the server'miachine. In this case, the conversion method used is Client]
(CMIR).

7.10.2.2

Both the dlient and server indicate a native code set indirectly by specifying a locale. The exact method fo
language-gpecific, such as the XPG4 C/C++ function setlocale. The client and server use their native d
communidate with their ORBY\.(Note that these native code sets are in general different from process code §
conversiofls may be required-at the client and server ends.)

Dverview of the ConversionFramework

The convdrsion framework is illustrated in Figure 7.7. The server-side ORB stores a server’s code set info1
componenft of the IOR multiple-component profile structure (see Interoperable Object References: IORs onf
The code pets actually used for transmission are carried in the service context field of an IOP (Inter-ORB 1

ion method to
d be placed in
Makes It Right

doing this is
ode set to
ets and hence

mation in a
page 25)1.
rotocol)

request hepdet(see Service Context on page 37 and GIOP Code Set Service Context on page 51). Recall th

at there are

two code sets (ITCS-C and TCS-W) negotiated Tor each session.

1.
extra field that is a sequence of tagged components.

48

Version 1.1 of the IIOP profile body can also be used to specify the server’s code set information, as this version introduces an

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Client Server
. . IOP service context , .
Client’s native indicates transmission Server’s native
code set code sets information code set
ORB ORB
g
IOR multi-component
profile structure indicates
server’s native code set information
Figure 7.7 - Code Set Conversion Framework Overview
If the natije code sets used by a client and server are the same, then no conversion fis performed. If the naf

are differg
case, the s
side ORB
method is

The convg
which det
is execute
select a tr

The ration
process) i
representa
they both
without aff
defined, n
conversiol
character

7.10.2.3

The convg
between ¢
dependent

nt and the client-side ORB has an appropriate converter, then the CMIR%¢onversion method is u;
erver’s native code set is used as the transmission code set. If the native code sets are different 3
does not have an appropriate converter but the server-side ORB+daes have one, then the SMIR d
used. In this case, the client’s native code set is used as the transmission code set.

rsion framework allows clients and servers to specify adative char code set and a native wcha
brmine the local encodings of IDL types char and wehar, respectively. The conversion process 9
 independently for the char code set and the wehar'code set. In other words, the algorithm thal
hinsmission code set is run twice, once for char.data and once for wchar data.

ale for selecting two transmission code sets rather than one (which is typically inferred from the

to allow efficient data transmission without any conversions when the client and server have id
tions for char and/or wechar data. Forlexample, when a Windows NT client talks to a Windows 1
use Unicode for wide character data,)it becomes possible to transmit wide character data from on
y conversions. Of course, this beeomes possible only for those wide character representations th
pt for any proprietary ones~If.a single transmission code set was mandated, it might require unn
is. (For example, choosing Unicode as the transmission code set would force conversion of all b
lata to Unicode.)

ORB Databases-and Code Set Converters

rsion frameéwork requires an ORB to be able to determine the native code set for a locale and to
pde sets.as necessary. While the details of exactly how these tasks are accomplished are implems
| the following databases and code set converters might be used:

ive code sets
ed. In this
nd the client-
onversion

I code set,
utlined above
t is used to

locale of a
bntical

NT server and
e to the other
at are well-
bcessary
yte-oriented

convert
tntation-

Lo

algdatabase. This database defines a native code set for a process. This code set could be byte-orient;

bd or non-byte-

oriented and could be changed programmatically while the process 1s running. However, for a given session between a
client and a server, it is fixed once the code set information is negotiated at the session’s setup time.

Environment variables or configuration files. Since the locale database can only indicate one code set while the ORB

needs to know two code sets, one for char data and one for wehar data, an implementation can use environment

var

iables or configuration files to contain this information on native code sets.

Converter database. This database defines, for each code set, the code sets to which it can be converted. From this

database, a set of “conversion code sets” (CCS) can be determined for a client and server. For example, if a server’s
native code set is eucJP, and if the server-side ORB has eucJP-to-JIS and eucJP-to-SJIS bilateral converters, then the
server’s conversion code sets are JIS and SJIS.

© ISO/IEC 2012 - All rights reserved

49

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

* Code set converters. The ORB has converters which are registered in the converter database.

7.10.2.4 CodeSet Component of IOR Multi-Component Profile
The code set component of the IOR multi-component profile structure contains:
» server’s native char code set and conversion code sets, and

« server’s native wchar code set and conversion code sets.

Both chary and wchar conversion code sets are listed in order of preference. The code set component is, iddntified by the
following |tag:

const IOP::ComponentID TAG_CODE_SETS = 1;

This tag hfis been assigned by OMG (See Standard IOR Components on page 29). The following IDL structyre defines the
representation of code set information within the component:

module ¢ONV_FRAME { I/l 1IDL
typedef unsigned long CodeSetld;
typedef sequence<CodeSetld> CodeSetldSeq;
strugt CodeSetComponent {
odeSetld native_code_set;
odeSetldSeq conversion_code_sets;
I8
strugt CodeSetComponentinfo {
odeSetComponent ForCharData;
odeSetComponent ForWcharData;
I8

b

Code sets pre identified by a 32-bit integer idffom the OSF Character and Code Set Registry (See Character|land Code Set
Registry on page 56 for further information). Data within the code set component is represented as a structpire of type
CodeSetComponentinfo, and is eficoded as a CDR encapsulation. In other words, the char code set information
comes firgt, then the wehar information, represented as structures of type CodeSetComponent.

A null value should be used.in the native_code_set ficld if the server desires to indicate no native code pet (possibly
with the idlentification of,suitable conversion code sets).

If the cod¢ set compgdnent is not present in a multi-component profile structure, then the default char codd set is ISO
8859-1 fof backward-compatibility. However, there is no default wehar code set. If a server supports interffaces that use
wide chargcter(data but does not specify the wehar code sets that it supports, client-side ORBs will raise ¢xception
INV_OBJREF, with standard minor code 1.

If a client application invokes an operation that results in an attempt by the client ORB to marshal wchar or wstring data
for an in parameter (or to unmarshal wchar or wstring data for an in/out parameter, out parameter or the return value),
and the associated Object Reference does not include a codeset component, then the client ORB shall raise the
INV_OBJREF standard system exception with standard minor code 2 as a response to the operation invocation.

Non-presence of a codeset component in an IOR means that:
* The server and/or server-side ORB support only ISO 8859-1 for char/string, and

+ the server and/or server-side ORB don’t support wchar/wstring.

50 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

Thus if client tries to send wchar or wstring data on an any type, and there is no codeset component in tar
IOR, the client-side ORB can raise an exception BAD_PARAM, with standard minor code set to 42.
7.10.2.5 GIOP Code Set Service Context

The code set GIOP service context contains:

» char transmission code set, and

00-2:2012(E)

get server’s

» wadahar transmission code set
in the forth of a code set service. This service is identified by:
const IOP::ServicelD CodeSets =1;

The folloying IDL structure defines the representation of code set service information:

module CONV_FRAME { /DL
typedef unsigned long CodeSetld;
strugt CodeSetContext {
QodeSetid char_data;
QodeSetid wchar_data;
k
k
For GIOP|versions 1.1, 1.2 and 1.3, Code sets are identified by~a 32-bit integer id from the OSF Character
Registry (Bee Character and Code Set Registry on page 56 for/further information).

For GIOP|versions greater than 1.3, Code sets are identified by a 32 bit integer id, from either the OSF Ch
Code set flegistry (See Character and Code Set Registry on page 56 for further information) or the IANA C
registry (durrent version at http://www.iana.org/assignments/character-sets).

and Code Set

aracter and
haracter Set

The OSF Registry and the IANA Registry have non-overlapping ranges, so there is no need for mapping vajues from one

codeset refgistry to the other.

NOTE: A gerver’s char and wchar Code set components are usually different, but under some special circumst
be the samje. That is, one could use'the same code set for both char data and wchar data. Likewise the Codes
text don’t have to be different.

service co

7.10.2.6 Code Set Néegotiation

The clienttside ORB _determines a server’s native and conversion code sets from the code set component in
component profile structure, and it determines a client’s native and conversion code sets from the locale sg
environmgntivariables/configuration files) and the converters that are available on the client. From this inf

ances they can
etlds in the

an IOR multi-
tting (and/or
rmation, the

client-sidd-ORB-ehoeses-charand h RsHission-code-se 3% AM—Ferbethreque

hd replies, the

char TCS-C determines the encoding of char and string data, and the wchar TCS-W determines the encoding of

wchar and wstring data.

Code set negotiation is not performed on a per-request basis, but only when a client initially connects to a server. All text

data communicated on a connection are encoded as defined by the TCSs selected when the connection is e

stablished.

A codeset service context must be sent by the client (i.e., codeset negotiation must be completed) over a specific transport
connection, before the client or the server may send international character values (i.e., char or string values with non

Latin-1 encodings, or Wchar or Wstring values) in messages on that transport connection.

© ISO/IEC 2012 - All rights reserved

51

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

If used, the codeset service context shall be sent before, or included with, the first request message sent on that transport
connection.

A request sent by the client before sending a codeset service context or not containing a service context itself, implies the
client is using the default codesets on that connection (i.e., Latin-1 for string, and no ability to send Wstring on any
message over that connection).

Some existing Standard Service contexts have defined their encapsulated data content including International Character
informatidn, and have also specified that the codeset used is that which is negotiated using codeset negetiation. Such
service coptexts may not be sent until after the Codeset Service context is sent (i.e., in the GIOP message, [the codeset
service coptext must precede any service context which depends on it being present.). Such Service |Contexts that exist
today are grandfathered in. Barring that exception, since all encapsulation definitions need to specify the Cofeset used for
their encoflings, it is an error for a Service Context to depend on information that is not contained within the
encapsulation to determine the codeset used within it.

Figure 7.§ illustrates there are two channels for character data flowing between the client and the server. The first, TCS-
C, is used|for char data and the second, TCS-W, is used for wchar data. Also noté that two native code setd, one for each
type of dafa, could be used by the client and server to talk to their respective ORBs (as noted earlier, the sdlection of the
particular pnative code set used at any particular point is done via setlocale or some other implementatipn-dependent
method).

Setver’s native

4066 et for char Transmission code set c0de set for char

- Client Server o

5 | : : side | > Side [- g

@) ORB |e——mlpy-| ORB (< ——)y-| ©
Transmission code set

lient’s native for wehar (TCS-W) Server’s native
dode set for wchar code set for wchar

Figure 7.8 - Transmission Code SetUse

Let us look at an example. Assurhe that the code set information for a client and server is as shown in the ftable below.
(Note that]this example concefng-only char code sets and is applicable only for data described as chars ir] the IDL.)

Client Server
Native cdde set: SJIS eucJP
Conversipn.code sets: eucJP, JIS SIIS, JIS

The client-side ORB first compares the native code sets of the client and server. If they are identical, then the
transmission and native code sets are the same and no conversion is required. In this example, they are different, so code
set conversion is necessary. Next, the client-side ORB checks to see if the server’s native code set, eucJP, is one of the
conversion code sets supported by the client. It is, so eucJP is selected as the transmission code set, with the client (i.e.,
its ORB) performing conversion to and from its native code set, SJIS, to eucJP. Note that the client may first have to
convert all its data described as chars (and possibly wechar_ts) from process codes to SJIS first.

Now let us look at the general algorithm for determining a transmission code set and where conversions are performed.
First, we introduce the following abbreviations:

52 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

e CNCS - Client Native Code Set;

e CCCS - Client Conversion Code Sets;

e SNCS - Server Native Code Set;

* SCCS - Server Conversion Code Sets; and

e TCS - Transmission Code Set.

The algorfthm is as follows:

if (CNCS#=SNCS)
S = CNCS; I/l no conversion required
else {
iff (elementOf(SNCS,CCCS))
TCS = SNCS; // client converts to server’s native code set
else if (elementOf(CNCS,SCCS))
TCS = CNCS; /I server converts from client’s native code set
Ise if (intersection(CCCS,SCCS) != emptySet) {
TCS = oneOf(intersection(CCCS,SCCS));
Il client chooses TCS, from intersection(CCCS,SCCS), that is
Il most preferable to server;
I client converts from CNCS to TCS and server,
I/l from TCS to SNCS
Ise if (compatible(CNCS,SNCS))
TCS = fallbackCS; /I fallbacks are UTF:=8 (for char data) and
/I UTF-16 (for wchar data)

(1]

(1]

else
raise CODESET_INCOMPATIBLE exception;

}

The algorithm first checks to see if the client and server native code sets are the same. If they are, then the native code set
is used fof transmission and no conversiénis required. If the native code sets are not the same, then the copversion code
sets are ejamined to see if

1. the client can convert fromtits native code set to the server’s native code set,
2. the server can converp from the client’s native code set to its native code set, or
3. tlfnsmission through an intermediate conversion code set is possible.

If the thir¢l option-is selected and there is more than one possible intermediate conversion code set (i.e., th¢ intersection
of CCCS and SCCS contains more than one code set), then the one most preferable to the server is selectefl.!

If none oftt attba ar dma char data—
see below) is used. However, before selecting the fallback code set, a compatibility test is performed. This test looks at

the character sets encoded by the client and server native code sets. If they are different (e.g., Korean and French), then
meaningful communication between the client and server is not possible and a CODESET_INCOMPATIBLE exception
with standard minor code 1 is raised. This test is similar to the DCE compatibility test and is intended to catch those cases

where conversion from the client native code set to the fallback, and the fallback to the server native code set would result

1. Recall that server conversion code sets are listed in order of preference.

© ISO/IEC 2012 - All rights reserved 53

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

in massive data loss. (See clause 7.10.5, Relevant OSFM Registry Interfaces, on page 56 for the relevant OSF registry
interfaces that could be used for determining compatibility.) If either the CNCS or SNCS is from the IANA Character Set
registry, then the codesets are automatically assumed to be compatible and the fallback codeset is used.

A DATA_CONVERSION exception is raised when a client or server attempts to transmit a character that does not map
into the negotiated transmission code set. For example, not all characters in Taiwan Chinese map into Unicode. When an

attempt is made to transmit one of these characters via Unicode, an ORB is required to raise a DATA_ CONVERSION

ctaandard oo oo 1

PESSTAN
wWH-Staha e €06

exception,

In summa
UCS Tran|
IEC 1064
meaningfy
a default ¢

'y, the fallback code set is UTF-8 for char data (identified in the Registry as 0x05010001,<X/O
sformation Format 8 (UTF-8)”), and UTF-16 for wehar data (identified in the Registry as 0x00

-1:1993; UTF-16, UCS Transformation Format 16-bit form™). As mentioned above the/fallback

1 only when the client and server character sets are compatible, and the fallback code’set is distir
ode set used for backward compatibility.

If a server
8859-1 fo
specify its
standard 1

’s native char code set is not specified in the IOR multi-component profile, then it is considered
backward compatibility. However, a server that supports interfaces thatis€ wide character data
native wehar code set; if one is not specified, then the client-side ORB' raises exception INV_O
hinor code set to 1.

if no char transmission code set is specified in the code set seyvice context, then the char trans
idered to be ISO 8859-1 for backward compatibility. If a-Client transmits wide character data an
wchar transmission code set in the service context, th€n‘the server-side ORB raises exception B
ard minor code set to 23.

Similarly,
set is cong
specify it
with stand

If the cliept delivers a codeset via a CodeSetContext that the server does not support as a transmission cod|
server retyrns a CODESET_INCOMPATIBLE exception'with the standard minor code 2.

If the cliept (or the server if Bi-Directional GIOP. isyin use) sends multiple codeset service contexts on the
connectiof, with different parameter values, thenthe behavior is undefined. The receiver of a codeset servic
different yalues from those received on the same connection and processed previously may return a MARS
exception [with the standard minor code 9:

To guaranfee “out-of-the-box” interoperability, clients and servers must be able to convert between their nat
set and UTF-8 and their native wehar code set (if specified) and Unicode. Note that this does not require
sets be mappable to)Unicode, but only those that are exported as native in the IOR. The server nj
native code sets that aren’t'mappable to Unicode and those can be exported as SCCSs (but not SNCSs). TH
guarantee [out-of-the-box-interoperability and to reduce the number of code set converters that a CORBA-c(
must provjde.

ORB implementations are strongly encouraged to use widely-used code sets for each regional market. For e

pen UTF-8;
10109, “I1SO/
code set is
guished from

to be ISO
is required to
BJREF, with

mission code
| does not
AD PARAM,

eset then the

same
b context with
HAL system

ve char code
hat all server
ay have other
is is done to

mpliant ORB

kample, in the

Japanese matketplace, all ORB implementations should support Japanese EUC, JIS, and Shift JIS to be co

1|npatible with

eXiSting btstiess 153 Fetiees:

7.10.3 Mapping to Generic Character Environments

Certain language environments do not distinguish between byte-oriented and wide characters. In such environments both
char and wchar are mapped to the same “generic” character representation of the language. String and wstring are

likewise mapped to generic strings in such environments. Examples of language environments that provide
character support are Smalltalk and Ada.

54

generic

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Even while using languages that do distinguish between wide and byte-oriented characters (e.g., C and C++), it is possible
to mimic some generic behavior by the use of suitable macros and support libraries. For example, developers of Windows

NT and Windows 95 applications can write portable code between NT (which uses Unicode strings) and Windows 95
(which uses byte-oriented character strings) by using a set of macros for declaring and manipulating characters and
character strings.

Another way to achieve generic manipulation of chara

For examyj
manipulat
representa
between b

cters and strings is

e strings only through the operations in the ADT interface, then it becomes possible to write,cod|
tion-independent. This approach has an advantage over the macro-based approach in that it{provid
yte-oriented and wide character environments even without recompilation (at runtime the string

by treating them as abstract data types (ADTs).

oy, and
e that is
les portability
function calls

are bound|to the appropriate byte-oriented/wide library). Another way of looking at it is that the-macro-baged genericity
gives compile-time flexibility, while ADT-based genericity gives runtime flexibility.

Yet anothgr way to achieve generic manipulation of character data is through the ANSI'C++ Strings library defined as a
template that can be parameterized by char, wchar t, or other integer types.

Given thaf there can be several ways of treating characters and character strings,'inl a generic way, this standard cannot,
and therefre does not, specify the mapping of char, wchar, string, and wistring to all of them. It only specifies the
following [normative requirements that are applicable to generic charactefcenivironments:

wdg

* Th
rep|

bef

7.10.3.1

To descril
character
between g

7.10.3.2

Let us conl
there is anj
is in a ger
Smalltalk

Assume t}

har must be mapped to the generic character type in a generic/character environment.

wsitring must be mapped to a string of such generic characters'in a generic character environment.

b language binding files (i.e., stubs) generated for these generic environments must ensure that the ge
Fesentation is converted to the appropriate code sets (i.e., CNCS on the client side and SNCS on the s
pre character data is given to the ORB runtime:for transmission.

Describing Generic Interfaces

e generic interfaces in IDL we reedmmend using wchar and wstring. These can be mapped to
ypes in environments where théy-do exist and to wide characters where they do not. Either way
eneric and non-generic character type environments is achieved because of the code set conversi

nteroperation

sider an exampleto;seée how a generic environment can interoperate with a non-generic environmg
IDL interface with both char and wchar parameters on the operations, and let us say the client o
eric enviroriment while the server is in a non-generic environment (for example the client is wri
and the seryer is written in C++).

at the server’s (byte-oriented) native char code set (SNCS) is eucJP and the client’s native cha

(CNCS) is

neric type
erver side)

generic
nteroperation
bn framework.

nt. Let us say
f the interface
ten in

[code set

SJIS. Further assume that the code set negotiation led to the decision to use eucJP as the char

I'CS-C and

Unicode as the wchar TCS-W.

As per the above normative requirements for mapping to a generic environment, the client’s Smalltalk stubs are
responsible for converting all char data (however they are represented inside Smalltalk) to SJIS and all wehar data to the
client’s wehar code set before passing the data to the client-side ORB. Note that this conversion could be an identity
mapping if the internal representation of narrow and wide characters is the same as that of the native code set(s). The
client-side ORB now converts all char data from SJIS to eucJP and all wehar data from the client’s wehar code set to
Unicode, and then transmits to the server side.

© ISO/IEC 2012 - All rights reserved

55

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

The server side ORB and stubs convert the eucJP data and Unicode data into C++’s internal representation for chars and
wchars as dictated by the IDL operation signatures. Notice that when the data arrives at the server side it does not look
any different from data arriving from a non-generic environment (e.g., that is just like the server itself). In other words,
the mappings to generic character environments do not affect the code set conversion framework.

7.10.4 Example of Generic Environment Mapping

This sub d
Windows
in generic

7.10.41

Char and
TCHAR m
mapped tg
to the TH

7.10.4.2

We now 1
with a w

for the op
variables 1
and that tH
Unicode 4

Both the o
a string of
characters

the client’
ORB has

We theref
wide form

7.10.5

7.10.5.1
The OSF

lause shows how char, wchar, string, and wstring can be mapped to the generic C/C++ magr
environment. This is merely to illustrate one possibility. This sub clause is not normative and.1s aj
environments. See Mapping to Generic Character Environments on page 54.

Generic Mappings

hcro which expands to either char or wechar t depending on whether WNICODE is defined. W
pointers to TCHAR as well as to the string class CORBA: :Wstring .var: Literal strings in ID]
EXT macro as in _TEXT (<literal>).

nteroperation and Generic Mappings

lustrate how the interoperation works with the above genetic mapping. Consider an IDL interfac

ring parameter, a client for the operation which is compiled and run on a Windows 95 machine
pration which is compiled and run on a Windows NTumachine. Assume that the locale (and/or thg
or CNCS for wchar representation) on the Windéws 95 client indicates the client’s native code {
e corresponding server’s native code set is Uni¢ede. The code set negotiation in this case will pr
5 the TCS-W.

lient and server sides will be compiledwith UNICODE defined. The IDL type wstring will be 1
wchar_t on the client. However, since the client’s locale or environment indicates that the CN
is SJIS, the client side ORB will get the wstring parameter encoded as a SJIS multi-byte string
5 native code set), which it willthen convert to Unicode before transmitting to the server. On the s
ho conversions to do since(the' TCS-W matches the server’s native code set for wide characters.

re notice that the code set conversion framework handles the necessary translations between byt
S.

RelevantOSFM Registry Interfaces

Character and Code Set Registry

bs of the
plicable only

string are mapped to C/C++ char and char* as per the standard C/C++ mappings. wchar is mapped to the

ystring is
| are mapped

e operation
and a server
environment

et to be SIIS,
bably choose

epresented as
CS for wide

(since that is
erver side the

-oriented and

Es in the

chatacter and code set registry is defined in OSF Character and Code Set Registry (see Referenc

Preface) and current registry contents may be obtained directly from the Open Software Foundation (obtain via
anonymous ftp to ftp.opengroup.org:/pub/code_set registry). This registry contains two parts: character sets and code
sets. For each listed code set, the set of character sets encoded by this code set is shown.

Each 32-bit code set value consists of a high-order 16-bit organization number and a 16-bit identification of the code set
within that organization. As the numbering of organizations starts with 0x0001, a code set null value (0x00000000) may
be used to indicate an unknown code set.

When associating character sets and code sets, OSF uses the concept of “fuzzy equality,” meaning that a code set is
shown as encoding a particular character set if the code set can encode “most” of the characters.

56

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

“Compatibility” is determined with respect to two code sets by examining their entries in the registry, paying special
attention to the character sets encoded by each code set. For each of the two code sets, an attempt is made to see if there

is at least one (fuzzy-defined) character set in common, and if such a character set is found, then the assum

ption is made

that these code sets are “compatible.” Obviously, applications that exploit parts of a character set not properly encoded in
this scheme will suffer information loss when communicating with another application in this “fuzzy” scheme.

The ORB is responsible for accessing the OSF registry and determining “compatibility” based on the information

returned.

OSF memjpers and other organizations can request additions to both the character set and code set registrie]
cs-registrj@opengroup.org; in particular, one range of the code set registry (0x£5000000 through|0%f £
reserved fpr organizations to use in identifying sets that are not registered with the OSF (although.such usq{
facilitate interoperability without registration).

7.10.5.2 Access Routines

The folloying routines are for accessing the OSF character and code set registry.{Lhese routines map a coq
name to cpde set id and vice versa. They also help in determining character set.compatibility. These routin|
their semdntics and their actual implementation are not normative (i.e., ORB.vendors do not have to bundl
registry ithplementation with their products for compliance).

The folloying routines are adopted from RPC Runtime Support Fordd 8N Characters - Functional Specifid
Referencef in the Preface).

7.10.5.2.1 dce_cs_loc_to_rgy

Maps a logal system-specific string name for a code setto"a numeric code set value specified in the code 3

Synopsi

void dcle cs loc _to rgy(

idl ch *local code set name,
unsigneld32 *rgy code set value,
unsigneldl6 *rgy char sets(number,
unsigneldl6 **rgy char sets value,
error sltatus t *status)y;

s by email to
FEEEEE) is
would not

le set string
e interfaces,
e the OSF

ation (see

et registry.

Parametgrs - Input

local_copde_set(name A string that specifies the name that the local host’s locale environment us
the code set. The string is a maximum of 32 bytes: 31 data bytes plus a te
NULL character.

es to refer to
rminating

Parameters - Output

local code set name.

rgy_code_set_value 0 The registered integer value that uniquely identifies the code set specified by

prevents this routine from returning this parameter.

rgy_char_sets_number The number of character sets that the specified code set encodes. Specifying NULL

rgy_char_sets_value A pointer to an array of registered integer values that uniquely identify th
set(s) that the specified code set encodes. Specifying NULL prevents this
returning this parameter. The routine dynamically allocates this value.

e character
routine from

© ISO/IEC 2012 - All rights reserved

57

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

status

are as follows:

dce_cs c ok — Code set registry access operation succeeded.

dce_cs c_cannot allocate memory — Cannot allocate memory
set info.

dce_cs _c_unknown — No code set value was not found in theA
which corresponds to the code set name specified.

dce_cs_c _notfound — No local code set name was _found in the
which corresponds to the name specified.

Returns the status code from this routine. This status code indicates whether the routine
completed successfully or, if not, why not. The possible status codes and their meanings

for code

egistry

registry

Descripti

The dce d
identifiers

The dce_d
the corres
integer va

The routin
uniquely i
parameter
obtain a c
performan
the array i

7.10.5.2.

Maps a ny

Synopsig

on

s loc_to_rgy() routine maps operating system-specific names for charaétér/code set encodings to
in the code set registry.

s loc to rgy() routine takes as input a string that holds the host-sp&cific “local name” of a code §
ponding integer value that uniquely identifies that code set, as(registered in the host’s code set re
ue does not exist in the registry, the routine returns the status dce cs_c_unknown.

e also returns the number of character sets that the code set encodes and the registered integer v
dentify those character sets. Specifying NULL in¢the rgy char sets number and rgy char_sets v
5 prevents the routine from performing the additional search for these values. Applications that w
de set value from the code set registry can speeify NULL for these parameters in order to improv
ce. If the value is returned from the routing; application developers should free the array after it
s dynamically allocated.

dce_cs_rgy_to_loc

meric code set value contained in the code set registry to the local system-specific name for a ¢

void dc
u

D& & b

cs_rgy to loc(

igned32, *rgy code set value,
char**local code set name,
ignedl6é *rgy char sets number,
ignedl6é **rgy char sets value,

their unique

et and returns
oistry. If the

hlues that
aluel[]

ant only to

b the routine's
is used, since

de set.

ot/status_t *status);

Parameters - Input

rgy_code_set_value

The registered hexadecimal value that uniquely identifies the code set.

Parameters - Output

58

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

local_code_set_name

NULL character.

A string that specifies the name that the local host's locale environment uses to refer to
the code set. The string is a maximum of 32 bytes: 31 data bytes and a terminating

rgy_char_sets_number The number of character sets that the specified code set encodes. Specifying NULL in

this parameter prevents the routine from returning this value.

rgy_char—sets—value———

set(s) that the specified code set encodes. Specifying

) de e character
NULL in this paramgter prevents
the routine from returning this value. The routine dynamically alloCates this value.

status

are as follows:
e dce cs c ok — Code set registry access opetration succeeded.

e dce cs c_cannot allocate memory —‘Cannot allocate memory
info.

code set registry.

code set is not supported in the local system environment.

Returns the status code from this routine. This status code indicates wheth¢r the routine
completed successfully or, if not, why not. The possible status ¢odes and their meanings

e dce cs c unknown — The requested code set value was not fopnd in the

¢ dce_cs_c notfound — No local code set name was found in the fregistry that
corresponds to the specific code set registry ID value. This impllies that the

for code set

Descript

The dce @

specific string name for the code set, if it exists~in the code set registry.

The dce @

operating gystem-specific, or local name,-of the code set.

If the cod
undefined

The routir
uniquely i
parameter
obtain a |
routine's

on

s rgy_to_loc() routine maps a unique identifier for a code set in the code set registry to the oper

s rgy to_loc() routine takes assinput a registered integer value of a code set and returns a string

e set identifier does not, exist in the registry, the routine returns the status dce cs ¢ _unknown ang
string.

e also returns thesnumber of character sets that the code set encodes and the registered integer v
dentify those ¢haracter sets. Specifying NULL in the rgy char sets number and rgy char sets v
b prevents-thie routine from performing the additional search for these values. Applications that w
cal codesset name from the code set registry can specify NULL for these parameters in order to
erformance. If the value is returned from the routine, application developers should free the

ating system-

that holds the

returns an

hlues that
alue[]

ant only to
improve the

rgy _char

setsvvalue array after it is used.

7.10.5.2.3 rpc_cs_char_set_compat_check

Evaluates

character set compatibility between a client and a server.

Synopsis

void rp
un

c_cs _char set compat check(
signed32 client rgy code set value,

© ISO/IEC 2012 - All rights reserved

59

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

unsigned32 server rgy code set value,
error status t *status);

Parameters - Input

client_rgy_code_set_value The registered hexadecimal value that uniquely identifies the code set that the client is
using as its local code set.

server_fgy_code_set_value | The registered hexadecimal value that uniquely identifies the code set thafl the server is
using as its local code set.

Parametégrs - Output

status Returns the status code from this routine. This status cade4ndicates wheth¢r the routine
completed successfully or, if not, why not. The possiblesstatus codes and their meanings
are as follows:

e rpc_s_ok — Successful status.

* rpc_s_ss no _compat charsets ~ No compatible code set found| The client
and server do not have a commion encoding that both could recpgnize and
convert.

* The routine can also‘r€turn status codes from the dce cs rgy td loc()
routine.

Description

The rpc_cp_char_set compat_check() routine provides a method for determining character set compatibility between a
client and|a server; if the server's character set is‘incompatible with that of the client, then connecting to tHat server is
most likely not acceptable, since massive data-loss would result from such a connection.

The routirje takes the registered integervalues that represent the code sets that the client and server are cufrently using
and calls the code set registry to obtain‘the registered values that represent the character set(s) that the spec;Iﬁed code sets
support. If both client and server Support just one character set, the routine compares client and server registgred character
set values|to determine whetlier)or not the sets are compatible. If they are not, the routine returns the statug message
rpc_s_ss_fo_compat_charsets.

If the clieft and servep’siipport multiple character sets, the routine determines whether at least two of the spts are
compatiblg. If two or/more sets match, the routine considers the character sets compatible, and returns a syccess status

Gets the maximum number of bytes that a code set uses to encode one character from the code set registry on a host
Synopsis

void rpc_rgy get max bytes(

unsigned32 rgy code set value,

unsignedlé *rgy max bytes,
error status t *status);

60 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Parameters - Input

rgy_code_set_value

The registered hexadecimal value that uniquely identifies the code set.

Parameters - Output

rgy_majx_bytes

The registered decimal value that indicates the number of bytes this code
encode one character.

set uses to

status Returns the status code from this routine. This status code indicatesiwheth¢r the routine
completed successfully or, if not, why not. The possible status.codes and their meanings
are as follows:
e rpc_s ok — Operation succeeded.
e dce cs c_cannot allocate memory — Cannot allocate memory [for code set
info.
e dce_cs_c_unknown — No code sep value was not found in the tegistry that
corresponds to the code set value specified.
e dce_cs_c_notfound — Nodocal code set name was found in the [registry that
corresponds to the vatue.specified.
Description

The rpc_rgy get max_bytes() routine reads the code sét'registry on the local host. It takes the specified re
set value, [uses it as an index into the registry, and refurns the decimal value that indicates the number of b
code set uses to encode one character.

This inforation can be used for buffer sizing as part of the procedure to determine whether additional sto,
be allocat¢d for conversion between loeal and network code sets.

bistered code
ytes that the

rage needs to

© ISO/IEC 2012 - All rights reserved

61

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

62

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

8

8.1

ISO/IEC 195

Building Inter-ORB Bridges

Introduction

00-2:2012(E)

This clause provides an implementation-oriented conceptual framework for the construction of bridges to provide
interoperability between ORBs. It focuses on the layered request level bridges that the CORBA Core specifications

facilitate, a

Key featurd
* Enal

¢ Proy

The OMG
Interoperab

8.2 I

Bridging o
a standardi

The questi
mechanism

1. Cd

2. Af

br

Request-ley
provided b
ORB, knov

When that
interfaces t
environmer
constructio|
of their usd

Network pt
Inter-ORB

‘rhmlgh ORBs mav alwavs be internally modified to support hridgeq

s of the specifications for inter-ORB bridges are as follows:
bles requests from one ORB to be translated to requests on another.

ides support for managing tables keyed by object references.

[DL specification for interoperable object references, which are important to inter-ORB bridging
le Object References: IORs on page 25.

n-Line and Request-Level Bridging

an invocation between a client in one domain and a server objéct'in another domain can be medi
yed mechanism, or done immediately using non-standard ones:

n of how this bridging is constructed is broadly independent of whether the bridging uses a stan
There are two possible options for where the bridgé.components are located:

plication style code outside the ORB can perforim the translation or mappings; this is termed request,
dging.

rel bridges that mediate through a,common protocol (using networking, shared memory, or some
the host operating system) between distinct execution environments will involve components, g
n as “half bridges.”

p CORBA- and OMG-=IDL-defined data types, this is known as a “full bridge.”1 From outside th
It this will appearidentical to some kinds of in-line bridging, since only that environment knows
h techniques used: However, full bridges more easily support portable policy mediation compong
of only standard CORBA programming interfaces.

de inside the ORB may perform the necessary translation or mappings; this is termed in-line bridging.

is shown in

ated through

dardized

4
P

Llevel

other IPC
ne in each

nediation is purely internal to one execution environment, using a shared programming environnent’s binary

e execution
the
nts, because

e General

otocols-thay be used immediately “in-line,” or to mediate between request-level half bridges. Th
Protocol can be used in either manner. In addition, this text provides for Environment Specific I

Protocols (

ESIOP), allowing for alternative mediation mechanisms.

Tter—ORB

1.
support

construction of this style bridge.

© ISO/IEC 2012 - All rights reserved

Special initialization supporting object referencing domains (e.g., two protocols) to be exposed to application programmers to

63

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Note that mediated, request-level half-bridges can be built by anyone who has access to an ORB, without needing
information about the internal construction of that ORB. Immediate-mode request-level half-bridges (i.e., ones using non-
standard mediation mechanisms) can be built similarly without needing information about ORB internals. Only in-line
bridges (using either standard or non-standard mediation mechanisms) need potentially proprietary information about
ORB internals.

8.2.1 In-line Bridging

In-line bridging is in general the most direct method of bridging between ORBs. It is structurally similar t¢ the
engineerirjg commonly used to bridge between systems within a single ORB (e.g., mediating using some cpmmon inter-
process cdmmunications scheme, such as a network protocol). This means that implementing in-line bridgds involves as
fundamental a set of changes to an ORB as adding a new inter-process communications scheme. (Some ORBs may be
designed fo facilitate such modifications, though.)

In this apgroach, the required bridging functionality can be provided by a combinatigf of software compongnts at various
levels:

* Asladditional or alternative services provided by the underlying ORBs

» Asladditional or alternative stub and skeleton code.

