INTERNATIONAL ISO/IEC
STANDARD 16262

Third edition
2011-06.15

Information technology — Programming
languages, their environments and
system software interfaces —
ECMAScript language specification

Technologies de l'information — Langages de programmation, leurs
environnements et interfaces de logiciel systétme — Spédification du
langage ECMAscript

Reference number
ISO/IEC 16262:2011(E)

2 . © ISO/IEC 2011

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocop ying and microfilm, w ithout permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +4122749 01 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

Contents

oY =TV o (N
1 X 1 o3 1o o
1 __Scope

2 {020 3} o 4 4 =1 o o= O
3 NOIrmMative refErenCescceeeeiiiiiiiieiiiiiiireee i resrssss s e rsssss s s sressssssssssssnnnsssssensfodestonneens
4 OVEIVIBW ...ceeeeeeiiiiieeieeirs e e reee st s e s e e s nass s s e e ssnasss e e e ssnnsssssseennnsssssseennnnnnnsnesesnnnsnnndepunadonnarnennnnnn
4.1 L AT L=1 SIS o2] o1 T T P, 10 v S
4.2 Language OVErVIEWcccccccerrrreiiiissssssssnrnneessssssssssssssnrsssssssssssssssssssnss Bussitesssssssnnnensnnssns
4.2, 10] o 1= o2 £ o PP
4.2.2 The Strict Variant of ECMASCIIPLccooiiiiiiiiiirrireininsssccnnenneese s fesasionnnnnnssssssssssssssnnnnnnns
4.3 Terms and defiNitioNS ... e sems b N s e s ssnsssssssessnnsssssssesnnnns
5 Notational CoNVENtIONS.......ccueiiiiiiiiec s r s 90 b e e enassss e e e e snnan s e e ernnnsssseennnnn
51 Syntactic and Lexical Grammars.........cccccevviiiccicnrmmnnnen S
5.1. ConteXt-Free GrammMarsScciieeeiiiiiiieeeerrrrresssssbees fasbasssessessnssssssseessnsssssseesssnnsssseeesenn
5.1.2 The Lexical and RegEXP Grammarsccccoccoueeesfifarsasssssesssssnnsssssssmsssssssssssssssnsssssssnsees
5.1.3 The Numeric String Grammarcccoovccivireen e Wonnnnnmnrer e e s sssssnee e e e s s snmmnnenees e
5.1.4 The Syntactic Grammar.........ccocoeriiiiriiiciee it e e as s s sms e ss s sss s s s sme e s s s smn e s s s mmn e s s samnas
5.1.9 The JSON Grammar......ccccceeuiiremerirreneirressiresbebedionseennsreensssresssrssnssssesssserssssresnsssresssreesssren
5.1.6 Grammar NOLAtioNc....iiiiiiiiieiiiiiiiree s Tiees s sssessssss s s e ressnss s s e e s sssssss s e rsannsssssssessnnnnnnnn
5.2 Algorithm Conventions ...t ———
6 SOUICE TOXE ..uuiiiiiieeuuiiiiiirennnuiiirerresaiit s ersnnssssstressssssssteessnssssssssessnsssssseeesnssssssseesnnssssssessnnesnnn
7 LeXical CONVENEIONScoieeeiiiiee e iireerrrre s rsse s rrea s rra s s s sns s rens s e nas e ans s ernss s ranasssennnrsennns
71 Unicode Format-Control CharaCtersccoiiiiieeeiiiiiiimeeeeeiirerrseessssesssnsssssrsersennssssseerens
7.2 LA LT CTR T = L = PSRN
7.3 LiNe TermMiNatorS........ctiiiedeiiiieeierrireemnsrrrerrennnssrserrnnnssssserrsnnssssssrennnnsssssseeennssssnserennnssnnnnen
7.4 (00T 0140 1= 01 £ N
7.5 1o (= o OO
7.6 Identifier Namestand Identifiers..........ueeeiiiiiiiieeiiciirr e e e eaaa e
7.6. L2 T T =T 7= Yo IR T4 oY o L=
7.7 o T 3 o 0 = o Y =
7.8 1= = U
7.8. L L I = - 3
8 30 = 1o oY (== TN I = - 1
2 T 17] ' 7= g o I = =1 =
AR T R~ 1 4T T 1 =T - 1
7-8- S—BMLEMMMWJHMHHMWMMWM
7.9 Automatic Semicolon INSErtion ... s e r e e e e e e e nnaaan
7.9.1 Rules of Automatic Semicolon INSertionccceeeiiiiiiieeiiin e
7.9.2 Examples of Automatic Semicolon Insertion............cccooiicoiiiiiiicnicccc e
8 I8/ < 5T
8.1 The Undefined TyPe......cccoceiieiiiiiicmeirr e s e mmn e e s e e s s e
8.2 I T30 1 =Y
8.3 LI T3 = 2o T [== T T I8 o 1O
8.4 B L= 0T T I o1 PSS
8.5 The NUMDEE TYPe.... s s s s s e e e e e e e e e e e e nn s
8.6 LI T=0 1 oY1= 2 A 3/ < L= PO
8.6.1 Property AtribUtesooi i —————
8.6.2 Object Internal Properties and Methodsccccemiiiiminnnc s

ISO/IEC 16262:2011(E)

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

8.7 The Reference