Logical client to server operation request

(ol
. ORB Services ORB Services .
@
| ORB Core ORB Core |

Figure 8.1 - In-Line bridges are built using ORB internal APIs
8.2.2 Request<evel Bridging

The generpl pringiple of request-level bridging is as follows:

1. The m'iginn] request is Paqmﬂd to a proxy nhjf‘(“r in the client ORB

2. The proxy object translates the request contents (including the target object reference) to a form that will be
understood by the server ORB.

3. The proxy invokes the required operation on the apparent server object.

4. Any operation result is passed back to the client via a complementary route.

64 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Logical client to server operation request

il il I 1{ Server
(Bridge 3 ——
N [
(ony DSI- (o)
A

O ORB Services. Q ORB Services O
O O O O

| orBCOe] | orBCOe |

Figure 8.2 - Request-Level bridges are built using public ORB APIs

The requept translation involves performing object reference mapping for all, ebject references involved in the request (the
target, explicit parameters, and perhaps implicit ones such as transaction context). As elaborated later, this trpnslation may
also involye mappings for other domains: the security domain of CORBA::Principal parameters, type identifiers, and so
on.

It is a language mapping requirement of the CORBA Core gpecification that all dynamic typing APIs (e.g.| Any,
NamedValue) support such manipulation of parameters gyeh when the bridge was not created with compile-time
knowledg¢ of the data types involved.

8.2.3 Collocated ORBs

In the cas¢ of immediate bridging (i.e., nof-via a standardized, external protocol) the means of communicafion between
the client-side bridge component and that-on the server-side is an entirely private matter. One possible engjneering
technique [optimizes this communicatien by coalescing the two components into the same system or even the same
address splace. In the latter case, ascommodations must be made by both ORBs to allow them to share the sgme execution
environmgnt.

Similar ofjservations apply to request-level bridges, which in the case of collocated ORBs use a common bipary interface
to all OM(G IDL-defided data as their mediating data format.

Inter-ORB messading Intra-ORB messaging

Bridge Bridge

no
N\D £

ORB O
Bridge
Bridge Bridge ORB 1 ORB 3

Figure 8.3 - When the two ORBs are collocated in a bridge execution environment, network communications will
be purely intra-ORB. If the ORBs are not collocated, such communications must go between ORBs.

© ISO/IEC 2012 - Al rights reserved 65

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

An advantage of using bridges spanning collocated ORBs is that all external messaging can be arranged to be intra-ORB,
using whatever message-passing mechanisms each ORB uses to achieve distribution within a single ORB, multiple
machine system. That is, for bridges between networked ORBs such a bridge would add only a single “hop,” a cost

analogous

8.3

to normal routing.

Proxy Creation and Management

Bridges n
required.
discussed

¢ Ref
noi

e Rel
OR

Note that
proxies an
bridge. Th
the ORB 1

Also, note
could be 4
include a
informatid

8.4

Request-1d

o Intq
ang

Ge
oth|

Interface-
and skelet]
less flexib

ed to support arbitrary numbers of proxy objects, because of the (bidirectional) object reference
[he key schemes for creating and managing proxies are reference translation and reference-encaf
in Handling of Referencing Between Domains on page 24.

erence translation approaches are possible with CORBA V2.0 Core APIs. Proxies theniselves can be
mal objects using the Basic Object Adapter (BOA) and the Dynamic Skeleton Interface (DSI).

erence Encapsulation is not supported by the BOA, since it would call for knowledge of more than o
Bs could provide other object adapters that support such encapsulation.

from the perspective of clients, they only deal with local objects; clients:do not need to distingui

e ORB used by the client might, however, be able to recognize;that encapsulation is in use, depe
s implemented.

that the CORBA::InterfaceDef used when creating proxies (e.g., the one passed to CORBA::B
ither a proxy to one in the target ORB, or could be.an equivalent local one. When the domains b
ype domain, then the InterfaceDef objects cannotbe proxies since type descriptions will not h3
n. When bridging CORBA-compliant ORBs, type domains by definition do not need to be bridg

nterface-specific Bridges’and Generic Bridges

vel bridges may be:

rface-specific: they support predetermined IDL interfaces only, and are built using IDL-compiler ge
skeleton interfaces.

peric: capable of bridging requests to server objects of arbitrary IDL interfaces, using the interface re
er dynamic invocation)support (DII and DSI).

pecific bridgestimay be more efficient in some cases (a generic bridge could conceivably create t
pns using the.interface repository), but the requirement for prior compilation means that this app
ility thanlusing generic bridges.

mappings
bsulation, as

created as

e ORB. Some

5h between

d other objects. Accordingly, all CORBA operations supported by the’local ORB are also suppoited through a

nding on how

OA::create)
eing bridged
ve the same
bd.

herated stub

pository and

he same stubs
roach offers

8.5

Building Generic Request-Level Bridges

The CORBA Core specifications define the following interfaces. These interfaces are of particular significance when

building a

generic request-level bridge:

* Dynamic Invocation Interface (DII) lets the bridge make arbitrary invocations on object references whose types may

not

have been known when the bridge was developed or deployed.

* Dynamic Skeleton Interface (DSI) lets the bridge handle invocations on proxy object references that it implements,
even when their types may not have been known when the bridge was developed or deployed.

* Interface Repositories are consulted by the bridge to acquire the information used to drive DII and DSI, such as the

typ

66

e codes for operation parameters, return values, and exceptions.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

* Object Adapters (such as the Basic Object Adapter) are used to create proxy object references both when
bootstrapping the bridge and when mapping object references, which are dynamically passed from one ORB to the
other.

* CORBA Object References support operations to fully describe their interfaces and to create tables mapping object
references to their proxies (and vice versa).

Interface repositories accessed on either side of a half bridge need not have the same information, though of course the

informatid
same.

Using the
bridges cd

Us
Ji(e

Tr4g

As noted
responses
ORB to th
OMG-IDI
operation.

Operation
mappings
and bridgg

8.6

In the sim)|
reference
almost an)

of the disfinction.

However,
encapsula
bridges m
parameter

Moreover.
request, s

n associated with any given repository 1D (€.g8., an mterface type 1D, exception ID) Or operation 1

¢ interfaces and an interface to some common transport mechanism such as TCP, portablereque
nnected to an ORB can:

b DSI to translate all CORBA invocations on proxy objects to the form used by som¢-mediating prot
P (see the General Inter-ORB Protocol clause in this standard).

nslate requests made using such a mediating protocol into DII requests on obje¢ts in the ORB.

n In-Line and Request-Level Bridging on page 63, translating requests\and responses (including
involves mapping object references (and other explicit and impli¢ityparameter data) from the for
e form used by the mediating protocol, and vice versa. Explicit parameters, which are defined by
definition, are presented through DII or DSI and are listed in‘the Interface Repository entry for

b on object references such as hash() and is_equivalent() may be used to maintain tables that
When such a mapping does not exist, an object adapter is used to create ORB-specific proxy objq
-internal interfaces are used to create the analogous data structure for the mediating protocol.

Bridging Non-Referencing’Domains

plest form of request-level bridging,the bridge operates only on IDL-defined data, and bridges o
Homains. In this case, a proxy object in the client ORB acts as a representative of the target obje
h practical sense, indistinguishable from the target server object - indeed, even the client ORB wil

as alluded to abové, there may be multiple domains that need simultaneous bridging. The transfq
ion schemes described above may not apply in the same way to Principal or type identifiers. Re
hy need to translate such identifiers, in addition to object references, as they are passed as explic

p.

there'1s.an emerging class of “implicit context” information that ORBs may need to convey with
ichcas transaction and security context information. Such parameters are not defined as part of ar

must be the

st-level half

col such as

exceptional

m used by the
hin operation’s
hny particular

upport such
ct references,

nly object
ct and is, in
not be aware

rmation and
juest-level
it operation

any particular
operation’s

OMG IDL . & 1 1154 L B VLLES SRS,) . e & PR o DI DR 41 1 . £ ot i B
- Mguatu1c, IICIICU arv 11111)11\41[, 11T UIC HIvoulatiUll CUIITUAT. uuuglus UICU UUIIAIIn Ul SUCIT llllpllbll

parameters

could involve additional kinds of work, needing to mediate more policies than bridging the object reference, Principal,
and type domains directly addressed by CORBA.

CORBA does not yet have a generic way (including support for both static and dynamic invocations) to expose such
implicit context information.

© ISO/IEC 2012 - All rights reserved

67

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

8.7 Bootstrapping Bridges

A particularly useful policy for setting up bridges is to create a pair of proxies for two Naming Service naming contexts
(one in each ORB) and then install those proxies as naming contexts in the other ORB’s naming service. (The Naming

Service is
naming co

described in the Naming Service specification.) This will allow clients in either ORB to transparently perform
ntext lookup operations on the other ORB, retrieving (proxy) object references for other objects in that ORB.

In this way, users can access facilities that have been selectively exported from another ORB, through a naming context,

with no administrative action beyond exporting those initial contexts. (See the ORB Interface clause in CORBA, Part 1

for additid

This same
provide ol
predefined

nal information.)

approach may be taken with other discovery services, such as a trading service or any kind/of object that could
ject references as operation results (and in “out” parameters). While bridges can be established thiat only pass a
set of object references, this kind of minimal connectivity policy is not always desirable.

68

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

9 General Inter-ORB Protocol

9.1 Overview

00-2:2012(E)

This clause specifies a General Inter-ORB Protocol (GIOP) for ORB interoperability, which can be mapped onto any

connectioff -

mapping df the GIOP, which runs directly over TCP/IP connections, called the Internet Inter-ORB Protoco
IIOP must be supported by conforming networked ORB products regardless of other aspects of their\imple
Such suppprt does not require using it internally; conforming ORBs may also provide bridges tosthis"proto

9.2 oals of the General Inter-ORB Protocol

The GIOP|and IIOP support protocol-level ORB interoperability in a general, low-c@stymanner. The followi
were pursiied vigorously in the GIOP design:

Widlest possible availability - The GIOP and IIOP are based on the most-widely-used and flexible comm
sport mechanism available (TCP/IP), and defines the minimum additional protocol layers necessary
A requests between ORBs.

Sin
the

iplicity - The GIOP is intended to be as simple as possible, while meeting other design goals. Simplig
best approach to ensure a variety of independent, compatible implementations.

Scadlability - The GIOP/IIOP protocol should support-ORBs, and networks of bridged ORBs, to the size
Intgrnet, and beyond.

Lo
inv

p cost - Adding support for GIOP/IIOP to@n existing or new ORB design should require small engin

Genperality - While the I1OP is initially-defined for TCP/IP, GIOP message formats are designed to be us
trarjsport layer that meets a minithalset of assumptions; specifically, the GIOP is designed to be implem
connection-oriented transport pretocols.

Ard
wil

hitectural neutrality=The GIOP specification makes minimal assumptions about the architecture of]
support it. The GIOP specification treats ORBs as opaque entities with unknown architectures.

The appro
choose to
it in a half
that some

hch a partictilar ORB takes to providing support for the GIOP/IIOP is undefined. For example, a
use the IIOP as its internal protocol, it could choose to externalize IIOP as much as possible by

entity-or entities in, or associated with, the ORB be able to send and receive IIOP messages.

pstment. Moreover, the run-time costs required to support IIOP in deployed ORBs should be minimal.

ppecific
(ITIOP). The

mentation.
ol.

ng objectives

unications
to transfer

ity is deemed

of today’s

cering

ed with any
ented on other

agents that

h ORB could
mplementing

Fbridge;.or it could choose a strategy between these two extremes. All that is required of a confofming ORB is

9.3 GIOP Overview

The GIOP specification consists of the following elements:

* The Common Data Representation (CDR) definition. CDR is a transfer syntax mapping OMG IDL data types into a
bicanonical low-level representation for “on-the-wire” transfer between ORBs and Inter-ORB bridges (agents).

* GIOP Message Formats. GIOP messages are exchanged between agents to facilitate object requests, loc
implementations, and manage communication channels.

© ISO/IEC 2012 - All rights reserved

ate object

69

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

* GIOP Transport Assumptions. The GIOP specification describes general assumptions made concerning any network
transport layer that may be used to transfer GIOP messages. The specification also describes how connections may be
managed, and constraints on GIOP message ordering.

The IIOP

e In
to

The IIOP
The GIOP
for future

The comp
specificati
9.31 ¢

CDRis a
transfer bg

Va
cor
rec
cor

Al
me

Co.
psel
rep
9.3.2

The GIOP]
the follow

tmrne essage Iransport. 1he Specification describes Tow agents open connection
ansfer GIOP messages.

specification adds the following element to the GIOP specification:

is not a separate specification; it is a specialization, or mapping, of the GIOP to a specificitransp
specification (without the transport-specific IIOP element) may be considered as a separate conf
mappings to other transport layers.

ete OMG IDL specifications for the GIOP and IIOP are shown in OMG IDLon page 119. Fragn
on are used throughout this document as necessary.

Common Data Representation (CDR)

fransfer syntax, mapping from data types defined in OMG IDL)to a bicanonical, low-level repres
tween agents. CDR has the following features:

riable byte ordering - Machines with a common byte order may exchange messages without byte sw.
hmunicating machines have different byte order, the message originator determines the message byte

tains a flag that indicates the appropriate byte.otder.

bned primitive types - Primitive OMG IDD>data types are aligned on their natural boundaries within
bsages, permitting data to be handled efficiently by architectures that enforce data alignment in mem

mplete OMG IDL Mapping - CDR-describes representations for all OMG IDL data types, including
udo-objects such as TypeCodes."Where necessary, CDR defines representations for data types whosg
resentations are undefined orimplementation-dependent in the CORBA Core specifications.

5IOP Message Overview

specifies formats for messages that are exchanged between inter-operating ORBs. GIOP message
ing features:

COTHIHES HEces :
requests to objects immediately upon opening a connection.

, simiple messages - With only seven message formats, the GIOP supports full CORBA functionalit

and use them

ort (TCP/IP).
rmance point

hents of the

entation for

ipping. When
order, and the

biver is responsible for swapping bytes to match its native ordering. Each GIOP message (and CDR ¢ncapsulation)

510P
ry.

ransferable

formats have

y between

s,»with extended capabilities supporting object location services, dynamic migration, and efficient nf

* Dynamic object location - Many ORBs’ architectures allow an object implementation to be activated at different
locations during its lifetime, and may allow objects to migrate dynamically. GIOP messages provide support for object
location and migration, without requiring ORBs to implement such mechanisms when unnecessary or inappropriate to
an ORB’s architecture.

€XC

eption reporting, passing operation context, and remote object reference operations (such as

CORBA::Object::get_interface).

70

Full CORBA support - GIOP messages directly support all functions and behaviors required by CORBA, including

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

GIOP also supports passing service-specific context, such as the transaction context defined by the Transaction Service
(the Transaction Service is described in CORBAservices: Common Object Service Specifications). This mechanism is
designed to support any service that requires service related context to be implicitly passed with requests.

9.3.3 GIOP Message Transfer

94

objcts, or a single object, may be sent on the same connection.

Ovegrlapping requests - In general, GIOP message ordering constraints are minimal. GIOP is designed t
ovdrlapping asynchronous requests; it does not dictate the.relative ordering of requests or replies. Uniqu
ideptifiers provide proper correlation of related messagesyImplementations are free to impose any intert
ordering constraints required by their ORB architectures:

Co
feal

nection management - GIOP defines messages for request cancellation and orderly connection shu
ures allow ORBs to reclaim and reuse idl¢’connection resources.

GIQP versions for requests and replies < The GIOP version of the message carrying a response to a requ
same as the GIOP version of the m¢ssage carrying the request. This rule does not apply when the server|
with a MessageError because it.does not support the GIOP minor version in the request.

CDR Transfer:Syntax

The Common Data Representation (CDR) transfer syntax is the format in which the GIOP represents OM(

types in a

N octet stream.

An octet sream is‘an“abstract notion that typically corresponds to a memory buffer that is to be sent to anot
machine dver, sSome IPC mechanism or network transport. For the purposes of this discussion, an octet stre

arbitrarily

inimal set of
ons in the

iept, and server.
JIn GIOP

may not send
certain race
ification, see

hests to a
ts for different

allow
b request/reply
1al message

down. These

est shall be the
is responding

i IDL data

her process or
hm 1S an
n the stream

lenig’(but finite) sequence of eight-bit values (octets) with a well-defined beginning. The octets

are numbered from U to n-7, where 7 is the size of the stream. The numeric position of an octet in the stream is called its
index. Octet indices are used to calculate alignment boundaries, as described in Alignment on page 72.

GIOP defines two distinct kinds of octet streams:

* Message - an octet stream constituting the basic unit of information exchange in GIOP, described in detail in GIOP

Message Formats on page 93.

» Encapsulation - an octet stream into which OMG IDL data structures may be marshaled independently, apart from any

particular message context, described in detail in Encapsulation on page 79.

© ISO/IEC 2012 - All rights reserved

71

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

9.4.1 Primitive Types

Primitive data types are specified for both big-endian and little-endian orderings. The message formats (see GIOP
Message Formats on page 93) include tags in message headers that indicate the byte ordering in the message.
Encapsulations include an initial flag that indicates the byte ordering within the encapsulation, described in
Encapsulation on page 79. The byte ordering of any encapsulation may be different from the message or encapsulation
within which it is nested. It is the responsibility of the message recipient to translate byte ordering if necessary. Primitive

data types|are encoded in multiples of octets. An octet is an 8-bit value.
9.4.1.1 Alignment
In order tq allow primitive data to be moved into and out of octet streams with instructions specifically designed for those
primitive flata types, in CDR all primitive data types must be aligned on their natural boundaries (i.e., the alignment
boundary pf a primitive datum is equal to the size of the datum in octets). Any primitiyé-of’size n octets mjust start at an
octet stream index that is a multiple of n. In CDR, » is one of 1, 2, 4, or 8.
Where neg¢essary, an alignment gap precedes the representation of a primitive datumt. The value of octets fin alignment
gaps is unflefined. A gap must be the minimum size necessary to align the following primitive. Table 9.1 giyes alignment
boundariey for CDR/OMG-IDL primitive types.
Table 9.1

TYPE OCTET ALIGNMENT

char 1

wchar 1, 2 or 4 for GIOP 1.1 |

1 for GIOP 1.2 and later

octet 1

short 2

unsigned| short 2

long 4

unsigned|long 4

long long 8

unsigned| long lohg 8

float 4

double 8

long double 8

boolean 1

enum 4
72

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Alignment is defined above as being relative to the beginning of an octet stream. The first octet of the stream is octet
index zero (0); any data type may be stored starting at this index. Such octet streams begin at the start of a GIOP message
header (see GIOP Message Header on page 94) and at the beginning of an encapsulation, even if the encapsulation itself
is nested in another encapsulation. (See Encapsulation on page 79).

9.4.1.2 Integer Data Types

Figure 9.1_on page 73 illustrates the rpprpqpnmﬁan for OMG IDI intpgpr data ty, pes innlnding the f‘nlln\xi'ng data types:

short

unsigned short

long

unsigned long

long long

unsigned long long

The figurd illustrates bit ordering and size. Signed types (short, long, and long long) are represented as|two’s
complemgnt numbers; unsigned versions of these types are represented as unsigned binary numbers.

Big-Endian Little-Endian
octet octet
MSB 0 LSB| o
shont LSB| 4 MSB 1
MSB 0 LSB| o
long 1 1
2 2
LSB| 3 MSB 3
MSB 0 LSB| 0
1 1
2 2
long long 3 3
4 4
5 5
6 6
LSH 7 MSB 7

Figure 9.1 - Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL integer data types, both
signed and unsigned.

© ISO/IEC 2012 - Al rights reserved 73

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

9.4.1.3 Floating Point Data Types

Figure 9.3 on page 78 illustrates the representation of floating point numbers. These exactly follow the IEEE standard
formats for floating point numbers', selected parts of which are abstracted here for explanatory purposes. The diagram
shows three different components for floating points numbers, the sign bit (s), the exponent (e), and the fractional part (f)
of the mantissa. The sign bit has values of 0 or 1, representing positive and negative numbers, respectively.

For single-precision float values the exponent is 8 bits long, comprising el and e2 in the figure, where the 7 bits in el are
most signifficant. The exponent is represented as excess 127. The fractional mantissa (f1 - £3) is a 23-bit valle f where 1.0
<={ < 2.0, f1 being most significant and f3 being least significant. The value of a normalized number'is dgscribed by:

_lszgn 9 2(exp0nentf 127) % (1 +fracti0n)

For doublg¢-precision values the exponent is 11 bits long, comprising el and e2 in the figure, where the 7 Yits in el are

most significant. The exponent is represented as excess 1023. The fractional mantissa (fI* - f7) is a 52-bit value m where
1.0 <=m [2.0, f1 being most significant and f7 being least significant. The valug’of-a normalized numbet is described
by:

_1s1gn N 2(exponent— 1023) % (1 +fracti0n)

For doublg¢-extended floating-point values the exponent is 15 bits{long, comprising el and e2 in the figure,|where the 7
bits in el pre the most significant. The fractional mantissa (flsthrough f14) is 112 bits long, with fl being the most
significanf. The value of a long double is determined by

_lsign y 2(exp0nentf 16383) y (1 +fracti0n)

1. “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Standard 754-1985, Institute of Electrical and Electronics
Engineers, August 1985.

74 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Big-Endian Little-Endian
float s el 0 3 0
e2 f1 1 f2 1
f2 2 e2 f1 2
f3 3 s el 3
douple s| el 0 f7 0
e2 | f1 1 6 1
f2 2 f5 2
f3 3 4 3
f4 4 f3 4
f5 5 f2 5
f6 6 e2 f1 6
7 7 s| el 7
long douple S el 0 f14 0
e2 1 f13 1
f1 2 f12 2
f2 3 11 3
f3 4 10 4
f4 5 f9 5
f5 6 f8 6
f6 v¢ f7 7
f7 8 f6 8
f8 9 f5 9
f9 10 f4 10
10 11 f3 1
f11 12 f2 12
f12 13 f1 13
f13 14 e2 14
f14 15 s| el 15

Figure 9.2 - Sizes and bit ordering in big-endian and little-endian representations of OMG IDL single,

double precision, and double extended floating point numbers.

9.4.1.4 Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to undergo any conversion during transmission.
For the purposes of describing possible octet values in this part of ISO/IEC 19500, octets may be considered as unsigned
8-bit integer values.

© ISO/IEC 2012 - All rights reserved

75

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

9.4.1.5 Boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and FALSE as 0.

9.4.1.6 Character Types

An IDL character is represented as a single octet; the code set used for transmission of character data (e.g., TCS-C)
between a particular client and server ORBs is determined via the process described in Code Set Conversion on page 45.

In the cas{
byte charg

NOTE: Fuy

For GIOP
W, which
oriented:

For GIOP
octet sequ
in the seq
encoding.

NOTE: Th
octet to en

For GIOP
encoding.

Wchar v4

If UTF-14
endian. By
endian or
follows:

By

No
ist

using a fixed number of bits as determined by the selected TCS-W.The OSF Character and Code Set R4

exd
(m:

Ift

of multi-byte encodings ot characters, a single mstance ot the char type may hold only one octe
cter encoding.

1l representation of multi-byte characters will require the use of an array of IDL char varjables.
version 1.1, the transfer syntax for an IDL wide character depends on whether the-transmission g
is determined via the process described in Code Set Conversion on page 45) is-byte-oriented or 1
e-oriented (e.g., SJIS). Each wide character is represented as one or more octets, as defined by the se

h-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented as one or more codepoint|
he same as “Coded-Character data element,” or “CC data element” in-ISO terminology. Each codepo

mined using the interfaces in Relevant OSFM Registry Interfaces on page 56 to determine the maxin
x_bytes) of any character codepoint.

version 1.2, and later wchar is encoded as an unsigned binary octet value, followed by the elen
ence representing the encoded value of the wehar. The initial octet contains a count of the numbg
ience, and the elements of the sequence of octets represent the wehar, using the negotiated widd

e GIOP 1.2 and later encoding of wcharis similar to the encoding of an octet sequence, except for its
code the value of the length.

versions prior to 1.2 and latety interoperability for wchar is limited to the use of two- octet fixed

lues in encapsulations~are assumed to be encoded using GIOP version 1.2 and later CDR.

is selected as the-TCS-W, the CDR encoding purposes can be big endian or little endian, but de
placing a BOM (byte order marker) at the front of the wstring or wchar encoding, it can be senl
little-endian.*In particular, the CDR rules for endian-ness of UTF-16 encoded wstring or wchar

hefitst two bytes (after the length indication) are FE FF, it’s big-endian.

of any multi-

ode set (TCS-
on-byte-

ected TCS-W.

5. A codepoint
int is encoded
gistry may be
hum length

ents of the
r of elements
character

use of a single

-length

faults to big

t either big-
alues are as

+ If the first two bytes (after the length indication) are FF FE, it’s little-endian.

« If the first two bytes (after the length indication) are neither, it’s big-endian.

If an ORB decides to use BOM to indicate endianness, it shall add the BOM to the beginning of wchar or wstring values
when encoding the value, since it is not present in wchar or wstring values passed by the user.

If a BOM is present at the beginning of a wchar or wstring received in a GIOP message, the ORB shall remove the BOM
before passing the value to the user.

76

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

If a client orb erroneously sends wchar or wstring data in a GIOP 1.0 message, the server shall generate a MARSHAL
standard system exception, with standard minor code 5.

If a server erroneously sends wchar data in a GIOP 1.0 response, the client ORB shall raise a MARSHAL exception to
the client application with standard minor code 6.

For GIOP 1.1, 1.2, and 1.3, UCS-2 and UCS-4 should be encoded using the endianess of the GIOP message, for backward
compatibility.

For GIOP|1.4, the byte order rules for UCS-2 and UCS-4 are the same as for UTF-16.

UTF-16LE and UTF-16BE, from IANA codeset registry, have their own endianess definition. Thus these should be
encoded using the endianess specified by their endianness definition.

9.4.2 OMG IDL Constructed Types
Construct¢d types are built from OMG IDL’s data types using facilities defined by the OMG IDL languagg.

9.4.2.1 Alignhment

Construct¢d types have no alignment restrictions beyond those of their primitive components. The alignment of those
primitive fypes is not intended to support use of marshaling buffers.as equivalent to the implementation of|constructed
data types| within any particular language environment. GIOP assumes that agents will usually construct stfuctured data
types by cppying primitive data between the marshaled buffer dand the appropriate in-memory data structure [layout for the
language mapping implementation involved.

9.4.2.2 Struct
The comppnents of a structure are encoded in the ‘erder of their declaration in the structure. Each compongnt is encoded
as defined for its data type.
9.4.2.3 Union

Unions arg encoded as the discriminant tag of the type specified in the union declaration, followed by the fepresentation
of any selpcted member, encoded\as ‘its type indicates.

9.4.2.4 Array

Arrays ar¢ encoded agthe array elements in sequence. As the array length is fixed, no length values are encoded. Each
element i encoded(as defined for the type of the array. In multidimensional arrays, the elements are ordered so the index
of the firsf dimension varies most slowly, and the index of the last dimension varies most quickly.

9.4.2.5 Sequence

Sequences are encoded as an unsigned long value, followed by the elements of the sequence. The initial unsigned long
contains the number of elements in the sequence. The elements of the sequence are encoded as specified for their type.

9.4.2.6 Enum

Enum values are encoded as unsigned longs. The numeric values associated with enum identifiers are determined by the
order in which the identifiers appear in the enum declaration. The first enum identifier has the numeric value zero (0).
Successive enum identifiers take ascending numeric values, in order of declaration from left to right.

© ISO/IEC 2012 - Al rights reserved 77

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

9.4.2.7 Strings and Wide Strings

A string is encoded as an unsigned long indicating the length of the string in octets, followed by the string value in
single- or multi-byte form represented as a sequence of octets. The string contents include a single terminating null
character. The string length includes the null character, so an empty string has the length of the encoding of the null
character in the transmission character set.

For GIOP version 1.1, 1.2, and 1.3, when encoding a string, always encode the length as the total number of bytes used

by the end
For GIOP

unsigned integers (determined by the transfer syntax for wchar) followed by the individual wide ¢haracterg

contents if
character

For GIOP
the encodg
not termin

NOTE: Fq
encoding.

Wstring

9428 F

The IDL fijxed type has no alignment restrictions, and is represented as shown in Figure 9.4. Each octet cq

two decin
(most sigr]
half-octet
numbers g

The numb
being mar
significan

Decimal d

oding string, regardless of whether the encoding is byte-oriented or not.

version 1.1, a wide string is encoded as an unsigned long indicating the length of the sfring i

iclude a single terminating null character. The string length includes the null character: The term
for a wstring is also a wide character.

version 1.2 and 1.3, when encoding a wstring, always encode the length as thetotal number of
d value, regardless of whether the encoding is byte-oriented or not. For GIOP version 1.2 and 1.3
ated by a null character. In particular, in GIOP version 1.2 and 1.3 a léngth of 0 is legal for wst

Falues in encapsulations are assumed to be encoded using~GIOP version 1.2 and 1.3 CDR.

xed-Point Decimal Type

al digits. If the fixed type has an odd numberof decimal digits, then the representation begins
ificant) digit — dO in the figure. Otherwise; this first half-octet is all zero, and the first digit is i
— d1 in the figure. The sign configuration, in the last half-octet of the representation, is 0xD fot
nd 0xC for positive and zero values:

er of digits present must equal the number of significant digits specified in the IDL definition for
khaled, with the exception ©f the inclusion of a leading 0x0 half octet when there are an even nu
digits.

igits are encoded a§ hexadecimal values in each half-octet as follows:

octets or
. The string
Inating null

ctets used by
a wstring is
ring.

r GIOP versions prior to 1.2 and 1.3, interoperability for wstring is-timited to the use of two-octet fixed-length

ntains (up to)
ith the first
h the second
negative

the fixed type
mber of

Decimdl Digit Half-Octet Value
0 0x0
1 0x1
2 0x2
9 0x9
Figure 9.3 - Decimal Digit Encoding for Fixed Type

78

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

fixed Big and Little-Endian octet
MSD do d1 0
d2 d3 1
d4 ds 2
LSD dm s n
Figure 9.4 - IDL Fixed Type Representation
9.4.3 Encapsulation
Encapsulations are octet streams into which OMG IDL data structurgs may be marshaled independently, af
particular [message context. Once a data structure has been encapsulated, the octet stream can be represente
IDL opaquye data type sequence<octet>, which can be marshaled subsequently into a message or another

Encapsula
componen
they are ¢

The GIOB
protocol pj

page 37).

page 112)

When enc
byte ordefing of the encapsulatedidata. If the value is FALSE (0), the encapsulated data is encoded in big-

if TRUE

GIOP Me
holding th

defined b
which is

When the

containin,

tions allow complex constants (such as TypeCodes) to be pre-marshaled; they also allow certain
ts to be handled without requiring full unmarshaling. Whenever encapsulations are used in CDR
early noted.

and IIOP explicitly use encapsulations iy three places: TypeCodes (see TypeCode on page 87), t
rofile inside an IOR (see Object References on page 93), and in service-specific context (see Servi
[n addition, some ORBs may choos¢-to use an encapsulation to hold the object_key (see IIOP I(
or in other places that a sequence<octet> data type is in use.

papsulating OMG IDL data types, the first octet in the stream (index 0) contains a boolean value

1), the data is encoded in little-endian order, exactly like the byte order flag in GIOP message h
sage Header on page 94). This value is not part of the data being encapsulated, but is part of thg
e encapsulationy ‘Following the byte order flag, the data to be encapsulated is marshaled into the
CDR engeding rules. Marshaled data are aligned relative to the beginning of the octet stream (th
ccupied by the byte order flag).

3
q

encapsulation is encoded as type sequence<octet> for subsequent marshaling, an unsigned lo1

art from any
1 as the OMG
encapsulation.
message

or the GIOP,

he IIOP
ce Context on
R Profiles on

ndicating the
endian order;
paders (see
octet stream
buffer as

b first octet of

1g value

encac (c Soquanco An

the caauonecao longth 1o npafiyad 0 tho Antot ctroniy oo nracnribhod £or cony ca o
ge-sequencereRgHiSpretxeatotne-octetstreaaspreserveator-sequences{seedequence-on

age 77). The

length value is not part of the encapsulation’s octet stream, and does not affect alignment of data within the encapsulation.

Note that this guarantees a four-octet alignment of the start of all encapsulated data within GIOP messages and nested

encapsulations.

2

Whenever the use of an encapsulation is specified, the GIOP version to use for encoding the encapsulation, if different
than GIOP version 1.0, shall be explicitly defined (i.e., the default is GIOP 1.0).

© ISO/IEC

2012 - All rights reserved

79

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

If a parameter with IDL char or string type is defined to be carried in an encapsulation using GIOP version greater than
1.0, the transmission Code Set for characters (TCS-C), to be used when encoding the encapsulation, shall also be
explicitly defined.

If a parameter with IDL wchar or wstring type is defined to be carried in an encapsulation using GIOP version greater
than 1.0, the transmission Code Set for wide characters (TCS-W), to be used when encoding the encapsulation shall also
be explicitly defined.

9.4.4 Value Types

Value typgs are built from OMG IDL’s value type definitions. Their representation and encodingis defined in this sub
clause.

Value typgs may be used to transmit and encode complex state. The general approach is tésupport the transmission of the
data (statd) and type information encoded as RepositorylDs.

The loading (and possible transmission) of code is outside of the scope of the GIOP.definition, but enough fnformation is
carried to [support it, via the CodeBase object.

The formdt makes a provision for the support of custom marshaling (i.e.thé¢ encoding and transmission offstate using
applicatiop-defined code). Consistency between custom encoders and’ deeoders is not ensured by the protogol.

The encoding supports all of the features of value types as well a§)supporting the “chunking” of value typesd|. It does so in
a compact way.

At a high Jevel the format can be described as the linearization of a graph. The graph is the depth-first exploration of the
transitive Flosure that starts at the top-level value objeet and follows its “reference to value objects” fields [(an ordinary
remote reflerence is just written as an IOR). It is a recursive encoding similar to the one used for TypeCodes. An
indirection is used to point to a value that has already been encoded.

The data thembers are written beginning with.the highest possible base type to the most derived type in the|order of their
declaratiof.

9.4.4.1 Plartial Type Information and Versioning

The formdt provides support foy partial type information and versioning issues in the receiving context. Hqwever the
encoding has been designed so that this information is only required when “advanced features” such as trupcation are
used.

The presefce (or absence) of type information and codebase URL information is indicated by flags within the
<value tag>, which is a long in the range between OX7fffff00 and OX7fffffff inclusive. The last octet of this tag is
interpreteq a$follows:

 TheTeast significant bit (<value_tag> & UX0U000000T) 1s the value T if a <codebase_URL> 1s present. 1f this bit is 0,
no <codebase URL> follows in the encoding. The <codebase URL> is a blank-separated list of one or more URLSs.

2. Accordingly, in cases where encapsulated data holds data with natural alignment of greater than four octets, some processors may
need to copy the octet data before removing it from the encapsulation. For example, an appropriate way to deal with long long dis-
criminator type in an encapsulation for a union TypeCode is to encode the body of the encapsulation as if it was aligned at the 8
byte boundary, and then copy the encoded value into the encapsulation. This may result in long long data values inside the encap-
sulation being aligned on only a 4 byte boundary when viewed from outside the encapsulation.

80 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

When a li
the ReposgitorylDs. The first RepositorylD is the id for the most derived type of the value. If this ‘type |
types, the
truncate the value passed. These truncatable base types are listed in order, going up the derivation hierarchy
context mpy choose to (but need not) terminate the list at any point after it has sent a RepositorylID for a
known to

A
mafshaled.

For value
value typq

For value
included ip the value type encoding.

If the recdiving context needs more typing information than is contained in a GIOP message that contains
URL infofmation, it can go back to the sending context and perform a lookup based on that RepositoryliL
more typi

CORBA RepositorylDs may contain standard version identification (major and minor version numbers o
informatiqn). The ORB run timg may use this information to check whether the version of the value being
compatiblp with the version expected. In the event of a version mismatch, the ORB may apply product-spe
truncationfconversion rales (with the help of a local interface repository or the SendingContext::RunTir
For exam
documentjtion for\a-detailed specification of this model.

9.4.4.2 Elxample

A Base type of a well known type.
A thember type of a well known type.

An|element type of a well known type.

ISO/IEC 195

The second and third least significant bits (<value_tag> & 0x00000006) are:

* the value 0 if no type information is present in the encoding. This indicates the actual parameter is th
the formal argument.

00-2:2012(E)

e same type as

+ the value 2 if only a single repository id is present in the encoding, which indicates the most derived type of the
actual parameter (which may be either the same type as the formal argument or one of its derived types).

t of RepositorylDs is present, the encoding is a long specifying the number of RepositorylD

sending context is responsible for listing the RepositorylDs for all the base types tofwhich it is

the receiving context. A well known type is any of the following:

pe that is a formal parameter, result of the method call, or exception, for which this GIOP message

encoding.

types marshaled as abstract interfaces (seetAbstract Interfaces on page 93), Repositoryld inform

hg information (e.g., the type graph).

le, the Javadsérialization model of truncation/conversion across versions can be supported. See t

epository ids.

, followed by

las any base
safe to

. The sending
type well

s being

types that have an RMI: Repositoryld, ORBs must include at least the most derived Repositoryld, in the

ation must be

h codebase
) to retrieve

I a hash code
transmitted is
cific

ne service).
he JDK 1.1

The following examples demonstrate legal combinations of truncatability, actual parameter types and GIOP encodings.
This is not intended to be an exhaustive list of legal possibilities.

The following example uses valuetypes animal and horse, where horse is derived from animal. The actual parameters
passed to the specified operations are an_animal of runtime type animal and a_horse of runtime type horse.

The following combinations of truncatability, actual parameter types and GIOP encodings are legal.

1. If there is a single operation:

© ISO/IEC 2012 - All rights reserved

81

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

op1(in animal a);
a). If the type horse cannot be truncated to animal (i.c., horse is declared):

valuetype horse: animal ...
then the encoding is as shown below:

Actual Invocation Legal Encoding
op1(a_horse) 2 horse
6 1 horse

Note that if the type horse is not available to the receiver, then the receiver throws a demarshaling eyception.

b

~—

|If the type horse can be truncated to animal (i.c., horse is declared):

valuetype horse: truncatable animal ...
then the encoding is as shown below

Actual Invocation Legal Encoding

op1(a_horse) 6 2 horse animal

Note that if the type horse is not available to the receiver, then the receiver tries to truncate to animal.

c).|Regardless of the truncation relationships, when'the exact type of the formal argument is sent, then the
encoding is as shown below:
Actual Invocation Legal Encoding
op1(an_animal) 0
2 animal
6 1 animal

2. Given the additional)operation:

op2(ih horse-h);
(i.¢., the-sender knows that both types horse and animal and their derivation relationship are known t¢ the

r¢ceiver)

a). If the type horse cannot be truncated to animal (i.e., horse is declared):

valuetype horse: animal ...
then the encoding is as shown below:

Actual Invocation Legal Encoding
op2(a_horse) 2 horse
6 1 horse

82 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

b).

ISO/IEC 19500-2:2012(E)

Note that the demarshaling exception of case 1 will not occur, since horse is available to the receiver.
If the type horse can be truncated to animal (i.e., horse is declared):

valuetype horse: truncatable animal ...
then the encoding is as shown below:

Nd

9.4.4.3 §

The speci
buffer to
Reposit
object thaj
repositoryj
type or co

It is not p
use indire
used for r
the begini
self-indire
previous fl
reserved fi

Fragmentj
being mar
octets occ

9.4.4.4 Null Values

All value

Actual Invocation Legal Encoding

op2 (a_horse) 2 horse

6 1 horse

6 2 horse animal

te that truncation will not occur, since horse is available to the receiver.

cope of the Indirections

1| value OXFFFFfff introduces an indirection (i.e., it directs the deceder to go somewhere else in th
ind what it is looking for). This can be codebase URL inform@ation that has already been encode
rylD that has already been encoded, a list of repository JBS that has already been encoded, or an
is shared in a graph. Oxffffffff is always followed by<@lonhg indicating where to go in the buffe
[D or URL, which is the target of an indirection used\fer encoding a valuetype must have been intj
debase information for a valuetype.

prmissible for a repositorylD marshaled for seme purpose other than as the type information of a
tion to reference a previously marshaled value. The encoding used to indicate an indirection is th
bcursive TypeCodes (i.c., a Oxffffffff\indirection marker followed by a long offset (in units of
ing of the long offset). As an example, this means that an offset of negative four (-4) is illegal, |
cting to its indirection marker. lndirections may refer to any preceding location in the GIOP mess
ragments if fragmentation is used. This includes any previously marshaled parameters. Non-negat
br future use. Indirections may not cross encapsulation boundaries.

tion support in GIOR ersions 1.1, 1.2, and 1.3 introduces the possibility of a header for a Fragm
sKhaled between the target of an indirection and the start of the encapsulation containing the indir
ppied by any stch headers are not included in the calculation of the offset value.

types$_have a distinguished “null.” All null values are encoded by the <null tag> (0x0). The CDR

le marshaling
1, a

other value

r. A

oduced as the

valuetype to
b same as that
pctets) from
ecause it is

hge, including
ve offsets are

pntMessage

cction. The

| encoding of

null value

5 dnicludes no type information.

9.4.4.5 Other Encoding Information

A “new” value is coded as a value header followed by the value’s state. The header contains a tag and codebase URL
information if appropriate, followed by the RepositorylD and an octet flag of bits. Because the same RepositorylD
(and codebase URL information) could be repeated many times in a single request when sending a complex graph, they
are encoded as a regular string the first time they appear, and use an indirection for later occurrences.

© ISO/IEC 2012 - All rights reserved

83

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

9446 F

ragmentation

It is anticipated that value types may be rather large, particularly when a graph is being transmitted. Hence the encoding
supports the breaking up of the serialization into an arbitrary number of chunks in order to facilitate incremental
processing.

Values with truncatable base types need a length indication in case the receiver needs to truncate them to a base type.
Value types that are custom marshaled also need a length indication so that the ORB run time can know exactly where

they end in the stream without relying on user-defined code. This allows the ORB to maintain consistency, 4

integrity
state. For
type or us

If limited
containing
being mar
value. It i

length cal

The data tpay be split into multiple chunks at arbitrary points except within primitive CDR types, arrays o

types, stri
of these ty
the curren|

The prese
(<value t§
required fi

Each chun

A chunkeq
from the ¢
started wi
level of th
are as foll

En
tell

the GIOP stream when the user-written custom marshaling and demarshaling does not marshal th
simplicity of encoding, we use a length indication for all values whether or not they havéja~trung
e custom marshaling.

kpace is available for marshaling, it may be necessary for the ORB to send the conténts of a mar
a partially marshaled value as a GIOP fragment. At that point in the marshalingythe length of th
chaled may not be known. Calculating this length may require processing ,as costly as marshaling

Culation processing.

ngs, and wstrings, or between the tag and offset of indirections. It is never necessary to end a chu
pes as the length of these types is known before starting'to' marshal them so they can be added to
tly open chunk. It is the responsibility of the CDR stream to hide the chunking from the marshal

hce (or absence) of chunking is indicated by flags within the <value tag>. The fourth least signif
2> & 0x00000008) is the value 1 if a chunkéd encoding is used for the value’s state. The chunkg
r custom marshaling and truncation. If this\bit is 0, the state is encoded as <octets>.

k is preceded by a positive long, which specifies the number of octets in the chunk.

| value is terminated by an end tag that is a non-positive long so the start of the next value can be
tart of another chunk. In thewcase of values that contain other values (e.g., a linked list) the “nest
hout there being an end tag./The absolute value of an end tag (when it finally appears) indicates
e value being terminatéd. A single end tag can be used to terminate multiple nested values. The

DWS:

| tags, chunk size tags, and value tags are encoded using non-overlapping ranges so that the unmarsh
after reading,each chunk whether:

anotheirchunk follows (positive tag).

one'er multiple value types are ending at a given point in the stream (negative tag).

nd ensure the
e entire value
atable base

shaling buffer
e entire value
the entire

therefore desirable to allow the value to be encoded as multiple chunks; each with its own lengtl. This allows
the portion of a value that occupies a marshaling buffer to be sent as a chunk of-knewn length with no need

for additional

F primitive

nk within one
the length of
ing code.

licant bit
d encoding is

differentiated
ed” value is
the nesting
detailed rules

hling code can

I | 1 £all L b I | s % Y
a HIUSTICU Valuv 1UITUWDS \DPCblal 1a15c PUDILIVC Lag}.

The end tag is a negative long whose value is the negation of the absolute nesting depth of the value type ending at this

point in the CDR stream. Any value types that have not already been ended and whose nesting depth is greater than the
depth indicated by the end tag are also implicitly ended. The end tag value 0 is reserved for future use (e.g., supporting
a nesting depth of more than 2431). The outermost value type will always be terminated by an end tag with a value of

-1.

Enclosing non-chunked valuetypes are not considered when determining the nesting depth.

The following example describes how end tags may be used. Consider a valuetype declaration that contains two member

values:

84

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

/' IDL

ISO/IEC 19500-2:2012(E)

valuetype simpleNode({ ... };

valuetype node truncatable simpleNode {
public node node1;

public node node2;

all
ter|
thd

Foi

Ch
strd
end

Re
nes

Paptial Type Information and Versionifig; on page 80).

Th
sta
SCO

Ch
at
the

Re

cases, the outermost value is terminated with an end tag with a value of -1. The nested valuen
minated with an end tag with a value of -2 since only the second-level value ‘node1’ ends-at th{
nested value ‘node2’ coterminates with the outermost value, either of the following end|tag lay

A single end tag with a value of -1 marks the termination of the outermost value, implyirig the term
nested value, ‘node2’as well. This is the most compact marshaling.

An end tag with a value of -2 marks the termination of the nested value, ‘node2,~This is then follo
tag with a value of -1 to mark the termination of the outermost value.

Because data members are encoded in their declaration order, declarifigya value type data member g
last is likely to result in more compact encoding on the wire because’it maximizes the number of va
the same place and so allows a single end tag to be used for multiple values. The canonical examplg
linked list.

the purposes of chunking, values encoded as indirectionsyornull are treated as non-value data.

inks are never nested. When a value is nested withinanother value, the outer value’s chunk ends at t

tag for the inner value is followed by a continuation chunk for the remainder of the outer value.

bardless of the above rules, any value nested within a chunked value is always chunked. Furthermore
ted value that is truncatable must encode'its type information as a list of RepositorylDs (see Sectid

b scope of an encoded valuetypeis a complete GIOP message or an encapsulation. Starting a new end
ts a new scope. Ending an encapsulation ends the current scope and restores the previous scope. Star
pe starts a new count of end tag nesting (initially 0), chunking status (initially false) and chunk positi

hnks in the same Scope are never nested. When a value is nested within another value, the outer valug
he place in the.stréam where the inner value starts. If the outer value has non-value data to be marsha
inner valueiithe end tag for the inner value is followed by a continuation chunk for the remainder of't

pardless\of the above rules, any value nested within a chunked value in the same scope is always chu

Fu

Paittial Tva Information and VPrqinning on page 0)

hérmore, any such nested value that is truncatable must encode its type information as a list of Repd

t point. Since
outs is legal:

nation of the

wed by an end

f a value type

lues ending at

for that is a

he place in the

am where the inner value starts. If the outer value‘has non-value data to be marshaled following the ihner value, the

any such
n9.4.4.1,

apsulation
ting a new
bn (initially 0).

's chunk ends
led following
he outer value.

hked.
sitorylDs (see

Truncating a value type in the receiving context may require keeping track of unused nested values (only during
unmarshaling) in case further indirection tags point back to them. These values can be held in their “raw” GIOP form, as
fully unmarshaled value objects, or in any other product-specific form.

Value types that are custom marshaled are encoded as chunks in order to let the ORB run-time know exactly where they

end in the

stream without relying on user-defined code.

© ISO/IEC 2012 - All rights reserved

85

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

9.4.4.7 Notation

The on-the-wire format is described by a BNF grammar with conventions similar to the ones used to define IDL syntax.
The terminals of the grammar are to be interpreted differently. We are describing a protocol format. Although the
terminals have the same names as IDL tokens they represent either:

* constant tags, or

 the GIOP CDR encoding of the corresponding IDL construct.

For example, long is a shorthand for the GIOP encoding of the IDL long data type -with all the GIOR alignment rules.
Similarly ptruct is a shorthand for the GIOP CDR encoding of a struct.

A (type) constant means that an instance of the given type having the given value is encoded. aceording t¢ the rules for
that type. So that (long) 0 means that a CDR encoding for a long having the value 0 appeaf$s\at that locatipn.

9.4.4.8 The Format

(1) <value> ::= <value_tag>[<codebase_URL>]
[<type_info>] <state>

| <value_ref>
(2) <value_ref>::=<indirection_tag> <indirection> | <null_tag>
(3) <value_tag>::=long// Ox7fffff00 <= value_tag <= Ox7fffffff
(4) <type_info> ::= <rep_ids> | <repository_id>
(5) <gtate>::= <octets> |<value_data>* [<end_tag>]
(6) <value_data>::= <value_chunk> | <value>
(7) <rep_ids> ::=long <repository_id>+

| <indirection_tag> <indirection>

(8) <repository_id> ::= string | <indirection_tag> <indirection>
(9) <value_chunk> ::= <chunk_size._tag> <octets>
(10) 49null_tag> ::= (long) 0
(11) <indirection_tag> ::= (long).Oxffffffff
(12) qcodebase_URL> ::= string | <indirection_tag> <indirection>
(13) q4chunk_size_tag>.:i=long
Il 0 < chunk/size_tag < 2731-256 (0x7fffff00)
(14) 4end_tag>::= long// -2*31 < end_tag <0
(15) dindirection>-::= long // -2*31 < indirection < 0
(16) qoctets>\:= octet | octet <octets>

A

The concdtenated octets of consecutive value chunks within a value encode state members for the value ac¢ording to the
following lgrafhmar:

(1)<state members> ::= <state_member>
| <state_member> <state members>
(2) <state_member> ::=<value_ref>
Il All legal IDL types should be here
| octet
| boolean
| char
| short

86 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

unsigned short
long

unsigned long
float

wchar

wstring

string

9.4.5
CORBA (

9.4.51 T

In general

I

I

I

I

I

I

I

i struct

| union

| sequence
| array

| Object

| any

| long long

| unsigned long long
| double

| long double

| fixed

Pseudo-Object Types

efines some kinds of entities that are neither primitivé.types (integral or floating point) nor cons

ypeCode

TypeCodes are encoded as the TCKind enum value, potentially followed by values that repre

TypeCo

recursive.|The basic TypeCode representations_are given in Table 9.2 on page 88. The integer value colum

gives the
TypeCo

Basic Ty

The encod
Zero or m
to consery

* Ty

* Ty
eng

parameters. Unfortunately, TypeCodes cannot be expressed simply in OMG IDL, since their ¢

CKind enum value corresponding(te the given TypeCode, and lists the parameters associated
. The rest of this sub clause preserits the details of the encoding.

beCode Encoding Framework

ing of a TypeCode_ is:the TCKind enum value (encoded, like all enum values, using four octets
re parameter values./The encodings of the parameter lists fall into three general categories, and
e space and towsupport efficient traversal of the binary representation:

pecodes withdan empty parameter list are encoded simply as the corresponding TCKind enum value.

becodes\with simple parameter lists are encoded as the TCKind enum value followed by the parame
oded as indicated in Table 9.2. A “simple” parameter list has a fixed number of fixed length entries,

ructed ones.

sent the
lefinitions are
n of this table
with such a

, followed by
liffer in order

er value(s),
pr a single

par

meter that has its]Pngfh encoded first

+ All other typecodes have complex parameter lists, which are encoded as the TCKind enum value followed by a CDR
encapsulation octet sequence (see Encapsulation on page 79) containing the encapsulated, marshaled parameters. The
order of these parameters is shown in the fourth column of Table 9.2.

The third column of Table 9.2 shows whether each parameter list is empty, simple, or complex. Also, note that an internal
indirection facility is needed to represent some kinds of typecodes; this is explained in Indirection: Recursive and
Repeated TypeCodes on page 91. This indirection does not need to be exposed to application programmers.

© ISO/IEC 2012 - All rights reserved

87

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

TypeCode Parameter Notation

TypeCode parameters are specified in the fourth column of Table 9.2 on page 88. The ordering and meaning of
parameters is a superset of those given in the ORB Interface clause, CORBA, Part 1 specification. More information is
needed by CDR’s representation in order to provide the full semantics of TypeCodes as shown by the API.

» Each parameter is written in the form #ype (name), where type describes the parameter’s type, and name describes the

parameter’s meaning.

» Th¢ encoding of some parameter lists (specifically, tk_struct, tk_union, tk_enum, and tk_except) contain a

coynted sequence of tuples.

Sugh counted tuple sequences are written in the form count {parameters}, where count.is, the numb¢r of tuples in
thq encoded form, and the parameters enclosed in braces are available in each tuple Ghstance. First the count,
which is an unsigned long, and then each parameter in each tuple (using the moted type), is engoded in the
CIR representation of the typecode. Each tuple is encoded, first parameter followed by second, before the next

tuplle is encoded (first, then second, etc.).

Note that the tuples identifying struct, union, exception, and enum members must be in the order definegl in the OMG
IDL definjtion text. Also, that the types of discriminant values in encoded tk_union TypeCodes are established by the
second enfoded parameter (discriminant type), and cannot be specified eXcept with reference to a specific DPMG IDL

o3

definition

Table 9.2
TCKind Integer | Type Parameters

Value

tk_null 0 empty —none —
tk_void 1 empty —none —
tk_shont 2 empty —none —
tk_long 3 empty —none —
tk_ushqrt 4 empty —none —
tk_ulong 5 empty —none —
tk_float 6 empty —none —
tk_doulfle 7 empty —none —
tk_bool}ean 8 empty —none —
tk_charl 9 empty —none —
tk_octet 10 empty —none —
tk_any 11 empty —none —
tk_TypeCode 12 empty —none —
tk_Principal 13 empty —none —
tk_objref 14 complex string (repository ID), string(name)

88

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

Table 9.2

ISO/IEC 19500-2:2012(E)

TCKind

Integer
Value

Type

Parameters

tk_struct

15

complex

string (repository ID),
string (name),
ulong (count)

{string (member name),
TypeCode (member type)}

tk_union

16

complex

string (repository ID), string(name),
TypeCode (discriminant type),

long (default used),

ulong (count)

{discriminant type® (label'value),
string (member namig);

TypeCode (member'type)}

tk_enum

17

complex

string (repository ID),
string (nathe),
ulong/(count)
{stfing'(member name)}

tk_string

18

simple

ulong (max 1engthb)

tk_sequence

19

complex

TypeCode (element type),
ulong (max length®)

tk_array

20

domplex

TypeCode (element type),
ulong (length)

tk_alias

21

complex

string (repository ID),
string (name),
TypeCode

tk_except

22

complex

string (repository ID),
string (name),

ulong (count)

{string (member name),
TypeCode (member type)}

tk_Iongrong

—none —

tk_ulonb-long

O

tk_longdouble

tk_wchar

3. This means that, for example, two OMG IDL unions that are textually equivalent, except that one uses a “char” discriminant, and

the other uses a “long” one, would have different size encoded TypeCodes.

© ISO/IEC 2012 - All rights reserved

89

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Table 9.2
TCKind Integer | Type Parameters
Value
tk_wstring 27 simple ulong(max length or zero if
unbounded)
tk_fixe 28 Simpie TSHOT(AIgITS); Storscale)
tk_value 29 complex string (repository ID),
string (name, may be empty),
short(ValueModifier),
TypeCode(of concrete base)d,
ulong (count),
{string (member name),
TypeCode (member type),
short(Visibility)}
tk_value_box 30 complex string (reposifory ID), string(name),
TypeCodé
tk_natiye 31 complex string\(repository ID), string(name)
tk_abstract_interface 32 complex string(Repositoryld), string(name)
tk_local_interface 33 complex string(Repositoryld), string(name)
tk_component 34 complex string (repository ID), string(name)
tk_homp 35 domplex string (repository ID), string(name)
tk_event 36 complex string (repository ID),
string (name, may be empty),
short(ValueModifier),
TypeCode(of concrete base),
ulong (count),
{string (member name),
TypeCode (member type),
short(Visibility)}
— nonel— OxfTEffff | simple long (indirectionf)
a. Th¢ typewofiunion label values is determined by the second parameter, discriminant type.
b. Foiunbetinded strings, this value is zero.
c. For unbounded sequences, this value 1S Zero.
d. Should be tk_null if there is no concrete base.
e. Should be tk_null if there is no concrete base.
f. See Indirection: Recursive and Repeated TypeCodes on page 91.

9.4.5.1.1 Encoded Identifiers and Names

The Repository ID parameters in tk_objref, tk_struct, tk_union, tk_enum, tk_alias, tk_except, tk_native,
tk_value, tk_value_box, and tk_abstract_interface TypeCodes are Interface Repository Repositoryld values,
whose format is described in the specification of the Interface Repository.

90 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

For GIOP 1.2 onwards, repositorylD values are required to be sent, if known by the ORB*. For GIOP 1.2 and 1.3 an
empty repositoryID string is only allowed if a repositoryID value is not available to the ORB sending the type code.

For GIOP 1.0 and 1.1, Repositoryld values are required for tk_objref and tk_except TypeCodes; for tk_struct,
tk_union, tk_enum, and tk_alias TypeCodes Repositorylds are optional and encoded as empty strings if omitted.

The name parameters in tk_objref, tk_struct, tk_union, tk_enum, tk_alias, tk_value, tk_value_box,
tk_abstract_interface, tk_native and tk_except TypeCodes and the member name parameters in tk_struct,

tk_union
not make

Repositdryld values, if provided) is significant. If provided, the strings should be the simple, unscoped n{

in the OM

When a rd

tk_enum, tk_value, and tk_except TypeCodes are not specified by (or significant in) GIOP, 4
hssumptions about type equivalence based on these name values; only the structural informatien

G IDL definition text. If omitted, they are encoded as empty strings.

“IDL:om

Encoding the tk_union Default Case

In tk_unipn TypeCodes, the long default used value is used to indicate-which tuple in the sequence d

union’s d
the zero-b)

The discri
be any va

included fpr syntactic completeness of union type code marshaling).

ference to a base Object is encoded, there are two allowed encodings for the Répesitory ID: eit
.org/CORBA/Object:1.0” or “” may be used.

fault case. If this value is less than zero, then the union contains‘ne’default case. Otherwise, the Y
psed index of the default case in the sequence of tuples describing union members.

id value of the discriminant type, and has no semantic'significance (i.e., it should be ignored an

TypeCo

The tk_
constructg
outermost|
innermost

Indirection: Recursive and Repeated TypeCodes

The typec
{sequenc
encodings

CDR proy

Th
“fI‘

;I:ay TypeCode only describes a single dimension of any array. TypeCodes for multi-dimensio

s for Multi-Dimensional Arrays

d by nesting tk_array TypeCodes within other tk_array TypeCodes, one per array dimensio
(or top-level) tk_array TypeCode-describes the leftmost array index of the array as defined in
nested tk_array TypeCode describes the rightmost index.

bde representation of OMG IDL data types that can indirectly contain instances of themselves (e.g
te <foo> bar;}) must also contain an indirection. Such an indirection is also useful to reduce th
for examplesunions with many cases sharing the same value.

ides a constrained indirection to resolve this problem:

b indirection applies only to TypeCodes nested within some “top-level” TypeCode. Indirected TypeC

A\ gents should
including
ymes supplied

ner

escribes the
ralue contains

minant value used in the actual typecode parameter assoéiated with the default member position if the list, may

| is only

nal arrays are
n. The
IDL; the

., struct foo
b size of

bdes are not

pestanding,” but only exist inside some other encoded TypeCode.

Ind

irected TypeCodes are not “freestanding,” but only exist inside some other encoded TypeCode.

For GIOP 1.2 and below, the indirection applies only to TypeCodes nested within some “top-level” TypeCode.

A type code passed via a GIOP 1.2 connection shall contain non-empty repositoryID strings, unless a repositoryID value is not

available to the sending ORB for a specific type code. This situation can arise, for example, if an ORB receives a type code con-
taining empty repository IDs via a GIOP 1.0 or 1.1 connection and passes that type code on via a GIOP 1.2 connection).

© ISO/IEC 2012 - All rights reserved

91

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

For GIOP 1.3 and above, the indirection applies only to TypeCodes nested within some “top-level” TypeCode, or from
one top-level TypeCode to another. Indirected TypeCodes nested within a top-level TypeCode can only reference
TypeCodes that are part of the same top-level TypeCode, including the top-level TypeCode itself. Indirected top-level
TypeCodes can reference other top-level TypeCodes but cannot reference TypeCodes nested within some other top-
level TypeCode.

ity. The first

Only the second (and subsequent) references to a TypeCode in that scope may use the indirection facil
gren h e-encoded-using-the-normalrules—tn-the-case e de, this means

refere

tha

The indirg
for the typ
may well

Because of the second constraint, the value of the offset will always be negative.

Fragmentq
being mar
octets occ

The encod
all ones).
parameter,

9.4.5.2 Any

Any valug
containing
9.4.5.3 P

Principal
Principal
text does

By represq
identificat]
translate @

9.4.5.4 C

Context

the first instanc

ction is a numeric octet offset within the scope of the “top-level” TypeCode and points‘to the T

Cross encapsulation boundaries, but this is not problematic because of the first constraint identifi

Khaled between the target of an indirection and the start of the encapsulation containing the indir
ipied by any such headers are not included in the calculation of the/otfset value.

ing of such an indirection is as a TypeCode with a “TCKind valug” that has the special value 23
Such typecodes have a single (simple) parameter, which is the_ long offset (in units of octets) frg
(This means that an offset of negative four (-4) is illegal-because it will be self-indirecting.)

s are encoded as a TypeCode (encoded as deseribed above) followed by the encoded value. Fo
a tk_null or tk_void TypeCode, the encoded value shall have zero length (i.e., shall be absen

rincipal

pseudo objects are encoded as sequence<octet>. In the absence of a Security service specific
values have no standard format'or interpretation, beyond serving to identify callers (and potential
not prescribe any usage of Principal values.

nting Principal values:as‘sequence<octet>, GIOP guarantees that ORBs may use domain-spe
on schemes; such yaliies undergo no translation or interpretation during transmission. This allow
r interpret these identifiers as needed when forwarding requests between different security doma
ontext

hseudorobjects are encoded as sequence<string>. The strings occur in pairs. The first string in

the conte

sub clausd but’the client does not supply any properties matching the context sub clause at run time, an em

t property name, and the second string in each pair is the associated value. If an operation has at

CKind value

ecode. (Note that the byte order of the TCKind value can be determined by its encoded yalue.) This indirection

ed above.

tion support in GIOP versions 1.1, 1.2, and 1.3 introduces the possibility of a header for a FragmpntMessage

ection. The

-1 (OxFFFFFfff,
m the simple

- Any values

0).

ation,
callers). This

Cific principal
s bridges to
ns.

each pair is
1 IDL context

pty sequence

is marshal

9.4.55 E

ed.

xception

Exceptions are encoded as a string followed by exception members, if any. The string contains the Repositoryld for the
exception, as defined in the /nterface Repository clause of CORBA (Part 1). Exception members (if any) are encoded in
the same manner as a struct.

92

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

If an ORB receives a non-standard system exception that it does not support, or a user exception that is not defined as part
of the operation's definition, the exception shall be mapped to UNKNOWN, with standard minor code set to 2 for a
system exception, or set to 1 for a user exception.

9.4.6 Object References

the specified

e (see Object
discriminator

t shall be

pose of GIOP

S connections
may originate

b is originated

this part off ISO/IEC 19500 describes the general information model for GIOP profiles and provides a~speci
the IIOP (see IIOP IOR Profiles on page 112).
In generall GIOP profiles include at least these three elements:
1. The version number of the transport-specific protocol specification that the server supports.
2. The address of an endpoint for the transport protocol being used.
3. An opaque datum (an object_key, in the form of an octet sequence) used,exclusively by the agent at
ehdpoint address to identify the object.
9.4.7 Abstract Interfaces
Abstract ipterfaces are encoded as a union with a boolean diseriminator. The union has an object referent
Referencep on page 93) if the discriminator is TRUE, and a.value type (see Value Types on page 80) if the
is FALSH. The encoding of value types marshaled as abstract interfaces always includes Repositoryld information. If
there is nq indication whether a nil abstract interface répresents a nil object reference or a null valuetype, i
encoded ak a null valuetype.
9.5 GIOP Message Formats
GIOP has|restriction on client and serveér'roles with respect to initiating and receiving messages. For the pur
versions 1[.0 and 1.1, a client is the-agent that opens a connection (see more details in Connection Managefnent on
page 108)|and originates requestsy Likewise, for GIOP versions 1.0 and 1.1, a server is an agent that accept
and receives requests. When-Bidirectional GIOP is in use for GIOP protocol version 1.2 and 1.3, either side
messages,|as specified in,Bi-Directional GIOP on page 115.
GIOP megdsage types-ate summarized in Table 9.3, which lists the message type names, whether the messag
by client, gerver, ot-both, and the value used to identify the message type in GIOP message headers.
Table 9.3
Message Type Originator Value GIOP Versions
Request Client 0 1.0,1.1,1.2, 1.3
Request Both 0 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use
Reply Server 1 1.0,1.1,1.2, 1.3

© ISO/IEC 2012 - All rights reserved

93

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Table 9.3
Message Type Originator Value GIOP Versions
Reply Both 1 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use
CancelRequest Client 2 1.0,1.1,1.2, 1.3
CancelR¢quest Both 2 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use
LocateR¢quest Client 3 1.0,1.1,1.2,1.3
LocateR¢quest Both 3 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use
LocateR¢ply Server 4 1.0,1.1,1.2,1.3
LocateR¢ply Both 4 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in~nse
CloseCornection Server 5 1.0,1.1,1.2,1.3
CloseColmection Both 5 1.2,1.3
MessageError Both 6 1.0, 1.1502, 1.3
Fragment Both 7 1.1¢1.2, 1.3
9.5.1 GIOP Message Header
All GIOP jmessages begin with the following.header, defined in OMG IDL:
module GIOP {// IDL extended for version 1.1, 1.2, and 1.3
strugt Version {
tet major;
tet minor;
k
#if MAX_|GIOP_VERSION_NUMBER ==
I GIQP 1.0

enun} MsgType_1_0 {// Renamed from MsgType
equest, Reply, CancelRequest,

LocateRequest, LocateReply,
CloseConnection, MessageError

5

#else
/Il GIOP 1.1
enum MsgType_1_1 {
Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError,

94

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Fragment /I GIOP 1.1 addition
#endif // MAX_GIOP_VERSION_NUMBER

/I GIOP 1.0
typedef char Magicn[4]

struct MessageHeader_1_0 {// Renamed from MessageHeader

agicn magic;
rsion GIOP_version;
olean byte_order;
tet message_type;
hsighed long message_size;
}
/I GIQP 1.1
strugt MessageHeader_1_1 {
agicn magic;
rsion GIOP_version;
tet flags; /I GIOP 1.1 change
tet message_type;
hsigned long message_size;
}
/I GIQP 1.2, 1.3

typedef MessageHeader_1_1 MessageHeader. 1 2;
typedef MessageHeader_1_1 MessageHeader'1_3;

5

The messdge header clearly identifies GIOP messages and their byte-ordering. The header is independent of|byte ordering
except forf the field encoding message size;

* mdgic identifies GIOP messages."The value of this member is always the four (upper case) characters {GIOP,”
endoded in ISO Latin-1 (8859.1):

+ GIDP_version contairts\the version number of the GIOP protocol being used in the message. The versjon number
appjlies to the transpdrtsindependent elements of this part of ISO/IEC 19500 (i.e., the CDR and message|formats) that
constitute the GIOR: This is not equivalent to the IIOP version number (as described in Object References on page 93)
thopgh it has thie/same structure. The major GIOP version number of this text is one (1); the minor versiofs are zero (0),
ong (1), and two (2).

A pewver-implementation supporting a minor GIOP protocol version 1.n (with n > 0 and n < 3), musgt also be able
to process GIOP messages having minor protocol version 1.m, with m less than n. A GIOP server, which receives
a request having a greater minor version number than it supports, should respond with an error message having the
highest minor version number that that server supports, and then close the connection.

A client should not send a GIOP message having a higher minor version number than that published by the server
in the tag Internet IIOP Profile body of an IOR.

» byte_order (in GIOP 1.0 only) indicates the byte ordering used in subsequent elements of the message (including
message_size). A value of FALSE (0) indicates big-endian byte ordering, and TRUE (1) indicates little-endian byte
ordering.

© ISO/IEC 2012 - Al rights reserved 95

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

+ flags (in GIOP 1.1, 1.2, and 1.3) is an 8-bit octet. The least significant bit indicates the byte ordering used in subsequent
elements of the message (including message_size). A value of FALSE (0) indicates big-endian byte ordering, and
TRUE (1) indicates little-endian byte ordering. The byte order for fragment messages must match the byte order of the
initial message that the fragment extends.

The second least significant bit indicates whether or not more framents follow. A value of FALSE (0) indicates this
message is the last fragment, and TRUE (1) indicates more fragments follow this message.

Th¢ most significant 6 bits are reserved. These 6 bits must have value 0 for GIOP version 1.1, 1.2, and 1

megssage_type indicates the type of the message, according to Table 9.3; these correspond to enum v3

MsgType.

or
1.0
alig
fol

Al
the
fra

AN
the
nex
the

Th
fut

Fo
val

Messages

9.5.2

Request nj
operationg

message_size contains the number of octets in the message following the message-h€ader, encoded u

r specified in the byte order bit (the least significant bit) in the flags field (or using the byte order 1
. It refers to the size of the message body, not including the 12-byte message header. This count incl
nment gaps and must match the size of the actual request parameters (plus any final padding bytes
ow the parameters to have a fragment message terminate on an 8-byte boundary).

NARSHAL exception with minor code 9 indicates that fewer bytes were present in a message than
count. (This condition can arise if the sender sends a message in‘fragments, and the receiver detect
bment was received but contained insufficient data for allkparameters to be unmarshaled.).

NARSHAL exception with minor code 8 indicates that'more bytes were present in a message than
count. Depending on the ORB implementation, this condition may be reported for the current mes
t message that is processed (when the receiver(detects that the previous message is not immediatel
GIOP magic number).

use of a message size of 0 with a Request, LocateRequest, Reply, or LocateReply message 1§
ire use.

ue and 12 must be evenly divisible by 8.
with different GIOP-minhor versions may be mixed on the same underlying transport connection.
Request Message

essages-encode CORBA object invocations, including attribute accessor operations, and CORBA
getl interface, repository_id, and get_implementation. Requests flow from client to serv

3.

lues of type

sing the byte
icld in GIOP
udes any
that may

indicated by
5 that the final

indicated by
sage or the
followed by

s reserved for

- GIOP version 1.2, and 1.3;if\the second least significant bit of Flags is 1, the sum of the mesgsage_size

\::Object
bT.

Request nr

1 41 1 4+ d 1 - 4las d
Ubbaébb IIAVU U LVL CVIVIIIVIILS, VIIVUUULU IIT LIS UTULTL .

* A GIOP message header

* A Request Header

* The Request Body

9.5.2.1 Request Header

The request header is specified as follows:

96

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

module GIOP {// IDL extended for version 1.1, 1.2, and 1.3

|5

ISO/IEC 19500-2:2012(E)

/ GIOP 1.0
struct RequestHeader_1_0 { // Renamed from RequestHeader
IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
| - j Y Ubject:kEy,
sfring operation;
ORBA::OctetSeq requesting_principal;
}
typedef octet RequestReserved[3];
strugt RequestHeader_1_1 {
IOP::ServiceContextList service_context;
hsigned long request_id;
olean response_expected;
equestReserved reserved; // Added in GIOP 1.1
IOQP::ObjectKey object_key;
sfring operation;
ORBA::OctetSeq requesting_principal;
b
/I GIQP 1.2, 1.3
typedef short AddressingDisposition;

consf short KeyAddr = 0;
consf short ProfileAddr=1;
consf short ReferenceAddr = 2;

nsigned long selected_profile_index;
IQP::IOR ior;

case KeyAddr: IOP::ObjectKey object_key;
cpse ProfileAddr: I0P::TaggedProfile profile;
case ReferenceAddr: IORAddressinglinfo ior;

b

strugt RequestHeader _1_2 {
unsigned long request_id;
octet response_flags;
RequestReserved reserved; // Added in GIOP 1.1
TargetAddress target;
string operation;
IOP::ServiceContextList service_context;
Il requesting_principal not in GIOP 1.2 and 1.3

b
typedef RequestHeader_1_2 RequestHeader_1_3;

© ISO/IEC 2012 - All rights reserved

97

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

The members have the following definitions:

request_id is used to associate reply messages with request messages (including LocateRequest messages). The
client (requester) is responsible for generating values so that ambiguity is eliminated; specifically, a client must not re-
use request_id values during a connection if:

(@

(b)
Cai

regponse_flags is set to 0x0 for a SyncScope of NONE and WITH_TRANSPORT. Tlhg flag is s¢

Sy
of
set

pre

Fo
an

regerved is always set to 0 in GIOP 1.1. These three octets are reseryed for future use.

Foi
fro
val

For

op
ope
Thy
soy

In
req

the previous request containing that ID is still pending, or

if the previous request containing that ID was canceled and no reply was received. (See the semantig
icelRequest Message on page 102).

x1 should contain an empty body, i.e., the equivalent of a void operation with no out/inout paramete
to 0x3 for a SyncScope of WITH_TARGET. These values ensure interworking/compatibility bety
vious versions of GIOP.

- GIOP 1.0 and 1.1 a response_expected value of TRUE is treated\liké a response_flags v
| a response_expected value of FALSE is treated like a response_flags value of \x00.

n the transport-specific GIOP profile (e.g., from the encapsulated IIOP profile of the IOR for the targg
e is only meaningful to the server and is not interpreted.or modified by the client.

GIOP 1.2, 1.3, target identifies the object thati§'the target of the invocation. The possible values o

KeyAddr is the object_key ficld from the'transport-specific GIOP profile (e.g., from the encapsu
profile of the IOR for the target object)."Fhis value is only meaningful to the server and is not inter
modified by the client.

ProfileAddr is the transport-speeific GIOP profile selected for the target’s IOR by the client ORB.

IORAddressinginfo is thic full IOR of the target object. The selected_profile_index indicates
specific GIOP profile that was selected by the client ORB. The first profile has an index of zero.

bration is the IDL identifier naming, within the context of the interface (not a fully qualified scoped
ration being invoked: In the case of attribute accessors, the names are _get_<attribute> and _set]

case of the opgeration or attribute name must match the case of the operation name specified in the (
rce for the interface being used.

the case.0of CORBA::Object operations that are defined in the ORB Interface clause, CORBA, Part

_damain managers, component, and repaository id

s of the

t to Ox1 for a

hcScope of WITH_SERVER. A non exception reply to a request message containing atesponse_flags value

rs. The flag is
veen this and

hlue of \x03,

GIOP 1.0 and 1.1, object_key identifies the object that is-the target of the invocation. It is the object_key field

t object). This

[the union are:

ated IIOP

reted or

the transport-

name), the
| <attribute>.
MG IDL

1 and that cor-

pond'to GIOP request messages, the operation names are _interface, _is_a, _non_existent,

NOTE: The name _get_domain_managers is not used, to avoid conflict with a get operation invoked on a user defined
attribute with name domain_managers.

98

For GIOP 1.2 and later versions, only the operation name _non_existent shall be used.
The correct operation name to use for GIOP 1.0 and 1.1 is _non_existent. Due to a typographical error in CORBA
2.0, 2.1, and 2.2, some legacy implementations of GIOP 1.0 and 1.1 respond to the operation name _not_existent.
For maximum interoperability with such legacy implementations, new implementations of GIOP 1.0 and 1.1 may wish
to respond to both operation names, _non_existent and _not_existent.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

» service_context contains ORB service data being passed from the client to the server, encoded as described in
Service Context on page 37.

» requesting_principal contains a value identifying the requesting principal. It is provided to support the
BOA::get_principal operation. The usage of the requesting_principal ficld is deprecated for GIOP versions 1.0
and 1.1. The field is not present in the request header for GIOP version 1.2 and 1.3.

There is

9.5.2.2 R

In GIOP v
immediatg
octet bour
Request B
includes t

« All

ersions 1.0 and 1.1, request bodies are marshaled into the CDR encapsulation of the contdining
ly following the Request Header. In GIOP version 1.2 and 1.3, the Request Body i$ always align
dary. The fact that GIOP specifies the maximum alignment for any primitive typeyis 8 guaranteg
ody will not require remarshaling if the Message or Request header are modified) The data for the
e following items encoded in this order:

in and inout parameters, in the order in which they are specified in the opération’s OMG IDL defin

to flight.

« An

opqg
exyl

For examyj

optional Context pseudo object, encoded as described in Context.on page 92. This item is included
ration’s OMG IDL definition includes a context expression, &nd only includes context members as d|
ression.

le, the request body for the following OMG IDL operation:

doublle example (in short m, out string str, inoutlong p);

would be
strug

|
|5

9.5.3

Reply mg
to TRUE.
Reply me
client.

equivalent to this structure:

t example_body {

srort m; [l leftmost in or inout parameter

ng p; Il ... to the rightmost

Reply Message

ssages are sefitin response to Request messages if and only if the response expected flag in the
Replies inelude inout and out parameters, operation results, and may include exception values. |
sages anay provide object location information. In GIOP versions 1.0 and 1.1, replies flow only f{

Message

ed on an 8-

s that the
request body

tion, from left

only if the
efined in that

request is set
h addition,
rom server to

Reply mes

3 1 1 11 1 1
SAgls TId VT UIITT TICHITIILS, TIICOUCU IIT UITS OTUCT.

* A GIOP message header

* A ReplyHeader structure

* The reply body

9.5.3.1 Reply Header

The reply

header is defined as follows:

© ISO/IEC 2012 - All rights reserved

99

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

module GIOP { /I IDL extended for 1.2 and 1.3
#if MAX_GIOP_MINOR_VERSION < 2

/ GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 {// Renamed from ReplyStatusType
NO_EXCEPTION,

D - VYA rDTIAA
YL _LAUVLITTIVIN,

STEM_EXCEPTION,
CATION_FORWARD

b

I GIQP 1.0

strugt ReplyHeader_1_0 { // Renamed from ReplyHeader
IQP::ServiceContextList service_context;
unsigned long request_id;

eplyStatusType_1_0 reply_status;
b
I GIQP 1.1

typedef ReplyHeader_1_0 ReplyHeader_1_1;
I/l Same Header contents for 1.0 and 1.1

#endif // MAX_GIOP_VERSION_NUMBER
#if MAX_GIOP_MINOR_VERSION >= 2

/I GIQP 1.2,1.3
enunp ReplyStatusType_1_2 {
O_EXCEPTION,
SER_EXCEPTION,
STEM_EXCEPTION,
CATION_FORWARD,
CATION_FORWARD: PERM,// new value for 1.2
EEDS_ADDRESSING_MODE // new value for 1.2

b

strugt ReplyHeader_1_2 {
unsigned-long request_id;
eplyStatusType_1_2 reply_status;
IQP::ServiceContextList service_context;

k

typedef ReplyHeader_1_2 ReplyHeader_1_3;
#endif // MAX_GIOP_VERSION_NUMBER
k
The members have the following definitions:

» request_id is used to associate replies with requests. It contains the same request_id value as the corresponding
request.

100 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

» reply_status indicates the completion status of the associated request, and also determines part of the reply body
contents. If no exception occurred and the operation completed successfully, the value is NO_EXCEPTION and the
body contains return values. Otherwise the body

* contains an exception, or

« directs the client to reissue the request to an object at some other location, or

. se
Mg

There is n|

9.53.2 R

In GIOP v
immediatg
boundary.
will not rg
by the val

o Ift
opd
DI

o Ift
exd
exd

WH
me

}
Th

«_directs the client to supply more addressing information

en a GIOP Reply message contains a—~reply_status' value of SYSTEM_EXCEPTION, the body
ksage conforms to the following structure:
module GIOP { /DL
struct SystemExceptionReplyBody {
string exception_id;
unsigned long minor_code_value;
unsigned-ong completion_status;
b

'vice_context contains ORB service data being passed from the server to the client, encoded as)desd
ssage Transfer on page 71.

o padding after the reply header when an unfragmented reply message body is empty.

eply Body

ersion 1.0 and 1.1, reply bodies are marshaled into the CDR encapsulatiofi’ of the containing Me
ly following the Reply Header. In GIOP version 1.2 and 1.3, the Reply*‘Body is always aligned d
The fact that GIOP specifies the maximum alignment for any primitive'type is 8 guarantees that tl
quire remarshaling if the Message or the Reply Header are modified: The data for the reply body
e of reply_status. There are the following types of reply body:

he reply_status value is NO_EXCEPTION, the body is efi¢oded as if it were a structure holding f]
ration return value, then any inout and out parameters inthe order in which they appear in the oper
. definition, from left to right. (That structure could be‘enipty.)

he reply_status value is USER_EXCEPTIONor SYSTEM_EXCEPTION, then the body conta
eption that was raised by the operation, encoded.as described in Exception on page 92. (Only the usd
eptions listed in the operation’s OMG IDL.definition may be raised.)

e high-order 20 bits of minor_code_value contain a 20-bit “Vendor Minor Codeset ID” (VMC

org

er™d2 bits contain a minor code. A vendor (or group of vendors) wishing to define a specific set

ribed in GIOP

bsage
n an 8-octet

e ReplyBody
is determined

rst any
ation’s OMG

ns the
r-defined

f the Reply

D); the low-
of system

exceplion minor codes should obtain a unique VIMCID Trom the OMUG, and then use those 4UY0 min

or codes as

they see fit; for example, defining up to 4096 minor codes for each system exception. Any vendor may use the
special VMCID of zero (0) without previous reservation, but minor code assignments in this codeset may conflict
with other vendor's assignments, and use of the zero VMCID is officially deprecated.

NOTE: OMG standard minor codes are identified with the 20 bit VMCID \x4f4d0. This appears as the characters ‘O’ followed
by the character ‘M’ on the wire, which is defined as a 32-bit constant called OMGVMCID \x4f4d0000 (sce the ORB Interface
clause, CORBA, Part 1) so that allocated minor code numbers can be or-ed with it to obtain the minor_code_value.

© ISO/IEC 2012 - All rights reserved

101

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

« Ifthe reply_status value is LOCATION_FORWARD, then the body contains an object reference (IOR) encoded as
described in Object References on page 93. The client ORB is responsible for re-sending the original request to that
(different) object. This resending is transparent to the client program making the request.

 The usage of the reply_status value LOCATION_FORWARD_PERM behaves like the usage of
LOCATION_FORWARD, but when used by a server it also provides an indication to the client that it may replace the
old IOR with the new IOR. Both the old IOR and the new IOR are valid, but the new IOR is preferred for future use.

 Ifthe reply_status value is NEEDS_ADDRESSING_MODE, then the body contains a
P::AddressingDisposition. The client ORB is responsible for re-sending the original requestuging the
reqpested addressing mode. The resending is transparent to the client program making the request.

NOTE: Udage of LOCATATION_FORWARD_PERM is now deprecated, due to problems it causes with the sgmantics of the
Object::Hash() operation. LOCATATION_FORWARD_PERM features could be removedfrom some futue GIOP
versions if| solutions to these problems are not provided.

For example, the reply body for a successful response (the value of reply_status.is NO_EXCEPTION) t¢ the Request
example shown on page 99 would be equivalent to the following structure:

example_reply {

double return_value; Il return value
string str;

ng p; Il ... to the rightmost
I8

Note that fhe object_key field in any specific GIOP profile is server-relative, not absolute. Specifically, when a new
object ref¢rence is received in a LOCATION_FORWARD Reply or in a LocateReply message, the object_key field
embedded| in the new object reference’s GIOP profile 'may not have the same value as the object_key in %\e GIOP
profile of the original object reference. For detailsson location forwarding, see Object Location on page 11(.

9.5.4 CancelRequest Message

CancelRe¢quest messages may be sent, in GIOP versions 1.0 and 1.1, only from clients to servers. CancplRequest
messages potify a server that the.client is no longer expecting a reply for a specified pending Request or
LocateRIquest message.

CancelRe¢quest messages ‘have two elements, encoded in this order:

* A IOP mesSage header

« A CancelRequestHeader

9.5.4.1 Cancel Request Header

The cancel request header is defined as follows:

module GIOP { /I'1IDL
struct CancelRequestHeader {
unsigned long request_id;
k
k

102 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

The request_id member identifies the Request or LocateRequest message to which the cancel applies. This value is
the same as the request_id value specified in the original Request or LocateRequest message.

When a client issues a cancel request message, it serves in an advisory capacity only. The server is not required to
acknowledge the cancellation, and may subsequently send the corresponding reply. The client should have no expectation
about whether a reply (including an exceptional one) arrives.

9.5.5 FocateRequestMessage

LocateR¢quest messages may be sent from a client to a server to determine the following regarding’a specified object
reference:

» whether the current server is capable of directly receiving requests for the object reference,-and if not,
* to What address requests for the object reference should be sent.

Note that this information is also provided through the Request message, but that’some clients might prefer not to
support refransmission of potentially large messages that might be implied by /asLOCATION_FORWARD |status in a
Reply mgssage. That is, client use of this represents a potential optimization:

LocateR¢quest messages have two elements, encoded in this order;

* A GIOP message header

+ A lfocateRequestHeader

9.5.5.1 LocateRequest Header

The LocateRequest header is defined as follows:
module GIOP { /I IDL extended for version 1.2 and 1.3
/I GIOP 110

strugt LocateRequestHeader_1_0 {
/I Renamed LocationRequestHeader

unsigned long request_id;
IQP::ObjectKey object_key;
I8
Il GIOP 1|1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
i Sa:F'le Header contents for 1.0 and 1.1
Il GIOP 1.2,1.3
struct LocateRequestHeader_1_2 {
unsigned long request_id;
TargetAddress target;
I8

typedef LocateRequestHeader_1_2 LocateRequestHeader_1_3;
I8

The members are defined as follows:

© ISO/IEC 2012 - Al rights reserved 103

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

» request_id is used to associate LocateReply messages with LocateRequest ones. The client (requester) is
responsible for generating values; see Request Message on page 96 for the applicable rules.

» For GIOP 1.0 and 1.1, object_key identifies the object being located. In an IIOP context, this value is obtained from
the object_key field from the encapsulated IOP::ProfileBody in the IIOP profile of the IOR for the target object.
When GIOP is mapped to other transports, their IOR profiles must also contain an appropriate corresponding value.
This value is only meaningful to the server and is not interpreted or modified by the client.

» Foil GIOP 1.2, 1.3, target identifies the object being located. The possible values of this union are:

1 KeyAddr is the object_key field from the transport-specific GIOP profile (e.g., from the@ncapsulated IIOP
profile of the IOR for the target object). This value is only meaningful to the server and is|not intergreted or
modified by the client.

1 ProfileAddr is the transport-specific GIOP profile selected for the target’s IOR y-the client ORB.

1 IORAddressinglnfo is the full IOR of the target object. The selected_profile_index indicates|the transport-
specific GIOP profile that was selected by the client ORB.

See Objedt Location on page 110 for details on the use of LocateRequest,

9.5.6 LocateReply Message

LocateRé¢ply messages are sent from servers to clients in respohse to LocateRequest messages. In GIOP versions 1.0
and 1.1 the LocateReply message is only sent from the serverto the client.

A LocateReply message has three elements, encoded in(this order:
l. GIOP message header
2. LocateReplyHeader

3. e locate reply body

9.5.6.1 Lpcate Reply Header

The locatq reply header is defided as follows:

module GIOP { /I IDL extended for GIOP 1.2 and 1.3
#if MAX_GIOP_MINOR: VERSION < 2
Il GIQP 1.0 and\t.1
enum LocateStatusType_1_0 {// Renamed from LocateStatusType
NKNOWN_OBJECT,
BJECT_HERE,
OBJECT_FORWARD

b

I/ GIOP 1.0

struct LocateReplyHeader_1_0 {// Renamed from LocateReplyHeader
unsigned long request_id;
LocateStatusType_1_0 locate_status;

b

104 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

/Il GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;
I/l same Header contents for 1.0 and 1.1

#else
// GIOP 1.2,1.3
enum LocateStatusType_1_2 {

[TSTVANP NV VIV N - .Y]
NNINUVYVIN_VDJL VT,

BJECT_HERE,

BJECT_FORWARD,

BJECT_FORWARD_PERM, I/l new value for GIOP 1.2
C_SYSTEM_EXCEPTION, /Il new value for GIOP 1.2
C_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

}
strugt LocateReplyHeader_1_2 {
hsigned long request_id;
cateStatusType_1_2 locate_status;
}

typedef LocateReplyHeader_1_2 LocateReplyHeader_1_3;
#endif // MAX_GIOP_VERSION_NUMBER

}
The members have the following definitions:
» request_id - is used to associate replies with requests. This member contains the same request_id vdlue as the
corresponding LocateRequest message.

» logate_status - the value of this member is@sed to determine whether a LocateReply body exists. Yalues are:
UNKNOWN_OBJECT - the object’specified in the corresponding LocateRequest message is unkhown to the
server; no body exists.

OBJECT_HERE - this server)(the originator of the LocateReply message) can directly receive requests for the
specified object; no body exists.

OBJECT_FORWARD and OBJECT_FORWARD_PERM - a LocateReply body exists.
LOC_SYSTEM.EXCEPTION - a LocateReply body exists.
LOC_NEEDS- ADDRESSING_MODE - a LocateReply body exists.

9.5.6.2 LiocateReply Body

The body [is'empty, except for the following cases:

 Ifthe LocateStatus value is OBJECT_FORWARD or OBJECT_FORWARD_PERM, the body contains an object
reference (IOR) that may be used as the target for requests to the object specified in the LocateRequest message.
The usage of OBJECT_FORWARD_PERM behaves like the usage of OBJECT_FORWARD, but when used by the
server it also provides an indication to the client that it may replace the old IOR with the new IOR. When using
OBJECT_FORWARD_PERM, both the old IOR and the new IOR are valid, but the new IOR is preferred for future use.

+ Ifthe LocateStatus value is LOC_SYSTEM_EXCEPTION, the body contains a marshaled
GIOP::SystemExceptionReplyBody.

© ISO/IEC 2012 - Al rights reserved 105

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

« Ifthe LocateStatus value is LOC_NEEDS_ADDRESSING_MODE, then the body contains a
GIOP::AddressingDisposition. The client ORB is responsible for re-sending the LocateRequest using the
requested addressing mode.

NOTE: Usage of OBJECT_FORWARD_PERM is now deprecated, due to problems it causes with the semantics of the
Object::hash operation. OBJECT_FORWARD_PERM features could be removed from some future GIOP versions if
solutions to these problems are not provided.

LocateRJ!pIy bodies are marshaled immediately following the LocateReply header.

9.5.6.3 Handling ForwardRequest Exception from ServantLocator

If the SerjvantLocator in a POA raises a ForwardRequest exception the ORB shall send a(CocateReply message to
the client pvith locate_status set to OBJECT_FORWARD, and with the body containing the-ebject refererfce from the
ForwardRequest exception’s forward_reference field.

9.5.7 CloseConnection Message

CloseCohnection messages are sent only by servers in GIOP protocol vetsions 1.0 and 1.1. They inform dlients that the
server intgnds to close the connection and must not be expected to providefurther responses. Moreover, clignts know that
any reque$ts for which they are awaiting replies will never be processed, and may safely be reissued (on apother
connectiof). In GIOP version 1.2 or later both sides of the conngetion may send the CloseConnection niessage.

The ClosgeConnection message consists only of the GIOR message header, identifying the message type,

For detailg on the usage of CloseConnection messages,’see Connection Management on page 108.
9.5.8 MessageError Message

The MesgageError message is sent in response to any GIOP message whose version number or message [type is
unknown fo the recipient or any message(received whose header is not properly formed (e.g., has the wrong [magic value).
Error handling is context-specific.

The MesgageError message consists only of the GIOP message header, identifying the message type.
9.5.9 Fragment Message

This messpge is added in GIOP 1.1.

The Fragment.message is sent following a previous request or response message that has the more fragmepnts bit set to
TRUE in the\flags field.

All of the GIOP messages begin with a GIOP header. One of the fields of this header is the message_size ficld, a 32-
bit unsigned number giving the number of bytes in the message following the header. Unfortunately, when actually
constructing a GIOP Request or Reply message, it is sometimes impractical or undesirable to ascertain the total size of
the message at the stage of message construction where the message header has to be written. GIOP 1.1 provides an
alternative indication of the size of the message, for use in those cases.

106 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

In GIOP 1.1, a Request or Reply message can be broken into multiple fragments. In GIOP 1.2 and later, a Request,
Reply, LocateRequest, or LocateReply message can be broken into multiple fragments. The first fragment is a
regular message (e.g., Request or Reply) with the more fragments bit in the flags field set to TRUE. This initial
fragment can be followed by one or more messages using the fragment messages. The last fragment shall have the more
fragment bit in the flag field set to FALSE.

A CancelRequest message may be sent by the client before the final fragment of the message being sent. In this case,

<k 1d oo 133 £ saate a1l o110

the server

NOTE: A

SO S SO O THOTC T a S IOt~ vy 1T TOTTO VY.

GIOP client that fragments the header of a Request message before sending the request ID mayno

CancelRequest message pertaining to that request ID and may not send another Request message until after

is sent.
A primitiy

In GIOP 1

¢ data type of 8 bytes or smaller should never be broken across two fragments,

.1, the data in a fragment is marshaled with alignment relative to its positien in the fragment, not

position ifp the whole unfragmented message.

For GIOP
of a fragn
refragmen|

For GIOP
header an
original m

The byte
module (

struc

b

version 1.2 and later, the total length (including the message header).of a fragment other than the
ented message are required to be a multiple of 8 bytes in lengthjallowing bridges to defragment
t messages without having to remarshal the encoded data to igsert or remove padding.

version 1.2 and later, a fragment header is included in theymessage, immediately after the GIOP
| before the fragment data. The request ID, in the fragnient header, has the same value as that us
essage associated with the fragment.

rder and GIOP protocol version of a fragment.shall be the same as that of the message it contin
GIOP {//IDL extension for GIOP 1.2 .and later

t FragmentHeader_1_2 {

unsigned long request_id;

typedef FragmentHeader_1_2-FragmentHeader_1_3;

b

9.6

The GIOH
following

* Th

GIOP Message Transport

is desigried to be implementable on a wide range of transport protocols. The GIOP definition m|
assumpttons regarding transport behavior:

b tfansport is connection-oriented. GIOP uses connections to define the scope and extent of request I1

send a
the request ID

relative to its

final fragment
and/or

message
ed in the

[1CS.

akes the

Ds.

» The transport is reliable. Specifically, the transport guarantees that bytes are delivered in the order they are sent, at most
once, and that some positive acknowledgment of delivery is available.

+ The transport can be viewed as a byte stream. No arbitrary message size limitations, fragmentation, or alignments are
enforced.

+ The transport provides some reasonable notification of disorderly connection loss. If the peer process aborts, the peer
host crashes, or network connectivity is lost, a connection owner should receive some notification of this condition.

© ISO/IEC 2012 - All rights reserved

107

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

» The transport’s model for initiating connections can be mapped onto the general connection model of TCP/IP.
Specifically, an agent (described herein as a server) publishes a known network address in an IOR, which is used by the
client when initiating a connection.

The server does not actively initiate connections, but is prepared to accept requests to connect (i.e., it listens for
connections in TCP/IP terms). Another agent that knows the address (called a client) can attempt to initiate connections
by sending co

connectiof
side may

closure.) 4
transport’s

9.6.1 ¢

For the py

A ¢
obj

Af

These terr]
architectu

In GIOP §
LocateR
can send

client can

If multiplq
connectiof
GIOP ver
particular,
message b

nnect requests to the address. The listening server may accept the request, forming a new, u

'lose the connection. (See Connection Management on page 108 for semantic issues related to ¢o
A candidate transport might not directly support this specific connection model; it is only1iecessd
model can be mapped onto this view.

Connection Management

rposes of this discussion, the roles client and server are defined as follows:

lient initiates the connection, presumably using addressing information found in an object reference
ect to which it intends to send requests.

erver accepts connections, but does not initiate them.

hs only denote roles with respect to a connection. They dojnot have any implications for ORB of
es.

rotocol versions 1.0 and 1.1, connections are not ‘Symmetrical. Only clients can send Request,
quest, and CancelRequest messages over.a¢annection, in GIOP 1.0 and 1.1. In all GIOP vers
eply, LocateReply, and CloseConnection messages over a connection; however, in GIOP 1.
send them as well. Either client or servepcan send MessageError messages, in GIOP 1.0 and

GIOP versions are used on an undeslying transport connection, the highest GIOP version used
| can be used for handling the close” A CloseConnection message sent using any GIOP version
ions used on the connections(i;¢’, the underlying transport connection is closed for all GIOP vers

y using the highest GIQP version in use.

Only GIO

messages are sgnt-ever GIOP connections.

Request IIDs must unanibiguously associate replies with requests within the scope and lifetime of a connec
IDs may He re-used-if‘there is no possibility that the previous request using the ID may still have a pendin
that cance]lation«do¢s not guarantee no reply will be sent. It is the responsibility of the client to generate a
request I0s. Reguest IDs must be unique among both Request and LocateRequest messages.

nique

s open, either
nnection
ry that the

IOR) for an

application

ions, a server
» and later the
1.

n the
applies to all
ions). In

if GIOP version 1.2 or higher has been used on the connection, the client can send the CloseConnection

ion. Request
b reply. Note
hd assign

9.6.1.1 Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnect.

For GIOP

versions 1.0, and 1.1:

* Orderly shutdown is initiated by servers sending a CloseConnection message, or by clients just closing down a
connection.

* Orderly shutdown may be initiated by the client at any time.

108

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

* A server may not initiate shutdown if it has begun processing any requests for which it has not either received a

CancelRequest or sent a corresponding reply.

+ Ifaclient detects connection closure without receiving a CloseConnection message, it must assume an abortive

disconnect has occurred, and treat the condition as an error.

For GIOP Version 1.2 and later:
Or(erty shutdown is initiated by either the originating client ORB (CONNECton 1nitiator) or by the server

(cohnection responder) sending a CloseConnection message

Ift
cui

he ORB sending the CloseConnection is a server, or bidirectional GIOP is in use, the sending OR|
rently be processing any Requests from the other side.

Th¢ ORB that sends the CloseConnection must not send any messages after the CloseConnection

If g

disgonnect has occurred, and treat the condition as an error.

If Qidirectional GIOP is in use, the conditions of Bi-Directional GIOP on-page 115 apply.

For all us

Ift
coif

s of CloseConnection (for GIOP versions 1.0, 1.1, 1.2, and later):

here are any pending non-oneway requests, which were inifiatéd on a connection by the ORB shuttin
nection, the connection-peer ORB should consider themas canceled.

If 4
out
me

n ORB receives a CloseConnection message from'its connection-peer ORB, it should assume thaj
standing messages (i.e., without replies) were ree€ived after the connection-peer ORB sent the Close
sage, were not processed, and may be safely\re=sent on a new connection.

Affer issuing a CloseConnection message, the issuing ORB may close the connection. Some transport
incJuding TCP) do not provide an “ordefly disconnect” capability, guaranteeing reliable delivery of the
sent. When GIOP is used with such ‘protocols, an additional handshake needs to be provided as part of t]
thaf protocol’s connection mechanisms, to guarantee that both ends of the connection understand the disj
outstanding GIOP requests.

9.6.1.2

A client, if it chooses, may send requests to multiple target objects over the same connection, provided thal
connection’s server side\is capable of responding to requests for the objects. It is the responsibility of the g
optimize flesource usage by reusing connections, if it wishes. If not, the client may open a new connection f]
object supported<by the server, although this behavior should be avoided.

ultiplexing Connections

ORB

B must not

ither ORB detects connection closure without receiving a CloseConnection message, it must assuine an abortive

b down that

any
Connection

protocols (not
ast message

\e mapping to
osition of any

t the
lient to
br each active

9.6.2

e Orderin

qa
~J

Only the client (connection originator) may send Request, LocateRequest, and CancelRequest messages, if Bi-

Directional GIOP is not in use.

Clients may have multiple pending requests. A client need not wait for a reply from a previous request before sending

another request.

Servers may reply to pending requests in any order. Reply messages are not required to be in the same order as the

corresponding Requests.

© ISO/IEC 2012 - All rights reserved

109

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

The ordering restrictions regarding connection closure mentioned in Connection Management, above, are also noted here.
Servers may only issue CloseConnection messages when Reply messages have been sent in response to all received

Request messages that require replies.

9.7

The GIOP _is defined to support object migration and location services without dictating the existence of s
architectufes or features. The protocol features are based on the following observations.

Object Location

hnsport address does not necessarily correspond to any specific ORB architectural component(sug
pject server process, Inter-ORB bridge, and so forth). It merely implies the existence of some age
on may be opened, and to which requests may be sent.

A given tr|
adapter, o
a connecti|

t” (owner of the server side of a connection) may have one of the following réles"with respect td
rence:

The “agen
object refq

Th
ow
and

. agent may be able to accept object requests directly for the object and returiyreplies. The agent mayj
h the actual object implementation; it may be an Inter-ORB bridge thattransforms the request and pal

ther process or ORB. From GIOP’s perspective, it is only importantthat requests can be sent directly

Th¢ agent may not be able to accept direct requests for any objects, 'but acts instead as a location service
Reﬂuest messages sent to the agent would result in either exeeptions or replies with LOCATION_FO
sta

mepsages with appropriate LocateReply messages.

Thyg
obj

agent may directly respond to some requests (fofZcertain objects) and provide forwarding locations
bcts.

Thd
loc

agent may directly respond to requests for'a particular object at one point in time, and provide a for]
htion at a later time (perhaps during the same connection).

Agents arg
a connecti
returns Ld
OBJECT_

on either supports direct agcess to an object, or returns exceptions. Such an ORB (or inter-ORB b
cateReply messages with either OBJECT_HERE or UNKNOWN_OBJECT status, and never
FORWARD status.

st, however, be able to accept and process Reply messages with LOCATION_FORWARD status, s
e to impleméntia location service. Whether a client chooses to send LocateRequest messages
of the client’ For example, if the client routinely expected to see LOCATION_FORWARD replies W
an object Teference, it might always send LocateRequest messages to objects for which it has

Clients my
may choo
discretion
address in|

ecific ORB

h as an object
nt with which

a particular

or may not
sses it on to
to the agent.

. Any
RWARD

s, providing new addresses to which requests may be sé€nt."Such agents would also respond to LocgteRequest

for other

pvarding

not required to implement location forwarding mechanisms. An agent can be implemented with the policy that

ridge) always

nce any ORB
is at the

hen using the
no recorded

forwarding address. If a client sends LocateRequest messages, it should be prepared to accept LocateRe

A client st P —

(OBJECT_FORWARD) mechanisms. Once a connection based on location-forwarding information is closed, a client can
attempt to reuse the forwarding information it has, but, if that fails, it shall restart the location process using the original
address specified in the initial object reference.

For GIOP version 1.2 and later, the usage of LOCATION_FORWARD_PERM (OBJECT_FORWARD_PERM) behaves like
the usage of LOCATION_FORWARD (OBJECT_FORWARD), but when used by the server it also provides an indication to
the client that it may replace the old IOR with the new IOR. When using LOCATION_FORWARD_PERM
(OBJECT_FORWARD_PERM), both the old IOR and the new IOR are valid, but the new IOR is preferred for future use.

110 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

NOTE: Usage of LOCATION_FORWARD_PERM and OBJECT_FORWARD_PERM is now deprecated, due to problems it
causes with the semantics of the Object::hash operation. LOCATION_FORWARD_PERM and OBJECT_FORWARD_PERM
features could be removed from some future GIOP versions if solutions to these problems are not provided.

Even after performing successful invocations using an address, a client should be prepared to be forwarded. The only
object address that a client should expect to continue working reliably is the one in the initial object reference. If an
invocation using that address returns UNKNOWN_OBJECT, the object should be deemed non-existent.

In general
optimizati

9.8

The basel
discussion
transfer to

ITIOP 1.0 i

IIOP 1.1 g
1.0. AnII

IIOP 1.2 g
may also
GIOP ver

IIOP 1.3 ¢
and may 4
lesser GI(

IIOP 1.4 g
1.4, and nj
lesser GI(

Conforma
Interopera
IOR conf
conformat

9.8.1

TCP/IP-Connection Usage

the implementation of location forwarding mechanisms is at the discretion of ORBs, availablg
pn and to support flexible object location and migration behaviors.

nternet Inter-ORB Protocol (IIOP)

ne transport specified for GIOP is TCP/IP°. Specific APIs for libraries supporting TCP/IP may
is limited to an abstract view of TCP/IP and management of its connectipns. The mapping of G
TCP/IP connections is called the Internet Inter-ORB Protocol (ITOP).

5 based on GIOP 1.0.

an be based on either GIOP 1.0 or 1.1. An IIOP 1.1 client must‘support GIOP 1.1, and may also
DP 1.1 server must support processing both GIOP 1.0 and«GIOP 1.1 messages.

an be based on any of the GIOP minor versions 1.0, 1.4/ 0f 1.2. An IIOP 1.2 client must support
upport lesser GIOP minor versions. An IIOP 1.2 server must also support processing messages
ions.

an be based on any of the GIOP minor versions 1.0, 1.1, 1.2, or 1.3. An IIOP 1.3 client must supp
Iso support lesser GIOP minor versions. . An' [IOP 1.3 server must also support processing messa
P versions.

an be based on any of the GIOP minor versions 1.0, 1.1, 1.2, 1.3, or 1.4. An IIOP 1.4 client must
ay also support lesser GIOP minor versions. An IIOP 1.4 server must also support processing meg
P versions.

hce to IIOP versions 4.1} 1.2, 1.3, and 1.4 requires support of Limited-Profile IOR conformance
ble Object References: IORs on page 25), specifically for the IIOP IOR Profile. As of CORBA 2.
rmance is deprecated, and ORBs implementing IIOP are strongly recommended to support Full
ice. Some future TIOP versions could require support of Full IOR conformance.

lis

0 be used for

ary, so this
JOP message

support GIOP

GIOP 1.2, and
wvith all lesser

ort GIOP 1.3,
bes with all

support GIOP
sages with all

see
4, this limited
OR

Agents th

t ara canahla of ancanting oahitoant racgniacte ar neaviding lacatiane for ohtacte (1 a0 carvors) iyl
t—re-capaste—otaccepHREobjectredqhestsorprovtagtocationstor-objects-e—Servers)pubHs

h TCP/IP

addresses in IORs, as described in IIOP IOR Profiles on page 112. A TCP/IP address consists of an IP host address,
typically represented by a host name, and a TCP port number. Servers must listen for connection requests.

A client needing an object’s services must initiate a connection with the address specified in the IOR, with a connect

request.

5.

Institute, September 1981

© ISO/IEC 2012 - All rights reserved

Postel, J., “Transmission Control Protocol — DARPA Internet Program Protocol Specification,” RFC-793, Information Sciences

111

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

The listening server may accept or reject the connection. In general, servers should accept connection requests if possible,
but ORBs are free to establish any desired policy for connection acceptance (e.g., to enforce fairness or optimize resource
usage).

Once a connection is accepted, the client may send Request, LocateRequest, or CancelRequest messages by
writing to the TCP/IP socket it owns for the connection. The server may send Reply, LocateReply, and
CloseConnection messages by writing to its TCP/IP connection. In GIOP 1.2, and later, the client may send the
CloseConneetion-message—andifBibireet 154 i ay-else-sen ep cateReply
messagels.

After recejving a CloseConnection message, an ORB must close the TCP/IP connection. After sehding :
CloseConnection, an ORB may close the TCP/IP connection immediately, or may delay closingthe connection until it
receives ah indication that the other side has closed the connection. For maximum interoperability with ORBs using TCP
implementations that do not properly implement orderly shutdown, an ORB may wish to only shutdown th¢ sending side
of the conhection, and then read any incoming data until it receives an indication that the.other side has alsq shutdown, at
which poiht the TCP connection can be closed completely.

Given TCP/IP’s flow control mechanism, it is possible to create deadlock situations between clients and sepvers if both
sides of a|connection send large amounts of data on a connection (or two different connections between th¢ same
processes) and do not read incoming data. Both processes may block on Write operations, and never resump. It is the
responsibility of both clients and servers to avoid creating deadlock by reading incoming messages and avoiding blocking
when writing messages, by providing separate threads for reading and writing, or any other workable approgch. ORBs are
free to adgpt any desired implementation strategy, but should proyide robust behavior.

9.8.2 |IOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter-ORB Protocol, have the fgllowing form:

module IJOP { // IDL extended for version 1.1, 1.2, and later
strugt Version {

tet major;
tet minor;
k
struct ProfileBody_1_0-{// renamed from ProfileBody
rsion iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;
k
struct ProfileBody_1_1 {// also used for 1.2 and later
Version iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;

112 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

/l Added in 1.1 unchanged for 1.2 and later
I0P::TaggedComponentSeq components;

h
h

IIOP Profile version number:

Cli

inf¢

Profiles sy
or 1.2 or |
encapsula
IOP::Tag
(as define

The versi
the server

If the maj
profile m4
number 0.

object_ke

encapsula

For Versid
is present

The meml

. iio
agg
spg
tex]

MJjor number can stay the same if the new changes are backward compatible.

imor'yersion number 1 or 2. ORBs that support only version 1.1 or

Indicates the IIOP protocol version.

00-2:2012(E)

ents with lower minor version can attempt to invoke objects with higher minor version numbelby us|
rmation defined in the lower minor version protocol (ignore the extra information).

Ipporting only IIOP version 1.0 use the ProfileBody_1_0 structure, while those supporting 110
ater use the ProfileBody_1_1 structure. An instance of one of these structure types is marshalg
ion octet stream. This encapsulation (a sequence <octet>) becomes thé profile_data membg
lgedProfile structure representing the IIOP profile in an IOR, and the\{agrhas the value TAG_IN
{ earlier).

n number published in the Tag Internet IIOP Profile body signals'the highest GIOP minor versio
supports at the time of publication of the IOR.

br revision number is 1, and the minor revision numberjis/greater than 0, then the length of the ¢

ORBs that support only revision 1.0 IIOP profilés'must ignore any data in the profile that occur
y. If the revision of the profile is 1.0, there shall be no extra data in the profile (i.e., the length
ed profile must agree with the total size of .components defined for version 1.0).

n 1.2 and later of IIOP, no order of useis-prescribed in the case where more than one TAG Intern
in an IOR.

ers of lIOP::ProfileBody_1_0;and IOP::ProfileBody_1_1 are defined as follows:

b_version describes the version of IIOP that the agent at the specified address is prepared to receiv
nt generates [IOP profiles specifying a particular version, it must be able to accept messages comply|
cified version or any-prévious minor version (i.e., any smaller version number). The major version n

is 1; the minor versions defined to date are 0, 1, and 2. Compliant ORBs must generate version 1.1 |
5t accept any profile with a major version of 1, regardless of the minor version number. If the minor v|
, the encapstlation is fully described by the ProfileBody_1_0 structure. If the minor version numbs
apsulation 1§ fully described by the ProfileBody_1_1 structure. If the minor version number is great
length'ef'the encapsulated profile may exceed the total size of components defined in this text for pr|

ng only the

P version 1.1
d into an

r of the
FTERNET_IOP

h number that

ncapsulated

y exceed the total size of components defined in this\part of ISO/IEC 19500 for profiles with minor revision

s after the
Of the

et IOP Profile

t. When an

ng with the
imber of this
profiles, and
ersion number
ris 1 or 2, the
er than 2, then
bfiles with
reserve, any

1.2 TIOP profiles must ignore, but f

hter than 1.2.

NOTE: As of version 1.2 of GIOP and ITOP and minor versions beyond, the minor version in the TAG_INTERNET_IOP profile
signals the highest minor revision of GIOP supported by the server at the time of publication of the IOR.

» host identifies the Internet host to which GIOP messages for the specified object may be sent. In order to promote a
very large (Internet-wide) scope for the object reference, this will typically be the fully qualified domain name of the
host, rather than an unqualified (or partially qualified) name. However, per Internet standards, the host string may also
contain a host address expressed in standard “dotted decimal” form (e.g., “192.231.79.52”).

© ISO/IEC 2012 - All rights reserved

113

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

» port contains the TCP/IP port number (at the specified host) where the target agent is listening for connection requests.

Note that

The agent must be ready to process IIOP messages on connections accepted at this port.

object_key is an opaque value supplied by the agent producing the IOR. This value will be used in request messages
to identify the object to which the request is directed. An agent that generates an object key value must be able to map

the value unambiguously onto the corresponding object when routing requests internally.

be used in

making invocations on the object dsribed by this profile. TaggedComponents that apply to IIOP(1).3 are described

belpw in IIOP IOR Profile Components on page 114. Other components may be included to support enhanced versions
of IOP, to support ORB services such as security, and to support other GIOPs, ESIOPs, and proprietary| protocols. If
an {mplementation puts a non-standard component in an IOR, it cannot be assured that any or all non-stgndard

corhponents will remain in the IOR.

Thg relationship between the IIOP protocol version and component support conformance requiremepts is as

foljows:

these rules, and is not required to conform to more than these rules.

4 New components can be added, but they do not become part,of'the versions conformance rules.

a new IIOP version.

(multi-cas}) addresses are not allowed. Such addresses_ are“reserved for use in future versions of IIOP.

Agents may freely choose TCP port numbers for communication; IIOP supports multiple agents per host.

9.8.3

The folloy

114

lIOP IOR Profile Components

{TAG_ORB_TYPE

{ TAG_CODE_SETS

{ TAG_SEC_NAME

{ TAG_ASSOCIATION_OPTIONS
{ TAG -GENERIC_SEC_MECH

{ TAG SSL_SEC_TRANS

4 When there is a need to specify conformance rules that in€lude the new components, there will be a

1 Each IIOP version specifies a set of standard components and the conformance rules for that version). These rules
specify which components are mandatory and which are optional. A .conformant implementation hag to conform to

need to create

host addresses are restricted in this version of IIORto be Class A, B, or C Internet addresses. Thiat is, Class D

ing components are part of [IOP 1.1, 1.2, and later conformance. All these components are optignal.

*TAG_SPKM_1T_SEC_MECH

* TAG_SPKM_2_SEC_MECH

* TAG_KerberosV5_SEC_MECH

* TAG_CSI_ECMA_Secret_SEC_MECH
* TAG_CSI_ECMA_Hybrid_SEC_MECH
* TAG_SSL_SEC_TRANS

* TAG_CSI_ECMA_Public_SEC_MECH

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

 TAG_FIREWALL_TRANS

- TAG_JAVA_CODEBASE

« TAG_TRANSACTION_POLICY
« TAG_MESSAGE_ROUTERS

« TAG_INET_SEC_TRANS

The folloy

9.9

The speci
symmetrid
connectiol

This GIO]
firewalls 1

ving components are part of IIOP 1.2, and later conformance. All these components are optional.
TAG_ALTERNATE_IIOP_ADDRESS
TAG_POLICIES
TAG_DCE_STRING_BINDING
TAG_DCE_BINDING_NAME
TAG_DCE_NO_PIPES
TAG_DCE_MECH
TAG_COMPLETE_OBJECT_KEY
TAG_ENDPOINT_ID_POSITION
TAG_LOCATION_POLICY
TAG_OTS_POLICY
TAG_INV_POLICY
TAG_CSI_SEC_MECH_LIST
TAG_NULL_TAG
TAG_SECIOP_SEC_TRANS
TAG_TLS_SEC_TRANS
TAG_ACTIVITY_POLICY.

Bi-Directional GIOP

fication of GIOP 'connection management, in GIOP minor versions 1.0 and 1.1, states that conne
al. For example, only clients that initialize connections can send requests, and only servers that
IS can receive them.

P 1.0-and 1.1 restriction gives rise to significant difficulties when operating across firewalls. It is
ot{to,dllow incoming connections, except to certain

dedicated

require prior configuration of the firewall proxy.

well-known and carefully configured hosts, §

tions are not
\ccept

common for

potential client firewalls install GIOP proxies to allow incoming connections, or that any entities receiving callbacks will

An applet, for example, downloaded to a host inside such a firewall will be restricted in that it cannot receive requests
from outside the firewall on any object it creates, as no host outside the firewall will be able to connect to the applet
through the client's firewall, even though the applet in question would typically only expect callbacks from the server it
initially registered with.

© ISO/IEC 2012 - All rights reserved

115

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

In order to circumvent this unnecessary restriction, GIOP minor protocol version 1.2 or later specifies that the asymmetry
stipulation above be relaxed in cases where the client and the server agree on it. In these cases, the client (the applet in
the above case) would still initiate the connection to the server, but any requests from the server on any objects.

The client creates an object for exporting to a server, and arranges that the server receive an IOR for the object. The most
common use case would be for the client to pass the IOR as a parameter in a GIOP request, but other mechanisms are
possible, such as the use of a Name Serv1ce If the client ORB pollcy permits bi- dlrectlonal use of a connectlon a Request
sIOP

message shet

connectiof
the callba
directiona

Each map
an IOP::S
BiDir<prd
name is B

The serve
directiona
supports t
context. I

The data 4
BI_DIR_II(

connectiof in order to invoke on an object. If a host and poff'pair in a listen_point list matches a host and

object to ¥

connectiof, the server may re-use any of the connections on which the listen_point data was received.

A server
only, so it
LocateR
Messag

CloseCo
condition§

Bi-directi
Managem
scope and
while perr
used bi-di

IDirllOP). The service context for bi-directional IIOP is defined in Bi-directional IIOP on page 11

| is bi- dlrectlonal The service context may prov1de addltlonal 1nf0rmat10n that the server may ne
k object. To determine whether an ORB may support bi-directional GIOP new policies has been
GIOP policy on page 118).

bing of GIOP to a particular transport should define a transport-specific bi-directional-service con
rviceld allocated by the OMG. It is recommended that names for this service gofitext follows thg
tocolname>, where <protocol name> identifies a mapping of GIOP to a transpott protocol (e.g.,

receives the Request, which contains a bi-directional IOP::Service€ontext. If the server supp
connections for that protocol, it may now send invocations along-the same connection to any of
he particular protocol and matches the particular location information found in the bi-directional
the server does not support bi-directional connections for that-protocol, the service context can

ncapsulated in the BiDirllOPServiceContext structufe (See below), which is identified by the
DP as defined in Service Context on page 37, allowssthe ORB to determine whether it needs to o

hich it does not yet have a connection (a callback object newly received, for instance), rather thd

hlking to a client on a bi-directional GIOP connection can use any message type traditionally use

can use Request, LocateRequest, CancelRequest, MessageError, and Fragment (for a

quest). Similarly the client caniuse message types traditionally used only by servers: Reply,
rror, CloseConnection, and’Fragment (for a Reply or LocateReply).

hnection messages are a special case however. Either ORB may send a CloseConnection me;
in Connection Management on page 108 apply.

nal GIOP connections modify the behavior of Request IDs. In the GIOP specification, Connecti
bnt on page 108yt is noted that “Request IDs must unambiguously associate replies with request
lifetime pf\d connection.” This property of unambiguous association of requests and replies must

Fectignally in GIOP 1.2, and later, the connection originator shall assign only even valued Reque

ed to invoke
defined (Bi-

ext, and have
pattern

for ITIOP the
7.

prts bi-
ject that
service

be ignored.

Serviceld
ben a new
port of an
n open a new

d by clients
Request or

LocateReply,

sage, but the

n
5 within the
be preserved

hitting.each end to generate Request Ids for new requests independently. To ensure this, on a confiection that is

t IDs and the

other side

of the connection shall assign only odd valued Request IDs. This requirement applies to the full]|ifetime of the

connection, even before a BIDIr[lOPServiceContext is transmitted. A connection on which this regime of Request ID
assignment is not used, shall never be used to transmit bi-directional GIOP 1.2, or later messages.

It should be noted that a single-threaded ORB needs to perform event checking on the connection, in case a Request
from the other endpoint arrives in the window between it sending its own Request and receiving the corresponding
reply; otherwise a client and server could send Requests simultaneously, resulting in deadlock. If the client cannot
support event checking, it must not indicate that bi-directionality is supported. If the server cannot support event
checking, it must not make callbacks along the same connection even if the connection indicates it is supported.

116

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

A server making a callback to a client cannot specify its own bi-directional service context — only the client can announce
the connection’s bi-directionality.

An important security issue should be observed in the use of bi-directional GIOP. In the absence of other security
mechanisms, a malicious client may claim that its connection is Bi-Directional for use with any host and port it chooses.
In particular it may specify the host and port of security sensitive objects not even resident on its host. All the client has
to do is pass the host and port in the listen data service context and the server may then invoke a masquerading object
instead. Inp-g e A v RetRas—feees aR-Hreemng connection
has no waly to discover the identity or verify the integrity of the client that initiated the connection. If the derver has
doubts in the integrity of the client, it is recommended that bi-directional GIOP is not used.

9.9.1 Bi-directional IIOP

The 10OP:{ServiceContext used to support bi-directional IIOP contains a BiDirllOPServiceContext strycture as
defined b¢low:

/I'IDL
module IJOP {

strugt ListenPoint {
string host;
nsigned short port;
b

typedef sequence<ListenPoint> ListenPointList;

strugt BiDirllOPServiceContext {
LiistenPointList listen_points;

B
}

The data ¢ncapsulated in the BiDirllOPServiceContext structure, which is identified by the Serviceld Bl DIR_IIOP as
defined in|Service Context on page 37, allows the ORB, which intends to open a new connection in order tq invoke on an
object, to look up its list of agtive client-initiated connections and examine the structures associated with them, if any. If
a host anfl port pair in a listen_points list matches a host and port, which the ORB intends to open a cqnnection to,

rather thaf open a new connection to that listen_point, the server may re-use any of the connections that were initiated
by the clignt on which/the listen point data was received.

The host|element-of the structure should contain whatever values the client may use in the IORs it creates,| The rules for
host and |port are identical to the rules for the IIOP IOR ProfileBody_1_1 host and port elements see[IIOP IOR
ard way, it
must use the values from the client object's IOR, not the values from this BiDirllOPServiceContext structure; these
values are only to be used for bi-directional GIOP support.

The BI_DIR_IIOP service context may be sent by a client at any point in a connection's lifetime. The listen_points
specified therein must supplement any listen_points already sent on the connection, rather than replacing the existing
points.

© ISO/IEC 2012 - Al rights reserved 117

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

If a client supports a secure connection mechanism, such as SECIOP or IIOP/SSL, and sends a BI_DIR_IIOP service
context over an insecure connection, the host and port endpoints listed in the BI_DIR_IIOP should not contain the details
of the secure connection mechanism if insecure callbacks to the client’s secure objects would be a violation of the client’s
security policy.

It is the ORB’s responsibility to ensure that an IOR contains an appropriate address.

9.9.1.1 lIPP{SSLecoensiderations

Bi-directignal IIOP can operate over IIOP/SSL without defining any additions to the IIOP/SSL or the bi~difgctional GIOP
mechanisis. However, if the client wants to authenticate the server when the client receives a callback thi$ cannot be
done unless the client has already authenticated the server. This has to be performed during the initial SSL [handshake. It
is not posgible to do this at any point after the initial handshake without establishing a new SSD connectioh (which
defeats th¢ purpose of the bi-directional connections).

9.10 Bi-directional GIOP policy

In GIOP grotocol versions 1.0 and 1.1, there are strict rules on which side of ‘a_¢onnection can issue what fype of
messages [for example version 1.0 and 1.1 clients can not issue GIOP replymessages). However, as documented above,
it is sensilple to relax this restriction if the ORB supports this functionality*and policies dictate that bi-diredtional
connectiof are allowed. To indicate a bi-directional policy, the following is defined.

Il Self coptained module for Bi-directional GIOP policy
module BiDirPolicy {

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL:= 0;
const BidirectionalPolicyValue BOTH= 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

interface BidirectionalPolicy : CORBA::Policy {
r¢adonly attribute BidirectionalPolicyValue value;

k
k

A BidiregtionalPolicyValue of NORMAL states that the usual GIOP restrictions of who can send what GIOP messages
apply (i.e| bi-direetional connections are not allowed). A value of BOTH indicates that there is a relaxation|in what party
can issue Wwhat\GIOP messages (i.e., bi-directional connections are supported). The default value of a
BidirectipnalPolicy is NORMAL.

In the absence of a BidirectionalPolicy being passed in the PortableServer::POA::create_POA operation, a POA
will assume a policy value of NORMAL.

A client and a server ORB must each have a BidirectionalPolicy with a value of BOTH for bi-directional
communication to take place.

To create a BidirectionalPolicy, the ORB::create_policy operation is used.

118 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

9.11 OMG IDL

This sub clause contains the OMG IDL for the GIOP and IIOP modules.

9.11.1 GIOP Module

module

strugt Version {

tet major;
tet minor;

enum MsgType_1_0{
equest, Reply,
cateRequest,

enum MsgType_1_1{
equest,
cateRequest,

ter

ISO/IEC 19500-2:2012(E)

Il rename from MsgType
CancelRequest,
LocateReply,
loseConnection, MessageError

Reply, CancelRequest,
LocateReply,

loseConnection, MessageError,

ragment

|5

/I GIOP 1.1 addition

#endif // MAX_GIOP_MINOR_VERSION

strugt MessageHeader_1_0 {// Renamed from MessageHeader

agicn magic;
rsion GIOP_version;
olean byte_order;
tet message_type;
nhsigned long message_size;
}
Il GIOP 1.1
struct MessageHeader_1_1 {
Magicn magic;
Version GIOP_version;
octet flags; /I GIOP 1.1 change
octet message_type;

unsigned long

|5

message_size;

© ISO/IEC 2012 - All rights reserved

119

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

120

/l GIOP 1.2 and later
typedef MessageHeader_1_1 MessageHeader_1_2;
typedef MessageHeader_1_1 MessageHeader_1_3;

/I GIOP 1.0

struct RequestHeader _1_0 {
I . ;

o XU,
unsigned long request_id;
olean response_expected;
IOP::ObjectKey object_key;

string operation;
ORBA::OctetSeq requesting_principal;

RequestHeader_1_1 {
P::ServiceContextList service_context;
unsigned long request_id;

olean response_expected;

equestReserved reserved; // Added in GIOP 1.1
IOP::ObjectKey object_key;
string operation;

ORBA::OctetSeq requesting_pringipal;

&

I GIQP 1.2, and later

typedef short AddressingDisposition;
const short KeyAddr = 0;

const short ProfileAddr = 1;

const short ReferenceAddr = 2;

unsigned long selected_profile_index;
IOP::IOR ior;

union TargetAddress switch (AddressingDisposition) {

case KeyAddr: IOP::ObjectKey object_key;
cpseProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressinginfo ior;

I8

struct RequestHeader_1_2 {
unsigned long request_id;
octet response_flags;
RequestReserved reserved; // Added in GIOP 1.1
TargetAddress target;
string operation;

© ISO/IEC 2012

- All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

Il requesting_principal not in GIOP 1.2 and later
IOP::ServiceContextList service_context; // 1.2 change

h
#if MAX_GIOP_MINOR_VERSION < 2

// GIOP 1.0 and 1.1

ISO/IEC 19500-2:2012(E)

enu

O_EXCEPTION,
SER_EXCEPTION,

YSTEM_EXCEPTION,
CATION_FORWARD

B

/I GIQP 1.0

strugt ReplyHeader_1_0 {// Renamed from ReplyHeader

IOP::ServiceContextList service_context;

hsigned long request_id;
eplyStatusType_1_0 reply_status;

B

I GIQP 1.1

typedef ReplyHeader_1_0 ReplyHeader_1_1;
/I Same Header contents for 1.0 and 1.1

#endif // MAX_GIOP_VERSION_NUMBER
#if MAX_|GIOP_MINOR_VERSION >= 2

Il GIQP 1.2, and later

enum ReplyStatusType_1_2 {

O_EXCEPTION,

SER_EXCEPTION,

YSTEM_EXCEPTION,

CATION_FORWARD,

CATION_FORWARD_PERM, /I new value for 1.2
EEDS_ADDRESSING_MODE I/l new value for 1.2

strugt ReplyHeader_1_2 {
nsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP::ServiceContextList service_context; // 1.2 change

b
typedef ReplyHeader_1_2 ReplyHeader_1_3;

#endif // MAX_GIOP_VERSION_NUMBER
struct SystemExceptionReplyBody {

string exception_id;
unsigned long minor_code_value;

© ISO/IEC 2012 - All rights reserved

121

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

unsigned long completion_status;
b
struct CancelRequestHeader {
unsigned long request_id;
k
Il GIGP-1-6
strugt LocateRequestHeader_1_0 {

/I Renamed LocationRequestHeader
unsigned long request_id;
IOP::ObjectKey object_key;

k
I/ GIQP 1.1

typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
/l|Same Header contents for 1.0 and 1.1

/I GIQP 1.2 and later

struct LocateRequestHeader_1_2 {
unsigned long request_id;
TargetAddress target;
b
typedef LocateRequestHeader_1_2 LocateRequestHeader_1_3;

#if MAX_GIOP_MINOR_VERSION < 2

/I GIQP 1.0 and 1.1

enunj LocateStatusType_1_0 {// Renamed from LocateStatusType
UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

b

/I GIQP 1.0

struct LocateReplyHeader_1_0 {

/l Renamed from LocateReplyHeader
unsighed long request_id;
LocateStatusType_1_0 locate_status;

I8
/Il GIOP 1.1

typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;
I/l same Header contents for 1.0 and 1.1

#else
I/l GIOP 1.2, and later
enum LocateStatusType_1_2 {
UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD,

122 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

b

OBJECT_FORWARD_PERM, /I new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, /I new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2
}
struct LocateReplyHeader_1_2 {

unsigned long request_id;

ISO/IEC 19500-2:2012(E)

strugt FragmentHeader_1_2 {

hsigned long request_id;
}
typedef FragmentHeader_1_2 FragmentHeader_1_3;

9.11.2 |IOP Module

module IJOP { // IDL extended for version 1.1, 1.2, and.later

strugt Version {

tet major;
tet minor;
}
strugt ProfileBody_1_0 {// renamedfrom ProfileBody
rsion iiop_version;
sfring host;
hsigned short port;
IOP::ObjectKey object_key;
}
strugt ProfileBody\1"_1 {// also used for 1.2, and later
rsion iiop_version;
sfring host;
hsighed short port;
IQP:ObjectKey object_key;

/I Added in 1.1 unchanged for 1.2, and later
I0P::TaggedComponentSeq components;

b

struct ListenPoint {
string host;
unsigned short port;

b

© ISO/IEC 2012 - All rights reserved

123

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

typedef sequence<ListenPoint> ListenPointList;

struct BiDirllOPServiceContext {// BI_DIR_IIOP Service Context
ListenPointList listen_points;
b
b

9.11.3 BiDirPolicy Module

Il Self coptained module for Bi-directional GIOP policy
module BiDirPolicy {
typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;
const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

interface BidirectionalPolicy : CORBA::Policy {
adonly attribute BidirectionalPolicyValue value;

-

5

124 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10 Secure Interoperability

10.1 Overview

This clause defines the CORBA Security Attribute Service (SAS) protocol and its use within the CSIv2 architecture to

address the

requirements of CORBA security for interoperable authentication, delegation, and privileges.

The SAS pfotocol 1s designed to exchange its protocol elements in the service context of GIOP request and

|

messages t
where trans
is, integrity
delegation,
transport.!

transports fhay be unified.

The SAS p

The
acco

Th
whe

(¢

The attribu
identity (as
foundation
some ident
the target i
proxy for tl
calls.

The SAS p
initiates a ¢
initiate a sg
reject the r
rejected. W
context wa

The SAS p
the SAS au
employed t
layer funct

at are communicated over a connection-based transport. The protocol is intended to be usednnig
port layer security, such as that available via SSL/TLS or SECIOP, is used to provide message pr
and or confidentiality) and server-to-client authentication. The protocol provides client) authentig
and privilege functionality that may be applied to overcome corresponding deficiericies in an un
The SAS protocol facilitates interoperability by serving as the higher-level protacolunder which

fotocol is divided into two layers:

authentication layer is used to perform client authentication where sufficient authentication could no
mplished in the transport.

attribute layer may be used by a client to push (that is, deliver) seeurity attributes (identity and privile
e they may be applied in access control decisions.

e layer also provides a means for a client to assert identity attributes that differ from the client’s a
established in the transport and/or SAS authentication layers). This identity assertion capability
of a general-purpose impersonation mechanism that makes it possible for an intermediate to act
ty other than itself. An intermediate’s authori€y~to act on behalf of another identity may be baseq
1 the intermediate, or on trust by the targetin a privilege authority that endorses the intermediate
e asserted identity. Identity assertion maysbe used by an intermediate to assume the identity of its

fotocol is modeled after the Generic Security Service API (GSSAPI) token exchange paradigm.
ontext exchange by including.a protocol element in the service context of its request that instructs
curity context. The target either rejects or accepts the context.” When a target rejects a context, tl
pquest and return an exception that contains a SAS protocol element that identifies the reason the
hen a target accepts a)context, the reply to the request will carry a SAS protocol element that indi
5 accepted.

otocol element sent to initiate a security context carries layer-specific security tokens as necessary

p represent the layer-specific authentication and attribute tokens. If the context includes SAS aut]
onality, the protocol element will contain a mechanism-specific GSSAPI initial context token thg

reply
nvironments
tection (that
ation,
derlying
secure

be

be) to a target

ithentication
is the

bn behalf of
| on trust by
to act as
callers in its

\ client

the target to
e target will
context was
ates that the

to establish

thentication-layer and attribute-layer functionality corresponding to the context. Standard token formats are

hentication-
t

authenticat

41 1. PRI | ‘- —Te el - — 1o d UGS MU |] UL F 1 1.1
S UIT LTI O UICT Tal UL T UTCU CUIIICTA T TTIUTUUTS diU TOUIT=IA y CTPTTVIITETU AU TO U (AT PUSSTUT Y

ent authentication may not be feasible because clients often do not have a certificate.

SAS context protocol, which assumes that at most one message in each direction may be used to establish a context.

© ISO/IEC 2012 - All rights reserved

proxy

For example, the SSL/TLS protocol does not enforce client authentication. Moreover, in a given environment, certificate-based cli-

In the GSSAPI protocol, a target can challenge a client for additional context-establishment information. This is not true of the

125

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

endorsements), they will be contained in an attribute certificate signed by a privilege authority and corresponding to the
subject of the invocation. If the context includes an attribute-layer identity assertion, the asserted identity will be
represented in a standard name form corresponding to the technology domain of the asserted identity.

The SAS protocol supports the establishment of both transient and reusable security contexts. Transient contexts, also
known as stateless contexts, exist only for the duration of the GIOP request that was used to establish the context.
Reusable contexts, also known as stateful contexts, endure until they are discarded, and can be referenced for use with
subseque eqrests—he-SASprotocolneludesa—simple-nesotintionprotocol-that-defines-ateast-eommonrdenominator
form of interoperability between implementations that support only transient contexts and those that suppoft both
transient gnd reusable forms.

10.1.1 Assumptions

The SAS protocol was designed under the following assumptions:

» Sedure interoperability is predicated on the use of a common transport-layer seeurify mechanism, such ag that provided
by BSL/TLS.?

» Th¢ transport layer provides message protection as necessary to protect!GTOP input and output request grguments.

» Thg¢ transport layer provides target-to-client authentication as necessary to identify the target for the purpose of
ensuring that the target is the intended target.

» Transport-layer security can ensure that the client does not Have'to issue a preliminary request to establigh a
corlfidential association with the intended talrge‘[.4

» Tolsupport clients that cannot authenticate using transport-layer security mechanisms, the SAS protocol|shall provide
for|client authentication above the transport layer:

» Tosupport the formation of security contextstsing GIOP service context, the SAS protocol shall requirg at most one
mepsage in each direction to establish a seelirity context.

» Th¢ protocol shall support security contexts that exist only for the duration of a single request/reply pair
» Th¢ protocol shall support security.eontexts that can be reused for multiple request/reply pairs.
+ Tagets cannot rely on clients to manage the lifecycle of reusable security contexts accepted by the targgt.

+ Clipnts that reuse security contexts shall be capable of processing replies that indicate that the context has been
dis¢arded by the target.

3. Transport security mechanisms include unprotected transports within trusted environments.
4. This assumption does not preclude the use of such mechanisms, but rather sustains the use of this protocol in environments where
such mechanisms are not considered favorably.

126 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

Security

ISO/IEC 19500-2:2012(E)

Identity Assertion
Attribute Layer Pushed Privilege Attributes

P End t
roxy Endorsemen SAS Service

Suppll

Figure 10

. CUIII.CAL PIULUUUI
emental Client

Message Protection

Transport Layer Target-to-Client Authentication SSL/TLS or SECIQP
Client Authentication

1 - CSlv2 Security Architecture

10.2 Protocol Message Definitions

10.2.1 The Security Attribute Service Context.Element

This part pf ISO/IEC 19500 defines a new GIOP service Context element type, the security attribute servic

element. 1
reply mes

he SAS context element may be used to associate any or all of the following contexts with GIO
ages:

+ Ideptity context, to be accepted based on trust

e Au

horization context, including authorization-based delegation context

« Clipnt authentication context

A new context_id has been defined for the SAS element.

The context_data of a-SAS element is an encapsulation octet stream containing a SAS message body ma

according

cpnst Serviceld SecurityAttributeService = 15;

to the CDR<¢ncoding rules. The formats of the SAS message bodies are defined in the next sub

e (SAS)
P request and

rshaled
clause.

Servicéld-context_id;

struct SgrviceContext {
sequanrmmTwm?ﬂ—data,

b

At most one instance of this new service context element may be included in a GIOP request or reply.

10.2.2 SAS context_data Message Body Types

Four message types comprise the security attribute service context management protocol. Each security attribute service
context element shall contain a message body that carries one of the following message body types:

© ISO/IEC 2012 - All rights reserved

127

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Co

EstablishContext

Sent by a client security service (CSS) to establish a security attribute service context.

ntextError

Sent by a target security service (TSS) to indicate errors that were encountered in context creation, in the

message protocol, or in use of a context.

A client s
target objq

10.2.2.1

An EstablishContext message is sent by a CSS to establish a SAS.context with a TSS. The SAS context a

identifier
CSS and 1
invalidate

+ client_context_id

au

+ idgntity_token

CompleteEstablishContext

MessagelnContext

Sent by a target security service (TSS) to indicate the outcome of a successful request to establish
attribute service context.

Sent by a client security service (CSS) to associate request messages with an existing-stateful secy

the request. Stateful contexts, also known as reusable contexts, endure until they’are discarded, an
referenced for use with subsequent requests.

peurity service (CSS) is the security service associated with the ORB-that is used by the client to
ct. A target security service (TSS) is the security service associatéd,with the ORB that hosts the

FstablishContext Message Format

hllocated by the CSS to refer to it are scoped to the transport layer connection or association ove
'SS are communicating. When an association is dismantled, all SAS contexts scoped to the connd
I and may be discarded. The EstablishContext;message contains the following fields:

The CSS allocated identifier for the security attribute service context. A stateless CSS shall set thg
client_context_id to 0, indicating-to the TSS that it is stateless. A stateful CSS may allocate a n
client context id. See Stateful/Reusable Contexts on page 142 for a definition of the rules govern
use and allocation of context identifiers.

horization_token
May be used by a CSS to “push” privilege information to a TSS. A CSS may use this token to sen
privileges to a TSSfasia means to enable the target to issue calls as the client.

Carries a representation of the invocation identity for the call (that is, the identity under which the
authorizéd)- The identity_token carries a representation of the invocation identity in one of the
forms:

* (Ar'typed mechanism-specific representation of a principal name.

*»/A chain of identity certificates representing the subject and a chain of verifying authorities.

a security

rity attribute

service context. This message may also be used to indicate that the context should'be discarded affer processing

d can be

invoke the
target object.

hd the context
I which the
ction shall be

onzero
ing the

d proxy

call is to be
following

* A distinguished name.

» The anonymous principal identity (a type, not a name).

An identity_token is used to assert a caller identity when that identity differs from the ident

ity proven by

authentication in the authentication layer(s). If the caller identity is intended to be the same as that
established in the authentication layer(s), then it does not need to be asserted in an identity_token.

* client_authentication_token

128

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Carries a mechanism-specific GSS initial context token that authenticates the client to the TSS. It contains a
mechanism type identifier and the mechanism-specific evidence (that is, the authenticator) required by the
TSS to authenticate the client.

When an initial context token contains private credentials, such as a password, this message may be safely
sent only after a confidential connection with a trusted TSS has been established. The determination of when
it is safe to send a client authentication token in an EstablishContext message shall be considered in the

s + oftha CODDA_1 ation o 1l Baradicm—faor-nareiat tolbioote (olaaren oo 1oy atioa
oo O TH O oI O T O Ca O O O S P arat S O PO ST toRtT 0o CC v o oo v o catrotr

“location forwarded” by a location daemon to the target object). This issue is considered in C
Requirements and Location Binding on page 161.

When a TBS is unable to validate a security attribute service context, the TSS shall not dispatch’ on"the tar,
method injocation. The TSS shall reply with a ContextError message that carries major andiminor codes
reason for] the failure.

If an EstgdblishContext message contains an identity token, then it is the responsibitity of the TSS to extr
identity frpm the identity token and determine if the identity established in the authentication layer(s) is try
the extracfed identity. If so, the asserted identity is used as the caller identity jmthe target’s authorization d

The procegsing of a request to establish a context that arrives on a one-way.call shall be the same as an or
except thaft the TSS will not send an indication of the success (CompleteEstablishContext) or failure (C
of the conftext validation.

10.2.2.2 ContextError Message Format

A ContextError message is sent by a TSS in response to,an EstablishContext or MessagelnContext

may be
lient-Side

bet object
indicating the

Ict a principal
Isted to assert
etermination.

linary call,
bntextError)

message to

indicate t@ the client that the TSS detected an error. CSS, ‘State Machine on page 146 defines the circumstafces under

which a T[SS returns specific error values and exceptions. The ContextError message contains the follow

« client_context_id
The value of the client_context(id that identifies the CSS context in the EstablishContext o

MessagelnContext messagg.in response to which the ContextError is being returned.

+ mdjor_status
The reason the TSS rejected the context.

inor_status
A more specifi€ error code that further defines the reason for rejection in the context of the major

+ error_token

A GSS-méchanism-specific error token. When an EstablishContext message is rejected becaug
a client” authentication_token (a GSS initial context token) that is invalidated by the TSS, th
on the mechanism, the TSS may return a CDR encapsulation of a mechanism-specific GSS error {
field. Not all GSS mechanisms produce error tokens in response to initial context token validatior]

ng fields:

I

status.

e it contains
en depending
oken in this
failures.

In all circumstances where a TSS returns a ContextError, the GIOP request that carried the rejected SAS
not be dispatched by the target ORB.

10.2.2.3 CompleteEstablishContext Message Format

context shall

A CompleteEstablishContext message is sent by a TSS in response to an EstablishContext message to indicate that

the context was established. The CompleteEstablishContext message contains the following fields:

© ISO/IEC 2012 - All rights reserved

129

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

+ client_context_id
The CSS allocated identifier for the security attribute context. It is returned by the target so that a stateful
CSS can link this message to the EstablishContext request. A TSS shall always return the value of the
client_context_id it received in the EstablishContext message.

« context_stateful

A stateless TSS shall always return false. A stateful TSS shall ret
Otherwise a stateful TSS shall return false.

blished-contexits-statefal—and-+hus reusable.
urn true if the established contexlt is reusable.

« finpl_context_token
The GSS mechanism-specific final context token that is returned by a TSS if the cliént requests mjutual
authentication. When a TSS accepts an EstablishContext message containing andnitial context token that
requires mutual authentication, the TSS shall return a mechanism-specific final-context token. Nof all GSS
mechanisms support mutual authentication, and thus not all responses to initial context tokens majy include

final (or output) context tokens.’

When a CompleteEstablishContext message contains a final_context_token, the token shgll be
applied (with GSS_Init_sec_context) to the client-side GSS state machine.

Two or more stateful SAS contexts are equivalent if they are established over the same transport layer conpection or
associatiof, have the same non-zero client_context_id and haye byte-equivalent identity, authorization, and
authenticafion tokens.

A multithfeaded CSS may issue multiple concurrent requests to establish (that is, with an EstablishContext message)
an equivalent stateful SAS context.

A TSS sh4ll not create a duplicate stateful SAS context in response to a request to establish a context that is{ equivalent to
an existing context.

5. SAS layer authentication capabilities are designed to authenticate client to server where such authentication did not occur in the
transport. The SAS protocol is predicated on server-to-client authentication having occurred in the transport layer, and in advance
of the request. Server-to-client authentication in service context (which requires that the target return a final_context_token) is not
the typical use model for SAS layer authentication capabilities.

130 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

A TSS shall return an exception containing a ContextError service context element if it receives a stateful
EstablishContext message with a client_context_id that matches that of an existing context (established over the
same transport layer connection or association) and for which any of the security tokens arriving in the message are not
byte-equivalent to those recorded in the existing context. The request shall also be rejected. The exception and error values
to be returned are defined in CSS State Machine on page 146.

Table 10.1- CompleteEstablishContext Message Semantics

client_cottext_id in client_context_id in context_stateful in Semantic

EstablishContext CompleteEstablishContext CompleteEstablishContext

Message Message Message

0 0 False Client requested statelgss context.

N!=0 N False TSSis stateless or TS$ did not
choeose to remember context. In
either case, if the clierft attempts to
reuse the context (via
MessageInContext) it $hould expect
to receive an error.

True Stateful TSS accepted [reusable

context.

10.2.2.4 MessagelnContext Message Format

A MessapgelnContext message is used by a CSS that wishes)to reuse an existing context with a request. |A CSS may
also use this message to release context that it has established with a stateful TSS. The MessagelnContext message
contains the following fields:

» client_context_id
The nonzero context identifier allocated by the client in the EstablishContext message used to freate the
context.

+ digcard_context
A boolean value that indicates whether the CSS wishes the TSS to discard the context after it progesses the
request. A value of true indicates that the CSS wishes the context to be discarded, a value of false| indicates that
it does not. The pufpese of the discard_context field is to allow a CSS to help a TSS manage the cleanup of

reusable contexts:®

Any requgdst message aiay be used to carry a MessagelnContext message to a target. A TSS that receives a
MessagelnContext message shall complete the processing of the request before it discards the context (iff
discard_gontextis set to true).

A TSS mdy.receive a MessageInContext message that refers to a context that does not exist at the TSS This can occur
either because ' TSS ' TSS rcase, the TSS
shall return an exception containing a ContextError service context element with major and minor error codes indicating
that the referenced context does not exist. The exception and error values to be returned are defined in CSS State
Machine on page 146.

The processing of a MessagelnContext message that arrives on a one-way call shall be the same as for an ordinary call,
except that the TSS will not return a ContextError when the referenced context does not exist.

6. Stateful clients are under no obligation to manage TSS state, so their use of this message for that purpose is discretionary.

© ISO/IEC 2012 - Al rights reserved 131

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.2.3 Authorization Token Format

The authorization_token field of the EstablishContext message of the Security Attribute Service context element is
used to carry a sequence (0 or more) of typed representations of authorization data. The AuthorizationElementType
defines the contents and encoding of the contents of the_element field.

The high order 20-bits of each AuthorizationElementType constant shall contain the Vendor Minor Codeset ID
(VMCID)[ofT the organization that defined the element type. 1he low order 12 bits shall contain the organization-scoped
element type identifier. The high-order 20 bits of all element types defined by the OMG shall contain the/YMCID
allocated fo the OMG (that is, 0x4F4D0).

Organizat{fons must register their VMCIDs with the OMG before using them to define an AuthorizationElementType.
typedef Unsigned long AuthorizationElementType;
typedef sequence <octet> AuthorizationElementContents;

struct AdthorizationElement {
AuthoprizationElementType the_type;
AuthprizationElementContents the_element;

5

typedef §equence <AuthorizationElement> AuthorizationToken;

const AuthorizationElementType X509AttributeCertChain = OMGVMCID | 1;

This part ¢f ISO/IEC 19500 has defined one element encoding type, an X509AttributeCertChain. For this fype, the field
the_element contains an octet stream containing an’\ASN.1 type composed of an X.509 AttributeCertificate and a
sequence pf 0 or more X.509 Certificates. The certesponding ASN.1 definition appears below:

VerifyingCertChain ::= SEQUENCE OF Certificate

AttributeCertChain ::= SEQUENCE{
attriguteCert AttributeCertificate,
certificateChain VerifyingCertChain,

}

The chain|of identity certificates may be provided to certify the attribute certificate. Each certificate in the|chain shall
directly cqrtify the one“preceding it. The first certificate in the chain shall certify the attribute certificate. The ASN.1
representation of €ertificate shall be as defined in [IETF RFC 2459]. The ASN.1 representation of AttributeCertificate
shall be ag defified in [IETF ID PKIXAC].

ol

10.2.3.1 i rofite for €Siv2

The extensions field of the X.509 Attribute Certificates (AC) provides for the association of additional attributes with
the holder or subject of the AC.

Each extension includes an extnlD (an object identifier), an extnValue (an octet string), and a critical field (a boolean).
The extnlID identifies the extension, and the extnValue contains the value of the instance of the identified extension. The
critical field indicates whether a certificate-using system shall reject the certificate if it does not recognize the extension.
If the critical field is set to TRUE and the extension is not recognized (by its extnID), then the certificate shall be
rejected. A non-critical extension that is not recognized may be ignored.

132 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
Extension ::= SEQUENCE {

extnlD OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING
}
[IETF ID PKIXAC] defines a profile for ACs that defines a collection of extensions that may be used in)ACs that
conform tp the profile. An AC that includes any subset of these extensions conforms to the profile. An A(that includes
any other [critical extension does not conform to the profile. An AC that includes any other non-critical extension
conforms fo the profile.
The CSIv? AC profile adds the Proxy Info extension to the collection of extensions definéd\by the IETF profile. This
critical exfension may be used to define who may act as proxy for the AC subject. Referto [IETF ID PKIXAC] for the
details of the format and semantics of the Proxy Info extension.
A TSS shall reject a security context that contains an authorization element of-type”X509AttributeCertChain that
contains cfitical extensions or attributes not recognized by the TSS. In this case; the TSS shall return a ContextError
service context element containing major and minor error codes indicating the evidence is invalid (that is, [Invalid
evidence”) as defined in ContextError Values and Exceptions on page 149.
10.2.4 Client Authentication Token Format
A CSIv2 ¢lient authentication token is a mechanism-specific ‘GSS initial context token. It contains a mechgnism type
identifier {an object identifier) and the mechanism-specific evidence (that is, the authenticator) required to jauthenticate
the client.
The folloying ASN.1 basic token definition deseribes the format of all GSSAPI initial context tokens. The definition of
the inner ¢ontext tokens is mechanism-specifie-
-- basic Token Format
[APPLICATION 0] IMPLICIT SEQUENCE {

thisMech MechType

-1 MechType is an Object Identifier
innefContextToken ANY DEFINED BY thisMech
-1 contents mechanism specific

k
The client|authentication token has been designed to accommodate the initial context token corresponding tq any GSSAPI
mechanisth, dmplementations are free to employ GSSAPI mechanisms other than those required for conformance to
CSIv2, suthasicerberos-

The format of the mechanism OID in GSS initial context tokens is defined in [IETF RFC 2743] 3.1, “Mechanism-
Independent Token Format,” pp. 81-82.

10.2.4.1 Username Password GSS Mechanism (GSSUP)

This part of ISO/IEC 19500 defines a GSSAPI mechanism to support the delivery of authentication secrets above the
transport such that they may be applied by a TSS to authenticate clients at shared secret authentication systems.

© ISO/IEC 2012 - All rights reserved

133

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

The GSSUP mechanism assumes that transport layer security, such as that provided by SSL/TLS, will be used to achieve
confidentiality and trust in server, such that the contents of the initial context token do not have to be protected against
exposures that occur as the result of networking.

The object identifier allocated for the GSSUP mechanism is defined as follows:

{ iso-itu-t (2) international-organization (23) omg (130) security (1) authentication (1)
gssup-mechanism-{1)}

10.2.4.1.1 GSSUP Initial Context Token
For the GBSUP mechanism, only an inner context token corresponding to the initial context tokén is”defingd.

The formdt of a GSSUP initial context token shall be as defined in [IETF RFC 2743] 3.1, *Me¢chanism-Independent
Token Format,” pp. 81-82. This GSSToken shall contain an ASN.1 tag followed by a toKén-length, an authentication
mechanisth identifier, and a CDR encapsulation containing a GSSUP inner context token as defined by the|type

GSSUP::nitialContextToken in Module GSSUP - Username/Password GSSAPI, Token Formats on pagd 174 (and
repeated helow).

/I GSSUR::InitialContextToken

struct InitialContextToken {
CSI::UTF8String username;
CSI::UTF8String password;
CSI::GSS_NT_ExportedName target_name;

5

The targdt_name field of the GSSUP::InitialContextToken contains the name of the authentication domain in which
the client |s authenticating. This field aids the TSSdn processing the authentication should the TSS support several

authentication domains. A CSS shall fill the target_name field of the GSSUP::InitialContextToken with the contents
of the target_name ficld of the CSIIOP::AS_ContextSec structure of the chosen CSI mechanism.

The formdt of the name passed in the-username field depends on the authentication domain. If the mecharlism identifier
of the target domain is GSSUP, then the format of the username shall be a Scoped-Username (with name_|value) as
defined in| Scoped-Username GSS"Name Form on page 136.

10.2.4.1.2 GSSUP Mechanism-Specific Error Token

The GSSUP mechanism-specific error token contains a GSSUP fatal error code.

typedef unsigned long ErrorCode;

Il GSSUA Mechanism-Specific Error Token

struct ErrorToken {
ErrorCode error_code;

k
The following fatal error codes are defined by the GSSUP mechanism:
/I The context validator has chosen not to reveal the GSSUP

Il specific cause of the failure.
const ErrorCode GSS_UP_S_G_UNSPECIFIED = 1;

134 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

Il The user identified in the username field of the
/I GSSUP::InitialContextToken is unknown to the target.
const ErrorCode GSS_UP_S_G_NOUSER = 2;

Il The password supplied in the GSSUP::InitialContextToken was
Il incorrect.
const ErrorCode GSS_UP_S_G_BAD_PASSWORD = 3;

00-2:2012(E)

Il The ta

’

et_name supplied in the GSSUP::InitialContextToken does

/I not malch a target_name in a mechanism definition of the target.

const ErforCode GSS_UP_S_G_BAD_TARGET = 4;
A TSS is yinder no obligation to return a GSSUP error token; however, returning this token may-facilitate thg transition of
the client-gide GSS state machine through error processing. Accordingly, a TSS may indieate that SAS context validation

failed in (
TSS that
value of G

10.2.5

An identit
table lists

types.
In additio1

- Commof
through th

SSUP client authentication by returning a GSSUP error token in a SAS ContextError message.
hooses not to reveal specific information as to the cause of the failed GSSUPjauthentication shall
SS_UP_S_G_UNSPECIFIED.

dentity Token Format

y token is used in an EstablishContext message to carrya “spoken for” or asserted identity. T
the five identity token types and defines the type of identity value that may be carried by each o

| to the identity token types described in the following table, the IdentityTokenType as defined i
I Secure Interoperability on page 175 providésifor the definition of additional CSIv2 identity tok

In this case, a
return a status

he following
f the token

h Module CSI
bn types

e default selector of the ldentityToken union type. Additional standard identity token types shalll only be

defined by the OMG. All IdentityTokenType constants shall be a power of 2.
Table 10.2 - Identity Token Types
Identity[fokenType Meaning
(Union Discriminator)
ITTAbsenjt Identity token is absent; the message conveys no representation of identity assertioh.
ITTAnonymous Identity token is being used to assert a valueless representation of an unauthenticatpd caller.
ITTPrincipalName Identity token contains an octet stream containing a GSS mechanism-independent exported name
object as defined in [IETF RFC 2743].
ITTDistinguishedName Identity token contains an octet stream containing an ASN.1 encoding of an X.501|distinguished
name.
ITTX509CertChain Identity token contains an octet stream confaining an ASN.T encoding of a chain of X.509 identity
certificates.

Identity tokens of type ITTX509CertChain contain an ASN.1 encoding of a sequence of 1 or more X.509 certificates.
The asserted identity may be extracted as a distinguished name from the subject field of the first certificate. Subsequent
certificates shall directly certify the certificate they follow. The ASN.1 encoding of identity tokens of this type is defined
as follows:

CertificateChain ::= SEQUENCE SIZE (1..MAX) OF Certificate

© ISO/IEC 2012 - Al rights reserved 135

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Interpretation of identity tokens that carry a GSS mechanism-independent exported name object (that is, an

identity token

type of ITTPrincipalName) is dependent on support for GSS mechanism-specific name manipulation functionality.

When a TSS rejects a request because it carries an identity token constructed using an identity type or naming mechanism
that is not supported by the target, the TSS shall return a ContextError service context element containing major and

minor status codes indicating the mechanism was invalid.

Asserting entities may choose to overcome limitations in a target’s supported mechanisms by mapping GSS mechanism-

specific identities to distinguished names or certificates. The specifics of such mapping mechanisms are out
of this texf.

10.2.5.1 GSS Exported Name Object Form for GSSUP Mechanism

The mechfinism OID within the exported name object shall be that of the GSSUP mechanism.

{ iso-itu-{ (2) international-organization (23) omg (130) security (1) authentication (1)
gssup-mechanism (1) }

The name|component within the exported name object shall be a contiguous_string conforming to the synta
scoped-username GSS name form. The encoding of GSS mechanism-independent exported name objects i
[IETF RF{ 2743].

10.2.5.2 Scoped-Username GSS Name Form

ide the scope

x of the
defined in

The scopefd-username GSS name form is defined as follows, where name_value and hame_scope contalin a sequence

of 1 or m¢re UTF8 encoded characters.

scoped-ysername ::= name_value | name_value@name_scope | @name_scope

The '@' claracter shall be used to delimit name\value from name_scope. All non-delimiter instances d
non-quoting instances of '\' shall be quoted with an immediately-preceding '\'. Except for these cases, the q
character, [\', shall not be emitted within a.8coped-username.

The Objedt Identifier corresponding to the GSS scoped-username name form is:

{ iso-itu-t (2) international-organization (23) omg (130) security (1) naming (2) scoped-usernanm

The identity token for ITTPrincipalName, ITTDistinguishedName, ITTX509CertChain should contait
respective] ASN.1 encodings of the name directly. However, the token may contain a CDR encapsulation o
stream thdt containg tlie ASN.1 encoding of the name. The TSS shall distinguish the difference by the first
field. The [values«o£.0x00 or 0x01 shall indicate that the field contains a CDR encapsulation. Any other valug
field for these idéntity token types contains the ASN.1 encoded value. For instance, the ASN.1 encoding ft

f'@' and all
Loting

e(1)}

1 their

[the octet
octet of the
indicates the
r

ITTPrincipalName starts with 0x04, and ITTDistinguishedName and ITTX509CertChain each start w

ith 0x30. The

TSS shall accept both the CDR encapsulation form and the direct ASN.1 encoding for these identity token
10.2.6 Principal Names and Distinguished Names

Principal names are carried in EstablishContext messages of the SAS protocol, where they may appear i
identity_token (the ITTPrincipalName discriminated type of an IdentityTokenType) or in the
client_authentication_token, which is a GSS initial context token.

types.

n the

136 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Principal names are also present in the compound mechanisms defined within a TAG_CSI_SEC_MECH_LIST tagged
component within IORs. The target_name field of the AS_ContextSec structure may contain a sequence of principal
names corresponding to the authentication identities of the target (see struct AS ContextSec on page 156). A principal
name may be used as one variant of the ServiceSpecificName form used to identify one of the privilege_authorities
within the SAS_ContextSec structure of a compound mechanism definition within a target IOR (see struct

SAS ContextSec on page 157).

Thepl‘inc. ‘:"“:;:‘:‘:“: cOfte O “‘:“ ““‘:"“ ':“ a 1dmaybe
converted|to GSS mechanism-independent exported name object format; that is, an external form by calling{a mechanism-
plementation of GSS_Export_name. The inverse translation is performed by a mechanisim-sp¢cific
implemenfation of GSS_Import_name. A mechanism-specific implementation of GSS_Display_mame jallows its
caller to cpnvert an internal name representation into a printable form with an associated mechanisSm type dentifier.”

The principal names in identity tokens — those in the target_name field of AS_ContextSec structures ard those in the

may be cdnverted to internal form by calling the appropriate mechanism-specific GSS_import_name furction.

ighed names may appear within an identity token, either as an asserted~identity or indirectly as the] subject
distinguished name within an asserted X.509 Identity Certificate. Distinguished names may also be derived from the

ing transport authentication layer if client authentication is done using SSL certificates. Distinguish¢d names may
also be usgd as a form of GeneralName in the GeneralNames variant-of'the ServiceSpecificName type. The
ServiceSlpecificName type is used to identify privilege_authofities within the SAS_ContextSec strjicture of a
compound mechanism definition within a target IOR.

10.3 Becurity Attribute Service Protocol

10.3.1 Compound Mechanisms

The SAS protocol combines common authorization (security attribute) functionality with client authenticatlon

functionalfity and is intended to be used-ifi conjunction with a transport-layer security mechanism, so that there may be as
many as tInree protocol layers of security functionality. This sub clause describes the semantics of the compound security
mechanisths that may be realized,using this interoperability architecture.

The three [protocol layers build on top of each other. The transport layer is at the bottom. The client authertication
functionalfity of the SAS protocol provides a way to layer additional client authentication functionality abov¢ the transport
layer. The| common authorization functionality provides a way to layer security attribute functionality abovie the
authentication layers\Any or all of the layers may be absent.

A target dpscribestin its IORs the CSI compound security mechanisms it supports. Each mechanism defines § combination
of layer-specific security functionality supported by the target, as defined in TAG_CSI_SEC_MECH_LIST|on page 155.

The mechanisms a client uses to interact with a target shall be compatible with the target’s capabilities and sufficient to
satisfy its requirements.

7. Asdefined in IETF RFC 2743 on page 174, “Generic Security Service Application Program Interface Version 2, Update 17, J.
Linn, January 2000.

© ISO/IEC 2012 - Al rights reserved 137

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.3.1.1 Context Validation

A target indicates its requirements for client authentication in its IORs. The layers at which a CSS authenticates to a TSS

shall satisfy the requirements established by the target (see the description in Target Security Configuration

on page 151).

When a CSS attempts to authenticate with a TSS using the client authentication functionality of the SAS context layer
protocol (by including a client_authentication_token in an EstablishContext message), the authentication context
established in the TSS will reflect the result of the service context authentication (after having satisfied the target’s

requiremept for transport level authentication if any)

If the serv
Thyg

An
ser

ice context authentication fails, the following shall happen:

request shall be rejected, whether or not authentication is required by the target.

ice context element shall contain major and minor status codes indicating that client-authentication f

If the reqy
transport |

est does not include a client_authentication_token, the client authentication identity is deriv
ayer.

When a re
identity is

quest includes an identity token, the TSS shall determine if the identity: established as the client
trusted to assert the identity represented in the identity token.

A TSS thg
trust by af
evaluation)

t does not support authorization-token-based delegation (see €Conformance Levels on page 162) s
plying the client authentication identity and the asserted-identity to trust rules stored at the targe]
of trust based on rules of the target a backward trust €valuation.

Whena T
an authori
attributes

authentical
rules prov|
evaluation

bS that supports authorization-token-based delegation receives a request that includes both an iden
zation token with embedded proxy attributes, the;TSS shall evaluate trust by determining whethd
were established (that is, signed) by a privilége authority acceptable to the target and whether thg
tion identity is included in the identities named in the proxy attributes. We call the evaluation of

based on a backward trust evaluation.

A TSS sh3
identity (i

1 determine that a trusted idenfity established in the authentication layer(s) is trusted to assert ex3
h terms of identifier value and'identification mechanism) in an identity token.

In either g
Otherwise
The Con

ase of forward or backward trust evaluation, if trust is established, the context is considered corr
the TSS shall rejeét the request by returning an exception containing a ContextError service co
xtError element-shall contain major and minor status codes indicating that the evidence was in

If a reque$t includes anrauthorization token but does not include an identity token, the TSS shall ensure th
identity ngmed in‘the’/authorization token is the same as the client authentication identity. If the request ind
identity token,(the* TSS shall ensure that the access identity is the same as the identity in the identity token
supports authorization-token-based privilege attributes shall reject any request that does not satisfy this cor

exception containing a ContextError service context element shall be returned to the(GSS. The CantextError

ailed.

ed from the

wuthentication

hall evaluate
t. We call the

tity token and

r the proxy
client

rust based on

ided by the caller a forward trust evaluation. A TSS shall not accept requests that failed a forwargd trust

ctly the same

ectly formed.
htext element.
valid.

it the access
ludes an

A TSS that
straint and

return an €X C v O
and minor status codes indicating that the evidence was invalid.

When a request includes an authorization token, it is the responsibility of the TSS to determine if the targe

contain major

t trusts the

authorities that signed the privileges in the token. A TSS that supports authorization-token-based privilege attributes shall
reject any request with an authorization token that contains privilege information signed by an authority that is not trusted
by the target. In this case, the TSS shall return an exception containing a ContextError service context element. The
ContextError element shall contain major and minor status codes indicating that the evidence was invalid.

138 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.3.1.2 Legend for Request Principal Interpretations

This sub clause serves as a key to the invocation scenarios represented in Table 10.3 on page 140, Table 10.4 on page 140,
and Table 10.5 on page 141. The three tables describe the interpretation of security context information arriving at a target
object from a calling object, object 2, that may have been called by another object, object 1. The authentication identity

of object 2, as seen by the target object, may have been established in the transport layer, or the SAS context layer, or
both. If the authentication identity was established at the transport layer it is referred to as P22, If the authentication

s established at the SAS context laver_ it i referred to as P2B The authentication identity seen

identity w
when it is
distinction
may also

P1 is also
When obj
context. T|
object 2 a
either or b
identity, tl
proxy for

When obj¢

authorizat
that are er
When the
rules, the

as proxy for the asserted identity(P1).

objedt 1
P1

Figure 10

10.3.1.3

The anony
(perhaps 4
an identif

called by another object (that is, object 1) is referred to as P1, the authentication identity of objg
is made between the transport and SAS layer authentication identities of object 1 as seen by.\objg
fall object 2 anonymously.

used to represent a non-anonymous identity that may be asserted by object 2 when'it)calls the tal
ect 2 calls the target object, it may include an asserted identity in the form of an Gdentity token in
he asserted identity may be the anonymous identity or, a non-anonymous identity (represented by
serts an identity to the target object, it may (or may not) establish proof of its own identity by auf
oth of the transport (P24, or SAS (P2B) layers. When the target object feceives a request made w
e target object will determine if it trusts the client authentication idéntity (that of object 2, or P2
the asserted identity (that of object 1, or P1).

ct 2 asserts a non-anonymous identity to the target object, it may include with its request a SAS
on token containing PACs. Each PAC may include an attribute that assigns proxy to a collection|]
dorsed by the authority that created the PAC to assert{the”identity to which the privileges in the
target object receives a request made with an assertedidentity and an authorization token contaij
arget object will use the proxy rules to determine ifit may trust the client authentication identityj

target
object

mous identityis used to represent an unauthenticated entity. To assert an anonymous caller idenf
cting as dnyintermediate) shall include a SAS context element containing an EstablishContext
y_token:containing the anonymous ldentityTokenType in its request.

SAS: P2B

—® | Object2
R2

2 - Invocation Scenarios

Transport: P2A

Anonymous Identity Assertion

y object 2
ct 1. No
ct 2. Object 1

rget object.
its SAS layer
y P1). When
henticating at
th an asserted
) acting as

layer

of identities
PAC apply.
hing proxy
(P22 or P2B)

ity, a CSS
message with

10.3.1.4

Presumed Trust

Presumed trust is a special case of the evaluation of identity assertions by a TSS. In presumed trust, a TSS accepts

identity assertions based on the fact of their occurrence and without consideration of the authentication identity of the
asserting entity. The presumption is that communications are constrained such that only trusted entities are capable of
asserting an identity to the TSS.

© ISO/IEC 2012 - All rights reserved

139

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.3.1.5 Failed Trust Evaluations

Table 10.3 shows the circumstances under which the interpretation of caller credentials by a TSS results in a failed trust
evaluation. None of these circumstances correspond to presumed trust, where trust evaluations are not performed (and
therefore cannot fail).

Table 10.3 - Conditions under which Trust Evaluation Fails

Transpgrt SAS Client SAS Identity | Does Target Trust PZ, or Is P2 Named as
Client Authentication Token Proxy in Authorization Elements?
Principal Principal Identity

None None P1 Not Applicable

None p2B P1 No (with respect to p2®

p2A None P1 No (with respect to P2y

p24 p2B P1 No (with respect to P2P)

A failed tfust evaluation shall result in the request being rejected with an indication that client authenticatipn failed.

10.3.1.6 Request Principal Interpretations

The entrieg in Table 10.4 describe the interpretation of client credefitials by a TSS after an incoming call hap satisfied the
target’s sepurity requirements and has been validated by the TSSx

Table 10.4 - TSS Interpretation of Client Credentials After\Validation

Transpgrt SAS Client SAS Identity Client Principal is | Invocation Scenariq

Client Authentication | Token Identjty:* | Trusted Principal

Princip3l Principal

None None Absent Not applicable Anonymous Unauthenticated

None p2B Absént Not applicable P2 Client autheentication
p2A None Absent Not applicable P2 Client autheentication
p2A p2B (by rule 1%y Absent Not applicable p2B Client authentication
None None P1 Yes if rule 2° P1 identity asdertion

None p2B P1 Yes if rule 2 or rule 3° P1 identity asdertion

p2A Nong Pl Yes if rule 2 or rule 3 P1 identity asdertion

p2A P28 (by rule 1) P1 Yes if rule 2 or rule 3 P1 identity asdertion

None None Anonymous Yes if rule 4¢ Anonymous assertion of anonymous
None p2B Anonymous Yes if rule 4 Anonymous assertion of anonymous
p24 None Anonymous Yes if rule 4 Anonymous assertion of anonymous
p24 p2B (by rule 1) Anonymous Yes if rule 4 Anonymous assertion of anonymous
none No SAS Message Not Applicable Anonymous Unauthenticated

P2 No SAS Message Not Applicable P2 Client authentication

a. Rule 1: TSS trusts P2 to use authenticator for P28 is implied by p2B having been authenticated.
b. Rule 2: TSS presumes trust in transport to accept None, P24, or P2B speaking for P1.

140 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

c. Rule 3: TSS trusts P22, or P2B to speak for P1.

d. Rule 4: TSS trusts None, P2, or P28 to speak for Anonymous. A TSS shall support the configuration of rule 4, such that
Anonymous identity assertions are accepted independent of authentication of the asserter.

00-2:2012(E)

The entries in Table 10.5 describe additional TSS interpretation rules to support delegation. These rules have been
separated from those in Table 10.4 on page 140, because they describe functionality required of implementations that
conform to a higher level of secure interoperability as defined in Conformance Level 2 on page 163. The entries in Table

10.5 corre
is, a proxy
tokens are

An author
proxy for
authorizat
table, the

represented in Table 10.4.

ization token may contain authorization elements that contain proxy statements, whiely éndorse p
other entities. Table 10.5 describes delegation scenarios in which endorsements from the issuer o
on element authorize the authenticated identity, which is P24 or P28, to proxy_for the asserted id
column “Proxies Named in Authorization Element” defines the identities who are endorsed by the

Epond to invocations that carry an identity token and an authorization token with embedded delegatipn token (that
endorsement attribute) in an EstablishContext service context element. Invocations that do not.ca

all of these

rincipals to

f the

entity. In this
authorization

element td proxy for P1, the asserted identity and the subject of the authorization elfement. The value “Any”|indicates that
the authorjization element contains a blanket endorsement, such that as far as its‘\isster is concerned, any identity may
proxy for [P1. The outcomes described in Table 10.5 assume that the TSS trusts-the issuer of the authorizatipn element to
endorse pfincipals to proxy for others.
Table 10.% - Additional TSS Rules to Support Delegation

Transpoft SAS Client SAS Identity Proxies Named in Invocation Scengrio

Client Authentication Token Identity | Authorization Element Principal

Principa Principal

None p2B P1 Any P1 Delegqtion

p2A None P1 Any P1 Delngtion

p24 p2B P1 Any P1 Delegdtion

None p2B P1 Restricted to set including p2B P1 Restridted delegation

p2A None P1 Restricted to set including p2A Pl Restridted delegation

p2A p2B P1 Restricted to set including p2B P1 Restridted delegation
10.3.2 Bession Semantics

This sub ¢
it does no
security ¢

lause describes the negotiation of security contexts between a CSS and a TSS. A TSS is said to
operatenn the mode of accepting reusable (that is, stateful) security contexts. A TSS that accep
ntexts)is said to be stateful. A CSS is said to be stateless if it operates in the mode of establishi

non-reusa

be stateless if
s reusable
hg transient,

ble (that is, stateless) security contexts. A CSS that issues requests to establish reusable security ¢

ntexts is said

to be stateful.

10.3.2.1 Negotiation of Statefulness

A client initiates a stateless interaction by specifying a client_context_id of 0. A client issues a request to establish a
stateful context by including a nonzero client_context_id in an EstablishContext message.

© ISO/IEC 2012 - All rights reserved

141

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

When a stateless TSS receives a request to establish a stateful session, the TSS shall attempt to validate the security

tokens bound to the request. If the validation fails, an exception containing an appropriate ContextError service context
element shall be returned to the client. If the validation succeeds, the TSS shall negotiate to stateless by responding with
a CompleteEstablishContext message with context_stateful set to false.

A client that initiates a stateful interaction shall be capable of accepting that the target negotiated the context to stateless.

10.3.2.2

Each trans
a scope.

A CSS m3
context w

To avoid

Stateful/Reusable-Contexts

port layer session defines a context identifier number scope. The CSS selects context identifiers

y use the EstablishContext message to issue multiple concurrent requests to establish a statefi
thin a scope.

luplicate sessions, when the stateful EstablishContext requests sent within 'a.scope carry equiv|

contexts,

Within a

an establighed context with the same client_context_id. In this case, an ekception containing a Context
context element shall be returned to the caller.

e CSS shall assign to them the same nonzero client_context_id.

ope, a TSS shall reject any request to establish a stateful context thatycarries a different security

for use within

1l security

plent security

context from
Error service

Two secutfity contexts are equivalent if all of the authentication, identity, and authorization tokens match both in existence

and in valpe. Token values shall be evaluated for equivalence by ¢omparing the corresponding byte sequen
carry the fokens in EstablishContext messages.

ces used to

When a tdrget that supports stateful contexts receives a reguest to establish a stateful context, the TSS shalll attempt to

validate the security tokens in the EstablishContext element. If the validation succeeds, the request shall
and the reply (if there is one) shall carry a CompleteEstablishContext element that indicates (that is,

context_
exception

A TSS tha
reuse statg
unilaterall]

A TSS sh
client_cd

A TSS thg
to preserv,

Conversel

Iy discarded by the TSS,

tateful = true) that the context is available at the TSS for the caller’s reuse. If the validation fa
containing an appropriate ContextError service context element shall be returned to the caller.

t accepts stateful contexts shall bear the responsibility for managing the lifecycle of these session|
ful contexts shall capable 0f processing replies that indicate that an established stateful context |

11 not establish a_stateful context in response to a request to establish a stateless context (that is,
ntext_id of zero).

t supports. Stateful contexts may negotiate a request to establish a stateful context to a stateless co
e resourees/ It may do so only if it does not already have an established matching stateful contex

y, d stateful TSS that has negotiated a request to stateless may respond statefully to a subsequent

be accepted,

Is, an

5. Clients that
as been

one with a
ntext in order

t.

context with

the same (

non=zero) client context id

10.3.2.2.1 Relationship to Transport-Layer

A SAS context shall not persist beyond the lifetime of the transport-layer secure association over which it was
established.

Stateful SAS contexts are not compatible with transports that do not make the relationship between the connection and the
association transparent.

142

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.3.3 TSS State Machine

The TSS state machine is defined in the state diagram, Figure 10.3 on page 144 and in the TSS state table, Table 10.6 on
page 145. Each TSS call thread shall operate independently with respect to this state machine. Where necessary, thread
synchronization at shared state shall be handled in the actions called by this state machine.

An ORB must not invoke the TSS state machine if the target object does not exist at the ORB. The TSS state machine has

no capacify To Teject o Torward® @ Tequest because The Target object does Tot oxist, and must Tely on the ORB to only

invoke thd

In responge to a one-way call, a TSS shall not perform any of the send actions described by the state’mach

TSS when the target object exists at the ORB.

ine.

The shaddd rows in Table 10.6 on page 145 indicate transitions and states that do not exist inja)stateless implementation

of the SAB protocol.

The state hames, function names, and function signatures that appear in the state diagram and the state tab

prescriptiy

c.

€ are not

8. A TSS uses the LOCATION FORWARD status to return an IOR containing up-to-date security mechanism configuration for an
existing object.

© ISO/IEC 2012 - All rights reserved

143

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Establish

Reply

accept_ctxt successful / proc rast

rast proc complete/ send Rply(ComipEstCb

recv Rast no SAS msg/ acoept_trpt_otxi()

aocept_trpt_cixt faled/

\Verify Transport
Context

Figure 10

144

acoept trpt.ctxt successful / proc rast

Waiting for

aCCepr CIRTa evicerce

(T eifirw e Rpy(CxtET)
acoept _cixt fai led [inv mech]/ send Rpy(CixdtErT)
acoept_ctxt failed plicy chg]/ send Rply(LOC_FWD, new IOR)
accept_cixt failed] conflict]/ send Rp|y(Cb¢ErT)

recv Rost(MsgInCixt) / ref_ ot

Request In
Context

\ ref found / proc rgst

3 - TSS State Machine

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

Table 10.6 -TSS State Table

ISO/IEC 19500-2:2012(E)

State Event Action New State
1 Waiting for | receive request without SAS message accept_transport_context() Verify Transport
Request Context
receive Request + EstablishContext accept_context(tokens, N, Out stateful) Establish Context
{client_context id = N, tokens}
receive Request + MessageInContext reference context(N) Regtiest| In Context
{client context id =N,
discard context = D}
2 Verilfy accept_transport_context() returned process request Send Only
Tragsport success Reply
Conltext
onfex accept_transport_context() returned failure | send exception (NO_PERMISSION) Waiting| for Request
3 Sendl Only | request processing completed send Reply Waiting| for Request
Reply
4 Sendl Reply | request processing completed send Reply + Waiting| For Request
CompleteEstablish€ontext { N, stateful}
5 Establish accept_context (tokens, N, Out stateful) process request Send R¢ply
Conftext returned success
accept_context (tokens, N, Out stateful) send €xception + Waiting| for Request
returned failure (invalid evidence) ContextError (invalid evidence)
accept_context (tokens, N, Out stateful) send exception + Waiting| for Request
returned failure (invalid mechanism) ContextError (invalid mechanism)
accept_context (tokens, N, Out statcful) send Reply + LOCATION_FORWARD Waiting| for Request
returned failure (policy change) status + updated IOR
accept_context (tokens, N, Qut stateful) send exception + Waiting| for Request
returned failure (conflicting evidence) ContextError (conflicting evidence)
6 Reqgpest in | reference context(N) process request Reuse (Jontext
Confext returned reference
reference context(N) send exception + Waiting| for Request
returned(empty reference ContextError (context does not exist)
7 Reube request processing completed send Reply Waiting| for Request
ConFext if (D) discard context(N)

10.3.3.1
This sub ¢

function names and function signatures are not prescriptive.

SS(State Machine Actions

« accept_context (tokens, N, Out stateful)
This action validates the security context captured in the tokens including ensuring that they are compatible

with the mechanisms supported by the target object. If a context is not validated, accept_context returns error

codes that describe the reason the context was rejected.

| above, the

When called by a stateless TSS, accept_context always returns false in the output argument “stateful.”
When called by a stateful TSS, accept_context may (depending on the effective policy of the target object)
attempt to record state corresponding to the context. If state for the identified context already exists and the

© ISO/IEC 2012 - All rights reserved

145

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

received tokens are not equivalent to those captured in the existing context, accept_context shall reject the
context. If the context state either already existed, or was recorded, accept_context returns true in the output
argument “stateful.” An implementation of accept_context shall implement the error semantics defined in
the following table.

Table 10.7- Accept Context Error Semantics

Semantic Returned Error Code

Tokens mptch mechanism definition of target object but could not be validated. Invalid evidence

Context hhs non-zero client _context_id that matches that of an exiting context but tokens are not Conflicting’evidence
equivalent to those used to establish the existing context.

The mechpnism configuration of the target object has changed and request indicates that CSS is not |(Rolicy change
aware of fhe current mechanism configuration.

The mechhnism configuration of the target object has not changed, and request is not consistent Invalid mechanipm
with target mechanism configuration.

When accept_context returns any of Invalid evidence, Conflicting evidence, or Invalid mechanism
the TSS shall reject the request and send a NO_PERMISSION exception containing a ContextError service
context element with error codes as defined in Table 10.9 on page 150. When accept_context returns Policy
change, the TSS action shall reject the request and returfica reply with status LOCATION_FORWARD and
containing a new IOR for the target object that contains an up-to-date representation of the target’ security
mechanism configuration.

« acg¢ept_transport_context()

This action validates that a request that arriveswithout a SAS protocol message; that is, EstablishContext or
MessagelnContext satisfies the CSIv2 security requirements of the target object. This routinesrleturns true if
the transport layer security context (inehiding none) over which the request was delivered satisfies the security
requirements of the target object. Othetwise, accept_transport_context returns false. When
accept_transport_context returns false, the TSS shall reject the request and send a NO_PERMISSION
exception.

- reference_context (N)
If there is an existing context with client_context_id = N, reference_context returns a refer¢nce to it.
Otherwise, reference’_context returns an empty reference.

« digcard_context ((N))

If context N exists and it is not needed to complete the processing of another thread, discard_caontext causes
the context-to be deleted.

10.3.4 CSS State Machine

A proposed implementation of the CSS state machine 1s defined in the state diagram, Figure 10.4 on page 147, and in the
CSS state table, Table 10.8 on page 148. Each CSS call thread shall operate independently with respect to this state
machine. Where necessary, thread synchronization at shared state shall be handled in the actions called by this state
machine.

When a CSS processes a one-way call, it returns to the caller and sets its next state to done, as no response will be sent
by the TSS. The shaded rows in the state table indicate transitions and states that need not exist in a stateless CSS client
side implementation.

146 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

The state names, function names, and function signatures that appear in the state diagram and state table are not

prescriptive.

Q

Also,

request, client policy, IOR rdy / get_ mech(thislOR)

Try
Mechanism

|

\

\

mech is protected/ get_client_creds
mech |s wnprotected//get com

\

creds ready./tget_conn

recv Rply(CompEstCtxt) / comp_ctxt -

recv Rply(LOC_FWD, newlOR) / get mech(newlOR)
recv Rply(CtxtErr)[conflict]/ inv_ctxt, raise except
recv Rply(CtxtErr)[inv mech]/ raise except

recv Rply(CtxtErr)[inv evidence]/ raise except

Wait for
SAS Reply

new ctx] stateless]/ send Rast(EstCtxt, N=0)
new ox{f stateful] /send Rgst(EstCtxt N!=0)

Wait for

| y
Unprotected Wait for
Request

Credentials ‘

cred not ready / raise exeept

conn rejected / xaise except

conn rejecte

conr ready / send Rgst

AN Rely
Requestin
Context

\
existing ctxt t(Ms gInCtxt,N

recy Rply

Connection

raise except

conn ready / get_ctxt_element

—jcomprexut
stateful

Also, inv_etxt N
if stateful

Wait for
Reply - recv Rply(CtxtErr) /inv_ctxt, get_ctxt_element

NULL ctxt / send Rgst ————

Figure 10.4 - CSS State Machine

© ISO/IEC 2012 - All rights reserved

Wait for
Context

147

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Table 10.8 - CSS State Table

State Event Action New State
1 | start Request + client policy + IOR ready to send get_mechanism (policy, thislOR, Out mech) Try Mechanism
2 | Try the selected mechanism is unprotected get_connection (mech, Out c) Unprotected Request
Mechanism
the selected mechanism is protected get_client_creds (policy, mech, Out creds) Wait for Credentials
3 | Unprotected conncction ready send request Wait 1pr Reply
Requedt
connection rejected raise exception and return to caller® done
4 | Wait fgr receive reply return to caller done
Reply
5 | Wait fgr client credentials ready get_connection (policy, mech, creds, Out(c) Wait fpr Connection
Credentials
necessary credentials not obtained raise exception and return to caller’ done
6 | Wait fgr connection ready get_context_element (¢, policy,/€reds, mech, Out Wait for Context
Connegtion element)
connection rejected raise exception and returmfo caller® done
7 | Wait fqr get_context_element returned EstablishContext send Request + EstablishContext Wait for SAS Reply
Contexjt {N =0, tokens} {client_context_id.=N = 0, tokens}
get_context_element returned EstablishContext send Request #+ EstablishContext Wait for SAS Reply
{N =0, tokens} {client_centext id = N != 0, tokens}
get_context_element returned NULL send, request Wait for Reply
get_context_element returned gendrRequest + MessagelnContext Request In Context
MessagelnContext {N !=0, D} {client_context id =N !=0, D}
8 | Wait fqr SAS | receive exception + raise exception and return to callerd done
Reply ContextError (invalid evidence)
receive exception + raise exception and return to caller done
ContextError (invalid mechanism)
receive exception + invalidate context (¢, N) done
ContextError (conflicting evideénce)
raise exception and return to caller
receive Reply + LOCATION_FORWARD status | return to caller done
+ updated IOR
receive Reply & CompleteEstablishContext {N, | complete context (c, N, context_ stateful) done
context_stateful}
return to caller
9 | Requedt in receiye-exception + invalidate context (c, N) Wait for Context
Context ContextError (context does not exist) get_context_element (¢, policy, creds, mech, Out
element)
receive Reply return to caller done
a. ay-ce
state Try Mechanism.
b. Same note as 1.
c. Same note as 1.
d. A CSS may re-collect authentication evidence and try again, in which case it might call get client creds(policy, mech, Out
creds) and transition to state Wait for Credentials.
148 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

10.3.4.1 CSS State Machine Actions

00-2:2012(E)

This sub clause defines the intended semantics of the actions appearing in the CSS state machine. As noted above the
function names and function signatures are not prescriptive. The descriptions appearing in the following sub clauses are
provided to facilitate understanding of the proposed implementation of the CSS state machine.

+ get_mechanism (policy, IOR, Out mech)

Select from the IOR a mechanism definition that satisfies the client policy.

oge

oge

oge

s iny

10.3.5

Table 10.9
event coly

_client_creds (policy, mech, Out creds)

_connection (mech, Out ¢)
Open a connection based on the port information in the mechanism argument.

_connection (policy, mech, creds, Out c)
Open a secure connection based on the client policy, the target policy in the mechanism argum
the client credentials in the creds argument.

_context_element (c, policy, creds, mech, Out element)
In the scope of connection €, use the client creds to create a SAS protocol context element that §
the client policy and the target policy in the mechanism. If thé-CSS supports reusable contexts
policy is to establish a reusable context, the CSS allocates a client_context_id, and initializes a
element in the context table of the connection. A NULL centext element may be returned by
get_context_element when the target mechanism definition either does not support or require
security functionality, and the client establishes a poliey not to use such functionality unless requi

alidate_context (c, N)
Mark context N in connection scope ¢ as invalid such that no more requests may (re)use it.

mplete_context (c, N, context_stateful)
This action applies the contents of a retnined CompleteEstablishContext message to context
connection scope €, to change its state to completed. In a stateful CSS, get_context_element y
return a MessagelnContext el¢nmient until complete_context is called with context_statef|

ContextError Values-and Exceptions

defines the circumstances under which error values and exceptions shall be returned by a TSS.
mns contain states and events appearing in Table 10.6.

Get the client credentials as necessary to satisfy the client policy and the target policy in-the n-]echanism.

ent, and using

atisfies
and the client
context

SAS layer
red to do so.

N, in
vill not
ul true.

The state and

© ISO/IEC 2012 - All rights reserved

149

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Table 10.9- ContextError Codes and Exceptions

State Event Semantic Major Minor Exception
Establish Context accept_context returned failure Invalid evidence 1 1 NO_PERMISSION
Invalid mechanism 2 1 NO_PERMISSION
Contflicting evidence | 3 1 NO_PERMISSION
Request In Context | reference context (N) returned No Context 4 1 NO_PERMISSION
false

10.4 Transport Security Mechanisms

10.4.1 Transport Layer Interoperability

The secur¢ interoperability architecture that is defined by this part of ISO/IEC 19500 partitions secure intefoperability

into three [layers: the transport layer, authentication above the transport layer, angd the secure attribute layer|

This text

defines sefure interoperability that uses transport-layer security for message'potection and authentication of the target to

the client.

10.4.2 Transport Mechanism Configuration

The configuration of transport-layer security mechanisms is ‘specified in IORs. Support for CSI is indicated within an IOR
profile by|the presence of at most one TAG_CSI_SEC_MECH_LIST tagged component that defines the mechanism
configurafiion pertaining to the profile. This component'contains a list of one or more CompoundSecMec¢h structures,

each of which defines the layer-specific security meehanisms that comprise a compound mechanism that is
the target.| This part of ISO/IEC 19500 does not.define support for CSI mechanisms in multiple-component

supported by
IOR profiles.

Each CompoundSecMech structure contains a transport_mech field that defines the transport-layer sdcurity
mechanisth of the compound mechanism{_A compound mechanism that does not implement security functipnality at the
transport layer shall contain the TAG_NULL_TAG component in its transport_mech field. Otherwise, the

transpor{_mech field shall contain a tagged component that defines a transport protocol and its configurfition.

TAG _TLY SEC TRANS on page'153 and TAG _SECIOP_SEC TRANS on page 155 define valid transpor
componenits that can be us¢d in’the transport_mech field.

10.4.2.1
This part ¢f ISOAEC 19500 recommends that implementations support the following ciphersuites in additi

ecommended SSL/TLS Ciphersuites

-layer

n to the

mandatory ciphersuites identified in [IETF RFC 2246]. Of these additional ciphersuites, those which use weak encryption

keys are only‘\recommended for use in environments where strong encryption of SAS protocol elements (it

cluding

GSSUP authenticators) and request arguments is not required. Some of the recommended ciphersuites are known to be

encumbered by licensing constraints.
« TLS RSA WITH RC4 128 MD5
+ SSL_RSA WITH RC4 128 MD5
« TLS DHE DSS_WITH DES_CBC_SHA
- SSL_DHE DSS_WITH DES _CBC_SHA
+ TLS RSA EXPORT WITH RC4 40 MD5

150

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

« SSL_RSA_EXPORT WITH RC4 40 MD5
. TLS_DHE_DSS EXPORT WITH DES40 CBC_SHA
. SSL_DHE_DSS_EXPORT WITH_DES40 CBC_SHA

10.5 Interoperable Object References

10.5.1 Target Security Configuration

A target that supports unprotected IIOP invocations shall specify in the corresponding TAG_INTERNET_IOP profile a
nonzero pprt number at which the target will accept unprotected invocations.” A target that supports only protected IIOP
invocatior]s shall specify a port number of 0 (zero) in the corresponding TAG_INTERNET_4OP profile. A tqrget may
support bgth protected and unprotected IIOP invocations at the same port, but it is not required to do so.

struct IOR {

string type_id;

sequence <TaggedProfile> profiles = {

rofileld tag = TAG_INTERNET_IOP;
sfruct ProfileBody_1_1 profile_data = {

Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;
sequence <IOP::TaggedComponent> components;

15
15
A target that supports protected invocations shall describe in a CompoundSecMech structure the charactefistics of each
of the altefnative compound security mec¢hanisms that it supports. The CompoundSecMech structure shall be included
in a list of such structures in the body of a TAG_CSI_SEC_MECH_LIST tagged component.

sequence <IOP::TaggedComponent> components = {
I0P::TaggedComponent {
Qomponentld tag= TAG_CSI_SEC_MECH_LIST;
pquence <octet> component_data = {
CSIIOPy:CompoundSecMechList = {
boolean stateful;
CompoundSecMechanisms mechanism_list = {
CompoundSecMech;

(2]

9. The OMG has registered port numbers for [IOP (683) and IIOP/SSL (684) with IANA. Although the existence of these reserva-
tions does not prescribe their use, it may be useful to recognize these port numbers as defaults for the corresponding protocols.

© ISO/IEC 2012 - Al rights reserved 151

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

The order of occurrence of the alternative compound mechanism definitions in a TAG_CSI_SEC_MECH_LIST component
indicates the target’s mechanism preference. The target prefers mechanism definitions occurring earlier in the list. An IOR
profile shall contain at most one TAG_CSI_SEC_MECH_LIST tagged component. An IOR profile that contains multiple

TAG_CSI_SEC_MECH_LIST tagged components is malformed and should be rejected by a client implementation.

10.5.1.1 AssociationOptions Type

The AssaqciationQption pe is an 3 3 g options. The
properties|of security mechanisms are defined in an IOR in terms of the association options supported andr¢quired by the
target. A CSS shall be able to interpret the association options defined in Table 10.10.

Table 10.10 - Association Options

Associafion Option target_supports target_requifes

Integrity Target supports integrity protected messages Target(requires integrity protect¢d messages .

Confidentjality Target supports privacy protected messages Target requires privacy protectedl messages.

EstablishTrustInTarget | Target can authenticate to a client Not applicable. This bit should pever be set,

and should be ignored by CSS.

EstablishTrustInClient | Target can authenticate a client Target requires client authentication.

IdentityAgsertion Target accepts asserted caller identities based ohvtrust in | Not applicable. This bit should fiever be set,
the authentication identity of the asserting’entity. Target | and should be ignored by CSS.
can evaluate trust based on trust rules ©f the target. If
DelegationByClient is set, target canzalso evaluate trust
when provided with a delegatiomdoken (that is, a proxy
attribute contained in an authorization token).?

DelegationByClient When it occurs in conjunctien with support for Target requires that CSS provid¢ a delegation
IdentityAssertion, this bit indicates that target can token that endorses the target as|proxy for the
evaluate trust in an asserting entity based on a client.®
delegation token,?

a. A thrget policy that accepts only identity assertions based on forward trust cannot be communicated in an IOR (althpugh it can
be ¢nforced).
b. If an incoming request ingludes an identity token and a delegation token, the request shall be rejected if the delegatjon token
dogs not endorse the asserting entity (see Section 10.3.1.1, Context Validation, on page 138)
c. A thrget with DelegationByClient set in target_requires shall also have this bit set in target_supports. As noted in the table,

thid has an impaetyon the target’ s identity assertion policy (if any).

The repregentation-of supported options is used by a client to determine if a mechanism is capable of suppprting the
client’s sefurity-requirements. The supported association options shall be a superset of those required by tHe target.

When the IdentityAssertion bit is set in target_supports, it indicates that the target accepts asserted caller identities
based on trust in the authentication identity of the asserting entity. When the DelegationByClient bit is not set, the
target will evaluate trust based on rules of the target (that is, a backward trust evaluation). When the IdentityAssertion and
DelegationByClient bits are set, they indicate that the target is also capable of evaluating trust in an asserting entity
based on trust rules delivered in an authorization token (that is, a forward trust evaluation). A target that can perform a
forward trust evaluation does so when trust rules are delivered in an authorization token. Otherwise a backward trust
evaluation is performed.

152 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

When the DelegationByClient bit is set in target_requires, it indicates that the target requires a delegation token to
complete the processing of a request. Such circumstances will occur when a target, acting as an intermediate, attempts to
issue a request as its caller and sanctioned by the delegation token delivered by its caller.

The rules for interpreting asserted identities in the presence or absence of a delegation token (that is, a proxy attribute
contained in an authorization token) are as defined in Context Validation on page 138.

The security mechanism configuration in an IOR being used by a CSS may (as the result of target policy administration)
no longer [represent the actual security mechanism configuration of the target object.

10.5.1.1.1 Alternative Transport Association Options

Implementations that choose to employ the service context protocol defined in this part of ISO/HEC 19500 to achieve
interoperapility over an alternative secure transport (one other than SSL/TLS) may also be-required to support the
message grotection options defined in Table 10.11.

Table 10.11 - Alternative Transport Association Options

Associafion Option target_supports target_requires

DetectReplay Target can detect replay of requests (and request Target requires security associaftions to detect
fragments). replay.

DetectMigordering Target can detect sequence errors of request (and Target requires security associaftions to detect
request fragments). message sequence errors.

10.5.1.2 [Transport Address

The TransportAddress structure indicates an INTERNET address where the TSS is listening for connection] requests.

string host_name;

struct TransportAddress {
unsi£ned short port;

¢
typedef §equence <TransportAddress> TransportAddressList;

The host| name field identifies the Internet host to which connection requests will be made. The host_name field shall
not contaih an empty sfring. The host_name fiecld shall contain a host name or an IP address in standard pumerical
address (elg., dotted=decimal) form.

The port ficldContains the TCP/IP port number (at the specified host) where the TSS is listening for connegtion requests.
The port qumber shall not be zero.

10.5.1.3 TAG_TLS_SEC_TRANS

An instance of the TAG_TLS_SEC_TRANS component may occur in the transport_mech field within a
CompoundSecMech structure in a TAG_CSI_SEC_MECH_LIST component.

When an instance of the TAG_TLS_SEC_TRANS component occurs in the transport_mech field of the
CompoundSecMech structure, it defines the sequence of transport addresses at which the target will be listening for
SSL/TLS protected invocations. The supported (target_supports) and required (target_requires) association options
defined in the component shall define the transport level security characteristics of the target at the given addresses.

© ISO/IEC 2012 - Al rights reserved 153

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

const IOP::Componentld TAG_TLS_SEC_TRANS = 36;

struct TLS_SEC_TRANS {
AssociationOptions target_supports;
AssociationOptions target_requires;
TransportAddressList addresses;

5

The addresses field provides a shorthand for defining multiple security mechanisms that differ only i their transport
addresses.| The addresses field shall contain at least one address.

Table 10.12, Table 10.13, Table 10.14, and Table 10.15 describe the association option semantic$ relating tp the
TAG_TLS| SEC_TRANS tagged component that shall be interpreted by a CSS and enforced by a TSS. The
IdentityAlssertion and DelegationByClient association options shall not occur in an in§tance of this component.

Table 10.12 - Integrity Semantics

Integrity Semantic

Not suppdrted None of the ciphersuites supported by the target designate a MAC algorithm.
Supported Target supports one or more ciphersuites that desighate a MAC algorithm.
Required All the ciphersuites supported by the targetydesignate a MAC algorithm.

Table 10.13 - Confidentiality Semantics

Confidentiality Semantic

Not suppqrted None of the ciphersuites supported by the target designate a bulk encryption algorithm?®.
Supported Target supports one&.or more ciphersuites that designate a bulk encryption algorithm.
Required All the cipherstites supported by the target designate a bulk encryption algorithm.

a. Bulk encryption algorithms include-both block and stream ciphers.

Table 10.14 - EstablishTrustinTarget Semantics

EstablishTrustinTarget Semantic

Not suppdrted None of the ciphersuites supported by the target designate a key exchange algorithih that will
authenticate the target to the client.

Supported Target supports one or more ciphersuites that designate a key exchange algorithm that will
autnenticate the target to (e Client.

Required Not applicable. This bit should never be set, and should be ignored by CSS.

154 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

Table 10.15 - EstablishTrustinClient Semantics

00-2:2012(E)

EstablishTrustInClient Semantic

Not supported

request message).

Target does not support client authentication during the handshake. Moreover, target provides no
opportunity for client to authenticate in the handshake (that is, target does not send certificate

Supported Target provides client with an opportunity to authenticate in handshake. Target wil] accept
connection if client does not authenticate.
Required Target accepts connections only from clients who successfully authenticate fin the Handshake.

10.5.1.4 TAG_SECIOP_SEC_TRANS

A tagged

Compou
secure trai
the SECIG

The SECI
pertaining
name.

const 10

struct SE

|5

omponent with the TAG_SECIOP_SEC_TRANS tag is a valid component for the\transport_med
hdSecMech structure. The presence of this component indicates the generic use of the SECIOP
sport underneath the CSI mechanisms. A component tagged with this value-shall contain the CDI
P_SEC_TRANS structure.

DP_SEC_TRANS structure defines the transport addresses for SECLOP messages, the association
to the particular GSS mechanism being supported, the GSS mechanism identifier, and the target's

P::Componentld TAG_SECIOP_SEC_TRANS =:35;

CIOP_SEC_TRANS {
ciationOptions target_supports;

ID mech_oid;
SS_NT_ExportedName target-name;
portAddressList addresses;

The addresses field provides a shorthand for defining multiple security mechanisms that differ only in th

addresses.

Table 10.1
TAG_SEC

The addresses field.shall contain at least one address.

OP_SEC_TRANS tagged component that shall be interpreted by a CSS and enforced by a TSS.

10.5.1.5 TAG_CSISEC_MECH_LIST

This new
or more ¢

agged’component, TAG_CSI_SEC_MECH_LIST, is used to describe support in the target for a se

h field of the
protocol as a
R encoding of

options
GSS exported

eir transport

2, Table 10.13, Table 10.14, and Table 10.15 also describe the association option semantics relating to the

juence of one

pmpound security mechanisms represented in the mechanism_list field of a CompoundSecM

echList

structure. The mechanism descriptions in the mechanism_list occur in decreasing order of target preference.

const IOP::Componentld TAG_CSI_SEC_MECH_LIST = 33;

struct CompoundSecMech {

Asso

ciationOptions target_requires;

IOP::TaggedComponent transport_mech;
AS_ContextSec as_context_mech;
SAS_ContextSec sas_context_mech;

© ISO/IEC 2012 - All rights reserved

155

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

b

typedef sequence <CompoundSecMech> CompoundSecMechanisms;

struct CompoundSecMechList {
boolean stateful;
CompoundSecMechanisms mechanism_list;

5

The Com
may inclu

transport in service context. Where a compound security mechanism implements security functionality in t

layer, the
TAG_TLS]|
compound
represente
structure.

in service

sas_context_mech field of the CompoundSecMech structure.

At least o
TAG_NUL|
implemen
as_contg
security fi

The targdt_requires ficld of the CompoundSecMech structure is used to designate a required outcomg

satisfied b
required i

Each com
mechanisr

A value o
establishnj
supports s
the client

A TSS sh
objects at

10.5.1.5.1

poundSecMech structure is used to describe support in the target for a compound security,meo
e security functionality that is realized in the transport and/or security functionality realized abg

ransport functionality shall be represented in a transport-specific component (for €ample,

| SEC_TRANS) contained in the transport_mech field of the CompoundSecMech structure.
security mechanism implements client authentication functionality in service‘context, the mecha
d in an AS_ContextSec structure contained in the as_context_mech ficld of the Compoun
Where a compound security mechanism supports identity assertion or supports authorization attrib
context, the mechanism shall be represented in a SAS_ContextSec structure contained in the

e of the transport_mech, as_context_mech, or sas_context_mech ficlds shall be configi
| TAG component shall be used in the transport_mech field to indicate that a mechanism doe
security functionality at the transport layer. A value of'no bits set” in the target_supports fiel

nctionality at the corresponding layer.

y one or more supporting (but not requiring) layers. The target_requires ficld also represents g
idependently by the various layers as-defined within the mechanism.

bound mechanism defines a combination of layer-specific functionality that is supported by the tar
h configuration is the sum of.the combinations defined in the individual mechanisms.

' TRUE in the stateful field of the CompoundSecMechList structure indicates that the target
ent of stateful or reusable SAS contexts. This field is provided to assist clients in their selection d
fateful contexts. It"1s-also provided to sustain implementations that serialize stateful context estal
bide as a means$\to conserve precious server-side authentication capacity.10

11 set the-stateful bit to FALSE in the CompoundSecMechList structure of IORs correspond
which«it-will not accept reusable security contexts.

struct AS_ContextSec

hanism that
ve the
he transport

Where a
nism shall be
HSecMech
htes delivered

ired. The
b not

[of either the

xt_mech or sas_context_mech fields shall be used to indicate that the mechanism does not fmplement

that shall be
11 the options

bet. A target’s

supports the
f a target that
lishment on

ing to target

The AS_ContextSec structure is used in the as_context_mech field within a CompoundSecMech structure in a
TAG_CSI_SEC_MECH_LIST component to describe the client authentication functionality that the target expects to be
layered above the transport in service context by means of the client_authentication_token of the EstablishContext
element of the SAS protocol.

10. This serialization is only done when an attempt is being made to establish a stateful context.

156

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

struct AS_ContextSec{
AssociationOptions target_supports;
AssociationOptions target_requires;
CSI::0ID client_authentication_mech;
CSI::GSS_NT_ExportedName target_name;

15
A value o no b e in the 13 get DDOI] eld indicate na he mechanism does not implemen jent

authentication functionality above the transport in service context. In this case, the values present in any of the other
fields in this structure are irrelevant.

If the target_supports field indicates that the mechanism supports client authentication in service contexft, then the
client_adthentication_mech field shall contain a GSS OID that identifies the GSS mechanism that the pompound
mechanisth supports for client authentication above the transport.

The targef uses the target_name field to make its security name and or authentication domain available t¢ clients. This
informatign may be required by the client to obtain or construct (depending on th€ mechanism) a suitable initial context
token.

Table 10.16 describes the association options that are supported by conforming implementations.

Table 10.16 - EstablishTrustinClient Semantics

EstaplishTrustIinClient Semantic
1 | Not qupported Target does not support.elient authentication in service context (at this compoynd
mechanism).
2 | Suppprted Target supports clieht authentication in service context. If a CSS does not send an initial

context tokeny(ih’an EstablishContext service context element), then the caller|identity is
obtained frem the transport.

3 | Required Targetrequires client authentication in service context. The CSS may have also authenticated
in‘the-transport, but the caller identity is obtained from the service context laypr.

When a c¢mpound mechanism that implements client authentication functionality above the transport also contains a
transport fnechanism (in the transport_mech field), any required association options configured in the transport
component shall be interpreted as a prerequisite to satisfying the requirements of the client authentication mechanism.

struct SAY_ContextSec

The SAS | ContextSec structure is used in the sas_context_mech ficld within a CompoundSecMech|structure in a
TAG_CSI|SEC "MECH_LIST component to describe the security functionality that the target expects to be layered above
the transpbrtun service context by means of the identity token and authorization token of the ablishContext
element of the SAS service context protocol. The security functionality represented by this structure is configured as
association options in the target_supports and target_requires fields.

I/l The high order 20-bits of each ServiceConfigurationSyntax constant shall contain the Vendor Minor

I/l Codeset ID (VMCID) of the organization that defined the syntax. The low order 12 bits shall contain the
Il organization-scoped syntax identifier. The high-order 20 bits of all syntaxes defined by the OMG shall
Il contain the VMCID allocated to the OMG (that is, 0x4F4D0).

typedef unsigned long ServiceConfigurationSyntax;

© ISO/IEC 2012 - Al rights reserved 157

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

const ServiceConfigurationSyntax SCS_GeneralNames = CSI::OMGVMCID | 0;
const ServiceConfigurationSyntax SCS_GSSExportedName = CSI::OMGVMCID | 1;

typedef sequence <octet> ServiceSpecificName;

Il The name field of the ServiceConfiguration structure identifies a privilege authority in the format

Il identtifi
I SEQUE
Il syntax

Il the rules in [IETF RFC 2743] 3.2, "Mechanism-Independent Exported Name Object Format,"

struct S

Serv

5

NCE[1..MAX] OF GeneralName, as defined by the type GeneralNames in [IETF RFC 2
is SCS_GSSExportedName, the name field contains a GSS exported name encoded

iceConfiguration {

rv
Serv‘EeConfigurationSyntax syntax;

eSpecificName name;

typedef gequence <ServiceConfiguration> ServiceConfigurationList;

SN.1 (BER)
59]. If the
ccording to

struct SAS_ContextSec{

AssogciationOptions target_supports;

AssogciationOptions target_requires;

ServiceConfigurationList privilege_authorities;

CSI::PIDList supported_naming_mechanisms;

CSl::JdentityTokenType supported_identity_types;
k
The privilege_authorities field contains a sequenice of zero or more ServiceConfiguration elements. A non-empty
sequence Indicates that the target supports the CSS delivery of an AuthorizationToken, which is deliverdd in the
EstablishContext message. A CSS shall not-be required to look beyond the first element of this sequencg unless

required b

y the first element.

The syntax field within the ServiceConfiguration clement identifies the format used to represent the ay

alternativd
which ide
of a privil

The high

(VMCID)
identifier.
(that is, 03

formats are currently defined: an ASN.1 encoding of the GeneralNames (as defined in [IETF
ntify a privilege authority, or a GSS exported name (as defined in [IETF RFC 2743] 3.2) encodin
ge authority.

rder 20-bitS)of each ServiceConfigurationSyntax constant shall contain the Vendor Minor C
of the organization that defined the syntax. The low order 12 bits shall contain the organization-
The high-order 20 bits of all syntaxes defined by the OMG shall contain the VMCID allocated t
(4E4DO).

thority. Two
RFC 2459])
o of the name

bdeset ID
scoped syntax
b the OMG

Organizations must register their VMCIDs with the OMG before using them to define a ServiceConfigurationSyntax.

The supported_naming_mechanisms field contains a list of GSS mechanism OIDs. A TSS shall set the value of this
field to contain the GSS mechanism OIDs for which the target supports identity assertions using an identity token of type
ITTPrincipalName. The Identity token types are defined in Identity Token Format on page 135.

The value of the supported_identity_types field shall be the bitmapped representation of the set of identity token
types supported by the target. A target always supports ITTAbsent.

158 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 195

00-2:2012(E)

The value in supported_identity_types shall be non-zero if and only if the ldentityAssertion bit is non-zero in
target supports. The bit corresponding to the ITTPrincipalName identity token type shall be non-zero in
supported_identity_types if and only if the value in supported_naming_mechanisms contains at least one

element.

Table 10.17 describes the combinations of association options that are supported by conforming implementations. Each

combination in the table describes the attribute layer functionality of a target that may be defined in a mechanism
t tlhot dofio oo oy

rQaaaG Ao o3 TEPECCTE LS PN

d f‘ t Atz Bala L 1 10 na
clinitionA—tarsetthat-detiresmuttipte trechantsmsmaysupportatiplecombinations:

A compoynd mechanism definition with the DelegationByClient bit set shall include the name of at.least

in the priyilege_authorities field.

When a c¢mpound mechanism configuration that defines SAS attribute layer functionality alsodefines clid
authenticattion layer or transport layer functionality, any required association options configtred in these oth
be interpr¢ted as a prerequisite to satisfying the requirements of the functionality defingd-in the attribute I3

Table 10.17 - Attribute Layer Association Option Combinations

one authority

nt
er layers shall
yer

De

elgationByClient

IdentityAssertion

Semantic

1 | Not qupported

Not supported

Target does not support identity assertion (that is, identity]
EstablishContext message of the SAS protocol). The calle}
be obtained+from the authentication layer(s).

tokens in the
r identity will

2 | Not qupported

Supported

Target evaluates asserted caller identities based on trust ry
targetiIn the absence of an asserted identity, the caller idg
obtdined from the authentication layer(s).

les of the
ntity will be

3 | Suppprted

Not supported

Target accepts delegation tokens that indicate who has bed
assert an identity. Target does not accept asserted caller id
caller identity will be obtained from the authentication lay

n endorsed to
entities. The
er(s).

4 | Suppprted

Supported

Target accepts delegation tokens that indicate who has bed
assert an identity.

Target evaluates asserted caller identities based on trust ry
target or based on endorsements in a delegation token.

In the absence of an asserted identity, the caller identity w
from the authentication layer(s).

n endorsed to

les of the

11 be obtained

endorses the target as proxy for the caller.

5 | Required Not supported Same as 3, with the addition that target requires a delegatjon token that
endorses the target as proxy for the calle.
6 | Required Supported Same as 4, with the addition that target requires a delegatjon token that

10.5.1.6 TAGNULL—TAG

This new tagged component is used in the transport_mech ficld of a CompoundSecMech structure to indicate that
the compound mechanism does not implement security functionality at the transport layer.

I/l The body of the TAG_NULL_TAG component is a sequence of octets of

Il length 0.

const IOP::Componentld TAG_NULL_TAG = 34;

© ISO/IEC 2012 - All rights reserved

159

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.5.2 Client-side Mechanism Selection

A client should evaluate the compound security mechanism definitions contained within the CompoundSecMechList
in the TAG_CSI_SEC_MECH_LIST component in an IOR to select a mechanism that supports the options required by the
client.

The options supported by a compound mechanism are the union (the logical OR) of the options supported by the
transporf_ ; , an Telds ot the strjicture.

The folloying table defines the semantics defined by the union of association options in compound _miechanism
definition§. Association options for server to client authentication and message protection add additional sqgmantics that
are not represented in the table.

Table 10.18- Interpretation of Compound Mechanism Association Options

S¢mantic EstablishTrustInClient IdentityAssertion DelegationByClient
Supported Required Supported Supported Required
1 N(client identification. Don’t care®
2 Pr¢sumed trust. X
3 Aqthentication optional. X Don’t care
4 Aqthentication optional, assertion | X X
supported.
5 Adthentication Required. X X Don’t care
6 Aqthentication Required, assertion | X X X
supported.
7 Pr¢sumed trust including support X X
fo1 provided target restrictions.
8 Aqthentication optional, assertion)| X X X
supported including forwarditrust
rulles.
9 Aqthentication requiréd,jassertion | X X X X
supported including forward trust
rulles.
10 Pr¢sumed Trust including support X X X

foy] provided target restrictions,
delegation token required which

1 1 et 1radd
imphes-assertionrequired -

160 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

Table 10.1

ISO/IEC 19500-2:2012(E)

8- Interpretation of Compound Mechanism Association Options

Se

mantic EstablishTrustInClient IdentityAssertion

Supported Required Supported Supported

DelegationByClient

Required

11 Au

supported including forward trust

X X X

thentication optional, assertion

X

ru
wh
au
red

es, delegation token required

ich implies either client
hentication or assertion
uired.

12 Ay

de

thentication required,
egation token required.

13 Ay
su

rul

thentication required, assertion
ported including forward trust
cs, delegation token required.

If 4
tiof
del
If T

10.5.3

The prim3
to issue a

In order tq
that may ¢
CSS actin
target witl
establishe
target witl
its request
confidenti
client’s re
confidenti

Compoun
using the

delegation token is required, a non-anonymous client identity shall be established so that it can be endorsed by
 token. This same rule applies to row 11, and explains why there is no row that'supports client authentication and
pgation token.

Client-Side Requirements and Location Binding

ry assumption of this interoperability protocoli§’that transport layer security can ensure that it is
preliminary request to establish a confidential-association with the intended target.

sustain this assumption, trust in target,and a confidential transport shall be established prior to is
ontain arguments (including object keys) or service context elements that the client considers co
b on behalf of a client may trust a target to locate an object (process a locate request) without havi
I confidential arguments (other{thian object keys) or service context elements. For example, a CS
1 a confidential connection(to)an address it learned from an IOR, and may then determine if the cl
| its request argumentsqand any associated service context elements. If the client does not trust th
, the CSS may send-a locate request.“ If the locate reply contains a new address, the CSS may e
hl connection, evaluate the level of trust the client has in the new target, and determine whether it
huest to the target. If in response to the request, the CSS receives a location forward, it will estal
pl connectign-with the new address and repeat its trust determination.

| security»mechanisms appearing in IORs leading to a location daemon should not require clients t
isername/password mechanism if doing so would cause an overly trusting caller to share its pass

elegationByClient is supported, a delegation token may be provided, but it is not required to process the requesf

he delega-
requires a

not necessary

suing any call
nfidential. A
ng to trust the
S may have
ient trusts the
e target with
tablish a new
can issue the
lish another

b authenticate
'word with an

untrusted

ocation daemon.

The way in which a location daemon derives an IOR for a target object is not prescribed by this part of ISO/IEC 19500.

I1.

CSS can use the Object::validate_connection operation to get the ORB to issue a locate request.

© ISO/IEC 2012 - All rights reserved

161

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.5.3.1 Comments on Establishing Trust in Client

A client that does not have the artifacts necessary to provide evidence of its authenticity over at least one of the transports
supported by it and its target should search the IOR for a security mechanism definition that does not require client
authentication to occur in a transport mechanism.

10.5.4 Server Side Consideration

If the targ
always req
receives a

10.6 |

10.6.1 ¢

Level 0 dg
support fo
client auth

10.6.1.1

Implemen
request an

Implemen
over unpr

10.6.1.1.1

Conformif
identified
correspon

An additiq

10.6.1.2

All implemnentations shall support the Security Attribute Service (SAS) context element protocol in the mar]

in the foll

bt requires client authentication, and the transport does not provide that authentication, then the.t
pond with OBJECT HERE to LocateRequest messages and defer the real forwarding respons
GIOP Request message.

Conformance Levels

Conformance Level 0

fines the base level of secure interoperability that all implementations are required to support. Le
r SSL/TLS protected connections. Level 0 implementations aré<also required to support usernam
entication and identity assertion by using the service context protocol defined in this part of ISO

Transport-Layer Requirements

ations shall support the Security Attribute Service(SAS) protocol within the service context list
d reply messages exchanged over SSL 3.0 and. LS 1.0 protected connections.

ations shall also support the SAS protocolwwithin the service context lists of GIOP request and rg
tected transports defined within 11OP. 12

Required Ciphersuites

g implementations are required to support both SSL 3.0 and TLS 1.0 and the mandatory TLS 1.
in [IETF RFC 2246]. Conforming implementations are also required to support the SSL 3.0 ciph
ling to the mandatory. TLS 1.0 ciphersuites.

nal set of recommeided ciphersuites is identified in Recommended SSL/TLS Ciphersuites on pa

Bervice Context Protocol Requirements

bwing _sub clauses.

arget should
e until it

vel O requires
b/password
/IEC 19500.

5 of GIOP

ply messages

D ciphersuites
ersuites

ce 150.

ner described

10.6.1.2.

Stateless Mode

All implementations shall support the stateless CSS and stateless TSS modes of operation as defined in Session
Semantics on page 141, and in the protocol message definitions appearing in SAS context data Message Body Types on

page 127.

12. SAS protocol elements should only be sent over unprotected transports within trusted environments.

162

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.6.1.2.2 Client Authentication Tokens and Mechanisms

All implementations shall support the username password (GSSUP) mechanism for client authentication as defined in
Username Password GSS Mechanism (GSSUP) on page 133.

10.6.1.2.3 Identity Tokens and Identity Assertion

All implementations shall support the identity assertion functionality defined in Context Validation on page 138 and the
identity tdken formats and functionality defined in Identity Token Format on page 135.

All implefnentations shall support GSSUP mechanism specific identity tokens of type ITTPrincipalName

10.6.1.2.4 Authorization Tokens (not required)

At this leyel of conformance, implementations are not required to be capable of includingfan-authorization|token in the
SAS protgcol elements they send or of interpreting such tokens if they are included in received SAS protogol elements.

The formdt of authorization tokens is defined in Authorization Token Format on page”132.

10.6.1.3 Interoperable Object References (IORs)

The securjty mechanism configuration of CSIv2 target objects, shall be as.defined in Target Security Configuration on
page 151, |with the exception that Level 0 implementations are not required to support the DelegationBy(lient
functionaljty described in AssociationOptions Type on page 152,

10.6.2 Conformance Level 1

Level 1 adds the following additional requirements to, those of Level 0.

10.6.2.1 Authorization Tokens

Level 1 implementations shall support the push model for privilege attributes.

Level 1 rdquires that a CSS provide clients with an ability to include an authorization token, as defined in [Authorization
Token Fomat on page 132, in SAS- EstablishContext protocol messages.

Level 1 rdquires that a TSS be tapable of evaluating its support for a received authorization token accordirg to the rules
defined in| Extensions of the JETF AC Profile for CSIv2 on page 132.

A Level 1| TSS shall fecognize the standard attributes and extensions defined in the attribute certificate profile defined in
[IETF ID [PKIXAC].

Level 1 refquires.that a target object that supports pushed privilege attributes include in its IORs the names of the privilege
authoritieq trusted by the target object (as defined in struct SAS ContextSec on page 157).

10.6.3 Conformance Level 2

Level 2 adds to Level 1 the following additional requirements.

10.6.3.1 Authorization-Token-Based Delegation

Level 2 adds to Level 1 a requirement that implementations support the authorization-token-based delegation mechanism
implemented by the SAS protocol.

© ISO/IEC 2012 - Al rights reserved 163

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

A Level 2 TSS shall be capable of evaluating proxy rules arriving in an authorization token to determine whether an
asserting entity has been endorsed (by the authority which vouched for the privilege attributes in the authorization token)
to assert the identity to which the privilege attributes pertain. The semantics of the relationship between the identity token
and authorization token shall be as defined in Context Validation on page 138.

A Level 2 TSS shall recognize the Extensions of the IETF AC Profile for CSIv2 on page 132” (that is, the Proxy Info
extension) as defined on that page.

Level 2 rgquires that a target object that accepts identity assertions based on endorsements in authorization| tokens
represent this support in its IORs as defined in Table 10.17.

Level 2 requires that a target object that requires an endorsement to act as proxy for its callers represent this requirement
in its IORp as defined in Table 10.17.

10.6.4 $Stateful Conformance

Implementations are differentiated not only by the conformance levels described iti\the preceding sub clausgs but also by
whether of not they support stateful security contexts.

For an implementation to claim stateful conformance, it shall implement the stateless and stateful functionality as defined
in Session] Semantics on page 141 and in SAS context data Message/Body Types on page 127.

10.7 PBample Message Flows and Scenarios

This appepdix contains sequence diagrams and sample IORS for a set of scenarios selected to illustrate the iffteroperability
protocols fefined in this part of ISO/IEC 19500. The sample IORs are expressed in pseudocode.

164 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.7.1 Confidentiality, Trust in Server, and Trust in Client Established in the Connection

Client (P2) :
SecurityService

Target :
SecurityService

1: connect to target()

|

2: accept connection(authenticate client P2)

3: request()

4: reply()

5: request()

6: reply()

1. Imitiate SSL/TLS connection-to TSS.

[\e]
®

3. Send request (With no security service context element).

o~
=

eceiye reply (with no security service context element).

5. Spmeas 3.

\

SL/TLS connection'‘and ciphersuite negotiation accepted by both CSS and TSS. CSS evaluates its tryst in target
hthentication identity and decides to continue. Client (P2) authenticates to TSS in the handshake.

6. Same as 4.

10.7.1.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

CompoundSecMechList{
stateful = FALSE;
mechanism_list = {

© ISO/IEC 2012 - All rights reserved

165

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {
target_supports = {Integrity, Confidentiality, EstablishTrustinClient,
EstablishTrustinTarget};

target_requires = {Integrity, Confidentiality, EstablishTrustinClient};
addresses = {

——TransportAddress—
host_name = x;
port=y;

&
&
&

as_context_mech = {
target_supports = {};

b
sas_context_mech = {
target_supports = {};

5
}
b

b

Note that pased on the ciphersuites listed in Required Ciphersuites on page 162 and the rules for target supports and

target reqpires appearing in the tables in TAG_TLS SEC TRANS on page 153, all target IORs should inclyde {Integrity,
Confidentjality, EstablishTrustInTarget} in target (Supports and at least {Integrity, Confidentiality} in target_requires.
This staterpent applies to all the sample IORs corresponding to all the scenarios described in this sub clause.

166 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.7.2 Confidentiality and Trust in Server Established in the Connection - Stateless Trust
in Client Established in Service Context

Client (P2) : Target :
SecurityService SecurityService

1: connect to target()

2: accept connection()

3: request(EstablishContext(0,,IT(absent),CAT(P2+password)))

4: reply(CompleteEstablishContext(0,FALSE))

5: request(EstablishContext(0,,IT(absent),CAT (P2+password)))

6:reply(CompleteEstablishContext(0,FALSE))

1. Inpitiate SSL/TLS conneéction to TSS.

[\
w2

SL/TLS connectioil and ciphersuite negotiation accepted by both CSS and TSS. CSS evaluates its tryst in target
hthenticationidentity and decides to continue.

&

end request’(with stateless security service context element containing a client_authentication_tgken).

S
4. Receive reply with CompleteEstablishContext service context element indicating context (and request) was
a

Ceepted:
5. Same as 3.

6. Same as 4.

10.7.2.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

© ISO/IEC 2012 - Al rights reserved 167

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

CompoundSecMechList{
stateful = FALSE;
mechanism_list = {

168

CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustinClient,

—EstabltishTrustinTarget};
target_requires = {Integrity, Confidentiality};
addresses = {
TransportAddress {
host_name = x;
port=y;
k
b
b
as_context_mech = {
target_supports = {EstablishTrustinClient};
target_requires = {EstablishTrustInClient};
client_authentication_mech = GSSUPMechOID;
target_name = (GSSUPMechOID + name_scope);
b
sas_context_mech = {
target_supports = {};

5

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.7.3 Confidentiality, Trust in Server, and Trust in Client Established in the Connection
Stateless Trust Association Established in Service Context

Intermediate (P2) : Target :
SecurityService SecurityService

1: connect to target() ’

apply trust
rule to validate
intermediary
(P2)

2: accept connection(authenticate client P2)

3: request(EstablishContext(0,,IT(P1),)) 4:

5: reply(CompleteEstablishContext(0,FALSE)) apply trust

rule to validate
intermediary
(P2)

6: request(EstablishContext(0,,\F(P1),)) I

8: reply(CompleteEstablishContext(0,FALSE))

1. Inpitiate SSL/TLS conneetion to TSS.

N
w2

SL/TLS connection and ciphersuite negotiation accepted by both CSS and TSS. CSS evaluates its tryst in target
hthentication identity and decides to continue. Client (P2) authenticates to TSS in the handshake.

o

end requést (with stateless security service context element containing spoken for identity (P1) in identity_token).

S
4. TSSwalidates that target trusts P2 to speak for P1.

5. Receive repty with CompleteEstablishiContextservice context ciement indicating context (and request) was
accepted.

6. Same as 3.
7. Same as 4.

8. Same as 5.

© ISO/IEC 2012 - Al rights reserved 169

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC

10.7.3.1

19500-2:2012(E)

Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

CompoundSecMechList {
stateful = FALSE;

mec

hanism_list = {

CompoundSecMec {

5
b

10.7.3.2

If trust is

identity eq
to speak fi

preceding

10.7.3.3

target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {
target_supports = {Integrity, Confidentiality, EstablishTrustinClient,
EstablishTrustinTarget};
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
addresses = {
TransportAddress {
host_name = x;
port=y;
b
5
b
as_context_mech = {
target_supports = {};

b

sas_context_mech = {
target_supports = {IdentityAssertion};
target_requires = {};
privilege_authorities = {};
supported_naming_mechanisms = {GSSUPMechOID};
supported_identity_types = {ITTPrincipalName};

Validating the Trusted Server

exanple).

hot presumed, then the TSS shall evaluate the trustworthiness of the speaking for identity (i.e., the client
tablished(in the authentication layer(s) - P2 in the preceding example) in order to determine if it
br the-Spoken for identity (i.e., the non-anonymous identity represented as P1 in the identity token in the

1s authorized

Presuming the Security of the Connection

There are variants of this scenario where either no security is established in the connection, or the connection is used to
establish confidentiality only, and/or trust in the target only. These cases all fall under what is referred to as a presumed
trust association. Where the security of the connection and the party using it is presumed, the TSS will not validate the
trustworthiness of the speaking-for identity.

Compou
state

ndSecMechlList {
ful = FALSE;

mechanism_list = {

170

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

CompoundSecMec {
target_requires = {Integrity, Confidentiality};
transport_mech = TAG_TLS_SEC_TRANS {
target_supports = {Integrity, Confidentiality, EstablishTrustinTarget};
target_requires = {Integrity, Confidentiality};
addresses = {
TransportAddress {
hust:n'ame =X;
port=y;

B
}
}
as_context_mech = {
target_supports = {};

}

sas_context_mech = {
target_supports = {IdentityAssertion};
target_requires = {};
privilege_authorities = {};
supported_naming_mechanisms = {GSSUPMechOID};
supported_identity_types = {ITTPrincipalName};

© ISO/IEC 2012 - Al rights reserved 171

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

10.7.4 Confidentiality, Trust in Server, and Trust in Client Established in the
Connection - Stateless Forward Trust Association Established in Service Context

Intermediate(P2) : Target :
SecurityService SecurityService
1: connect to target() l

2: accept connection(authenticate client P2)

3: request(EstablishContext(0,AT(P1,proxies{P2}),IT(P1),))

4: reply(CompleteEstablishContext(0,FALSE))

5: request(EstablishContext(0,AT(P1,proxies{P2}),IT(P1),)) I

6: reply(CompleteEstablishContext(0,FALSE))

1. Initiate SSL/TLS conneetion to TSS.

N
|92]

SL/TLS connectign and ciphersuite negotiation accepted by both CSS and TSS. CSS evaluates its tryst in target
nithentication identity and decides to continue. Intermediate (P2) authenticates to TSS in the handshale.

o

3. Sgnd request with stateless security service context element containing spoken for identity (P1) in ideptity_token,
led trustrule from P1 in authorization_token delegating proxy to P2.

cecive reply with CompleteEstablishContext service context element indicating context (and request) was
accepted.

5. Same as 3.

6. Same as 4.

10.7.4.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

172 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

CompoundSecMechlList {
stateful = FALSE;
mechanism_list = {
CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustinClient};
transport_mech = TAG_TLS_SEC_TRANS {
target_supports = {Integrity, Confidentiality, EstablishTrustinClient,
—EstablishTrustinTarget};
target_requires = {Integrity, Confidentiality, EstablishTrustinClient};
addresses = {
TransportAddress {
host_name = x;
port=y;

b
b
B
as_context_mech = {
target_supports = {};

}
sas_context_mech = {
target_supports = {IdentityAssertion, DelegationByClient};
target_requires = {};
privilege_authorities = {
ServiceConfigurationSyntax {
syntax = s;
name = n;
b
b
supported_naming_mechanisms = {GSSUPMechOID};
supported_identity-.types = {ITTPrincipalName};

b
b

10.8 References

CORBAS]

53]

C

=]

CORBA Sceurity-Serviee; Revistorr 2 httprwivw-omg-orgrdoes/ptero8-6+-6
CORBA Security Service, Revision 1.5, http://www.omg.org/docs/ptc/98-12-03
CORBA Security Service, Revision 1.7, http://www.omg.org/docs/ptc/99-12-03
IETF ID PKIXAC

An Internet Attribute Certificate Profile for Authorization, <draft-ietf-pkix-ac509prof-05.txt>, S. Farrell, Baltimore
Technologies, R. Housley, SPYRUS, August 2000.

© ISO/IEC 2012 - All rights reserved

173

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

IETF RFC 2246

The TLS Protocol Version 1.0, T. Dierks, C. Allen, January 1999.

IETF RFC 2459

Internet X.509 Public Key Infrastructure Certificate and CRL Profile, R Housley, W. Ford, W. Polk, and D. Solo, January

1999.

IETF RF(

Generic S
X.501-93

ITU-T Re

10.9

[2743

pcurity Service Application Program Interface Version 2, Update 1, J. Linn, January 2000.

commendation X.501: Information Technology - Open Systems Interconnection - The Directory:

DL

10.9.1 Module GSSUP - Username/Password GSSAPIToken Formats

#ifndef _
#define |

import ::

module (
typeJrefix GSSUP “omg.org”;

/I Th

Il use

I
no{
I

cons

GSSUP_IDL_
GSSUP_IDL_

CSI;

5SSUP {

GSS Object Identifier allocated.for the
rname/password mechanism is defined below.

so-itu-t (2) international-organization (23) omg (130)
security (1) authentication (1) gssup-mechanism (1) }

t CSI::StringOID GSSUPMechOID = "0id:2.23.130.1.1.1";

/i Thj following structure defines the inner contents of the

Il us
/I CD

Il usernamelpassword GSS (initial context) Token

rname.password initial context token. This structure is

R éncapsulated and appended at the end of the

Models, 1993.

struct InitialContextToken {
CSI::UTF8String username;
CSI::UTF8String password;
CSI::GSS_NT_ExportedName target_name;

5

typedef unsigned long ErrorCode;

Il GSSUP Mechanism-Specific Error Token

174

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

struct ErrorToken {
ErrorCode error_code;

b

Il The context validator has chosen not to reveal the GSSUP
Il specific cause of the failure.

cons

/' Th
I GS
cons,

/I Th
Il inc
cons

t ErrorCode GSS_UP_S_G_UNSPECIFIED = 1;

ISO/IEC 19500-2:2012(E)

UP::InitialContextToken is unknown to the target.
ErrorCode GSS_UP_S_G_NOUSER = 2;

password supplied in the GSSUP::InitialContextToken was
rrect.
ErrorCode GSS_UP_S_G_BAD_PASSWORD = 3;

target_name supplied in the GSSUP::InitialContextToken does

/I nof match a target_name in a mechanism definition of the target.

}; Il GSS

#endif

t ErrorCode GSS_UP_S_G_BAD_TARGET = 4;

UP

10.9.2 Module CSI - Common Secure Interoperability

#ifndef _
#define |

module (

CSI_IDL_
CSLIDL_
SI{

typeprefix CSI “omg.org”;

II' Th
cons,

Il An
..
Il su
Il ce
Il re

OMG VMCID; same value as CORBA::OMGVMCID. Do not change ever.
unsigned long OMGVMCID = 0x4F4DO0;

509CertificateChain contains an ASN.1 BER encoded SEQUENCE
AX] OF_X:509 certificates in a sequence of octets. The

ject’s certificate shall come first in the list. Each following
ificate'shall directly certify the one preceding it. The ASN.1
esentation of Certificate is as defined in [IETF RFC 2459].

typedef sequence <octet> X509CertificateChain;

/I an X.501 type name or Distinguished Name in a sequence of
Il octets containing the ASN.1 encoding.

typedef sequence <octet> X501DistinguishedName;

/I UTF-8 Encoding of String

© ISO/IEC 2012 - All rights reserved

175

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

typedef sequence <octet> UTF8String;
I/ ASN.1 Encoding of an OBJECT IDENTIFIER
typedef sequence <octet> OID;

typedef sequence <OID> OIDList;

A quuence of octets containing a GSStoken. Initial context tokens are

/I ASN.1 encoded as defined in [IETF RFC 2743] 3.1,

/I "Méchanism-Independent token Format", pp. 81-82. Initial context tokens
Il contain an ASN.1 tag followed by a token length, a mechanism identifier,
I/l and a mechanism-specific token (i.e. a GSSUP::InitialContextToken). The
Il engoding of all other GSS tokens (e.g. error tokens and final context

Il tokpns) is mechanism dependent.

typedef sequence <octet> GSSToken;

I/l Anjencoding of a GSS Mechanism-Independent Exported Name Object as
Il defjned in [IETF RFC 2743] 3.2, "GSS Mechanism-Independent

I/l Exported Name Object Format," p. 84.

typedef sequence <octet> GSS_NT_ExportedName;

typedef sequence <GSS_NT_ExportedName> GSS_ NT_ExportedNameList;

Il The MsgType enumeration defines the complete set of service context

Il megsage types used by the CSI context management protocols, including
Il those message types pertaining only to.the stateful application of the

Il protocols (to insure proper alignment-of the identifiers between

I stateless and stateful implementations). Specifically, the

Il MTMessagelnContext is not sent by stateless clients (although it may

Il be received by stateless targets).

typedef short MsgType;

const MsgType MTEstablishContext = 0;

const MsgType MTCompleteEstablishContext = 1;
const MsgType-MTContextError = 4;

const MsgType,MTMessagelnContext = 5;

I/l The Contextld type is used carry session identifiers. A stateless
Il application of the service context protocol is indicated by a session
Il identifier value of 0.

typedef unsigned long long Contextid;

Il The AuthorizationElementType defines the contents and encoding of
Il the_element field of the AuthorizationElement.

I/l The high order 20-bits of each AuthorizationElementType constant

Il shall contain the Vendor Minor Codeset ID (VMCID) of the
Il organization that defined the element type. The low order 12 bits

176 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

Il shall contain the organization-scoped element type identifier. The
/I high-order 20 bits of all element types defined by the OMG shall
/I contain the VMCID allocated to the OMG (that is, 0x4F4D0).

typedef unsigned long AuthorizationElementType;

/I An AuthorizationElementType of X509AttributeCertChain indicates that
I the i izati i :

/I SEQUENCE composed of an (X.509) AttributeCertificate followed by a
/Il SEQUENCE OF (X.509) Certificate.

/I The chain of identity certificates is provided

I to ¢ertify the attribute certificate. Each certificate in the chain

Il sh3ll directly certify the one preceding it. The first certificate

Il in the chain shall certify the attribute certificate. The ASN.1

Il repfresentation of (X.509) Certificate is as defined in [IETF RFC 2459].
I/ The ASN.1 representation of (X.509) AtributeCertificate is as defined
Il'in [JETF ID PKIXAC].

const AuthorizationElementType X509AttributeCertChain = OMGVMCID | 1;

typedef sequence <octet> AuthorizationElementContents;

/I The AuthorizationElement contains one element.of an authorization token.

/I Eagh element of an authorization token is logically a PAC.
strugt AuthorizationElement {

uthorizationElementType the_type;
uthorizationElementContents the.element;

b

I/l The AuthorizationToken is made up of a sequence of
/I AuthorizationElements

typedef sequence <AuthorizationElement> AuthorizationToken;
typedef unsigned long IdentityTokenType;

/I Additional standard identity token types shall only be defined by the
/I OMG. AllddentityTokenType constants shall be a power of 2.

const IdentityTokenType ITTAbsent = 0;

const IdentityTokenType ITTAnonymous = 1;

const IdentityTokenType ITTPrincipalName = 2;
const IdentityTokenType ITTX509CertChain = 4;
const IdentityTokenType ITTDistinguishedName = 8;
typedef sequence <octet> IdentityExtension;

union IdentityToken switch (IdentityTokenType) {
case ITTAbsent: boolean absent;
case ITTAnonymous: boolean anonymous;
case ITTPrincipalName: GSS_NT_ExportedName principal_name;

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19500-2:2012(E)

177

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

case ITTX509CertChain: X509CertificateChain certificate_chain;
case ITTDistinguishedName: X501DistinguishedName dn;
default: IdentityExtension id;

5

struct EstablishContext {
Contextld client_context_id;

SSToken client_authentication_token;

b
strugt CompleteEstablishContext {
ontextld client_context_id;
olean context_stateful;
SSToken final_context_token;
b
strugt ContextError {
ontextld client_context_id;
long major_status;
long minor_status;
SSToken error_token;
b
Il Not sent by stateless clients. If received by a stateless server, a
Il ContextError message should be returned, indicating the session does
Il notj exist.
struct MessagelnContext {
ontextld client_context_id;
olean discard_context;
¥
union SASContextBody/switch (MsgType) {
case MTEstablishContext: EstablishContext establish_msg;
case MTCompleteEstablishContext: CompleteEstablishContext complete_msg;
case MTContextError: ContextError error_msg;
case MTMessagelnContext: MessagelnContext in_context_msg;
k

I/l The following type represents the string representation of an ASN.1

/| OBJECT IDENTIFIER (OID). OIDs are represented by the string "oid:"

Il followed by the integer base 10 representation of the OID separated

Il by dots. For example, the OID corresponding to the OMG is represented
Il as: "0id:2.23.130"

typedef string StringOID;

I/l The GSS Object Identifier for the KRB5 mechanism is:
Il { iso(1) member-body(2) United States(840) mit(113554) infosys(1)

178 © ISO/IEC 2012

- All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

Il gssapi(2) krb5(2) }
const StringOID KRB5MechOID = "oid:1.2.840.113554.1.2.2";

Il The GSS Object Identifier for name objects of the Mechanism-independent
I/l Exported Name Object type is:
Il { iso(1) org(3) dod(6) internet(1) security(5) nametypes(6)

4\ 1

Il gss=api= = A4)¥

const StringOID GSS_NT_Export_Name_OID = "0id:1.3.6.1.5.6.4";
/I The GSS Object Identifier for the scoped-username name form is:
Il { isp-itu-t (2) international-organization (23) omg (130) security (1)
/I narthing (2) scoped-username(1) }

const StringOID GSS_NT_Scoped_Username_OID = "0id:2.23.130.1.2.1";

}; 11 CSI
#endif

10.9.3 Module CSIIOP - CSIv2 IOR Component TagDefinitions

#ifndef _CSIIOP_IDL_
#define |CSIIOP_IDL_

import ::|OP;
import ::CSl;

module CSIIOP {

typeprefix CIIOP “omg.org”;

I/l Association options

typedef unsigned short AssociationOptions;
AssociationOptions.NoProtection = 1;
AssociationOptions Integrity = 2;
AssociationOptions Confidentiality = 4;
AssociationOptions DetectReplay = 8;
AssociationOptions DetectMisordering = 16;
AssociationOptions EstablishTrustinTarget = 32;
AssociationOptions EstablishTrustinClient = 64;
AssociationOptions NoDelegation = 128;
const AssociationOptions CompositeDelegation = 512;
const AssociationOptions IdentityAssertion = 1024;
const AssociationOptions DelegationByClient = 2048;

/I The high order 20-bits of each ServiceConfigurationSyntax constant
/I shall contain the Vendor Minor Codeset ID (VMCID) of the

Il organization that defined the syntax. The low order 12 bits shall

Il contain the organization-scoped syntax identifier. The high-order 20
/I bits of all syntaxes defined by the OMG shall contain the VMCID

© ISO/IEC 2012 - Al rights reserved 179

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

ISO/IEC 19500-2:2012(E)

I allocated to the OMG (that is, 0x4F4DO0).
typedef unsigned long ServiceConfigurationSyntax;

const ServiceConfigurationSyntax SCS_GeneralNames = CSI::OMGVMCID | 0;
const ServiceConfigurationSyntax SCS_GSSExportedName = CSIl::OMGVMCID | 1;

I/l Thg name field of the ServiceConfiguration structure identifies a

Il priyilege authority in the format identified in the syntax field. If the

Il syntax is SCS_GeneralNames, the name field contains an ASN.1 (BER)

/I SEQUENCE [1..MAX] OF GeneralName, as defined by the type GeneralNames 'in
Il [IETF RFC 2459]. If the syntax is SCS_GSSExportedName, the name field

Il contains a GSS exported name encoded according to the rules in

Il [IETF RFC 2743] 3.2, "Mechanism-Independent Exported Name

/I Object Format," p. 84.

strugt ServiceConfiguration {
erviceConfigurationSyntax syntax;
erviceSpecificName name;

typedef sequence <ServiceConfiguration> ServiceConfigurationList;

Il The body of the TAG_NULL_TAG component'is a sequence of octets of
Il length 0.

Il typp used to define AS layer functionality within a compound mechanism
I defjnition

struct AS_ContextSec {

ssociationOptions target_supports;
ssociationOptionsitarget_requires;
Sl::0ID client_authentication_mech;
SI::GSS_NT_ExportedName target_name;

OO0

5

Il typp used-to define SAS layer functionality within a compound mechanism
Il defjnition

struct SAS_ContextSec {
AssociationOptions target_supports;
AssociationOptions target_requires;
ServiceConfigurationList privilege_authorities;
CSI::OIDList supported_naming_mechanisms;
CSl::ldentityTokenType supported_identity_types;
b

Il type used in the body of a TAG_CSI_SEC_MECH_LIST component to
Il describe a compound mechanism

180 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=d39b24d01f7c94df9350662c8c66a025

	Foreword
	Introduction
	Context of CORBA

	1 Scope
	2 Conformance and Compliance
	2.1 Unreliable Multicast

	3 Normative References
	3.1 Other Specifications

	4 Terms and Definitions
	4.1 Recommendations | International Standards
	4.2 Terms Defined in this Part of ISO/IEC 19500
	4.3 Keywords for Requirment statements

	5 Symbols (and abbreviated terms)
	6 Interoperability Overview
	6.1 General
	6.2 Elements of Interoperability
	6.2.1 ORB Interoperability Architecture
	6.2.2 Inter-ORB Bridge Support
	6.2.3 General Inter-ORB Protocol (GIOP)
	6.2.4 Internet Inter-ORB Protocol (IIOP)®
	6.2.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

	6.3 Relationship to Previous Versions of CORBA
	6.4 Examples of Interoperability Solutions
	6.4.1 Example 1
	6.4.2 Example 2
	6.4.3 Example 3
	6.4.4 Interoperability Compliance

	6.5 Motivating Factors
	6.5.1 ORB Implementation Diversity
	6.5.2 ORB Boundaries
	6.5.3 ORBs Vary in Scope, Distance, and Lifetime

	6.6 Interoperability Design Goals
	6.6.1 Non-Goals

	7 ORB Interoperability Architecture
	7.1 Overview
	7.1.1 Domains
	7.1.2 Bridging Domains

	7.2 ORBs and ORB Services
	7.2.1 The Nature of ORB Services
	7.2.2 ORB Services and Object Requests
	7.2.3 Selection of ORB Services

	7.3 Domains
	7.3.1 Definition of a Domain
	7.3.2 Mapping Between Domains: Bridging

	7.4 Interoperability Between ORBs
	7.4.1 ORB Services and Domains
	7.4.2 ORBs and Domains
	7.4.3 Interoperability Approaches
	7.4.4 Policy-Mediated Bridging
	7.4.5 Configurations of Bridges in Networks

	7.5 Object Addressing
	7.5.1 Domain-relative Object Referencing
	7.5.2 Handling of Referencing Between Domains

	7.6 An Information Model for Object References
	7.6.1 What Information Do Bridges Need?
	7.6.2 Interoperable Object References: IORs
	7.6.3 IOR Profiles
	7.6.4 Standard IOR Profiles
	7.6.5 IOR Components
	7.6.6 Standard IOR Components
	7.6.7 Profile and Component Composition in IORs
	7.6.8 IOR Creation and Scope
	7.6.9 Stringified Object References
	7.6.10 Object URLs

	7.7 Service Context
	7.7.1 Standard Service Contexts
	7.7.2 Service Context Processing Rules

	7.8 Coder/Decoder Interfaces
	7.8.1 Codec Interface
	7.8.2 Codec Factory

	7.9 Feature Support and GIOP Versions
	7.10 Code Set Conversion
	7.10.1 Character Processing Terminology
	7.10.2 Code Set Conversion Framework
	7.10.3 Mapping to Generic Character Environments
	7.10.4 Example of Generic Environment Mapping
	7.10.5 Relevant OSFM Registry Interfaces

	8 Building Inter-ORB Bridges
	8.1 Introduction
	8.2 In-Line and Request-Level Bridging
	8.2.1 In-line Bridging
	8.2.2 Request-level Bridging
	8.2.3 Collocated ORBs

	8.3 Proxy Creation and Management
	8.4 Interface-specific Bridges and Generic Bridges
	8.5 Building Generic Request-Level Bridges
	8.6 Bridging Non-Referencing Domains
	8.7 Bootstrapping Bridges

	9 General Inter-ORB Protocol
	9.1 Overview
	9.2 Goals of the General Inter-ORB Protocol
	9.3 GIOP Overview
	9.3.1 Common Data Representation (CDR)
	9.3.2 GIOP Message Overview
	9.3.3 GIOP Message Transfer

	9.4 CDR Transfer Syntax
	9.4.1 Primitive Types
	9.4.2 OMG IDL Constructed Types
	9.4.3 Encapsulation
	9.4.4 Value Types
	9.4.5 Pseudo-Object Types
	9.4.6 Object References
	9.4.7 Abstract Interfaces

	9.5 GIOP Message Formats
	9.5.1 GIOP Message Header
	9.5.2 Request Message
	9.5.3 Reply Message
	9.5.4 CancelRequest Message
	9.5.5 LocateRequest Message
	9.5.6 LocateReply Message
	9.5.7 CloseConnection Message
	9.5.8 MessageError Message
	9.5.9 Fragment Message

	9.6 GIOP Message Transport
	9.6.1 Connection Management
	9.6.2 Message Ordering

	9.7 Object Location
	9.8 Internet Inter-ORB Protocol (IIOP)
	9.8.1 TCP/IP Connection Usage
	9.8.2 IIOP IOR Profiles
	9.8.3 IIOP IOR Profile Components

	9.9 Bi-Directional GIOP
	9.9.1 Bi-directional IIOP

	9.10 Bi-directional GIOP policy
	9.11 OMG IDL
	9.11.1 GIOP Module
	9.11.2 IIOP Module
	9.11.3 BiDirPolicy Module

	10 Secure Interoperability
	10.1 Overview
	10.1.1 Assumptions

	10.2 Protocol Message Definitions
	10.2.1 The Security Attribute Service Context Element
	10.2.2 SAS context_data Message Body Types
	10.2.3 Authorization Token Format
	10.2.4 Client Authentication Token Format
	10.2.5 Identity Token Format
	10.2.6 Principal Names and Distinguished Names

	10.3 Security Attribute Service Protocol
	10.3.1 Compound Mechanisms
	10.3.2 Session Semantics
	10.3.3 TSS State Machine
	10.3.4 CSS State Machine
	10.3.5 ContextError Values and Exceptions

	10.4 Transport Security Mechanisms
	10.4.1 Transport Layer Interoperability
	10.4.2 Transport Mechanism Configuration

	10.5 Interoperable Object References
	10.5.1 Target Security Configuration
	10.5.2 Client-side Mechanism Selection
	10.5.3 Client-Side Requirements and Location Binding
	10.5.4 Server Side Consideration

	10.6 Conformance Levels
	10.6.1 Conformance Level 0
	10.6.2 Conformance Level 1
	10.6.3 Conformance Level 2
	10.6.4 Stateful Conformance

	10.7 Sample Message Flows and Scenarios
	10.7.1 Confidentiality, Trust in Server, and Trust in Client Established in the Connection
	10.7.2 Confidentiality and Trust in Server Established in the Connection - Stateless Trust in Client Established in Service Context
	10.7.3 Confidentiality, Trust in Server, and Trust in Client Established in the Connection Stateless Trust Association Established in Service Context
	10.7.4 Confidentiality, Trust in Server, and Trust in Client Established in the Connection - Stateless Forward Trust Association Established in Service Context

	10.8 References
	10.9 IDL
	10.9.1 Module GSSUP - Username/Password GSSAPI Token Formats
	10.9.2 Module CSI - Common Secure Interoperability
	10.9.3 Module CSIIOP - CSIv2 IOR Component Tag Definitions

	11 Unreliable Multicast Inter-ORB Protocol
	11.1 Introduction
	11.1.1 Purpose
	11.1.2 MIOP Packet
	11.1.3 Packet Collection
	11.1.4 PacketHeader
	11.1.5 Joining an IP/Multicast Group
	11.1.6 Quality Of Service
	11.1.7 Delivery Requirements

	11.2 MIOP Object Model
	11.2.1 Definition
	11.2.2 Unreliable IP/Multicast Profile Body (UIPMC_ProfileBody)
	11.2.3 Group IOR
	11.2.4 Extending PortableServer::POA to include Group Operations
	11.2.5 MIOP Gateway
	11.2.6 Multicast Group Manager
	11.2.7 MIOP URL

	11.3 Request Issues
	11.3.1 GIOP Request Message Compatibility
	11.3.2 MIOP Request Efficiency
	11.3.3 Client Use Cases
	11.3.4 Server Use Cases

	11.4 Consolidated IDL
	11.4.1 OMG IDL

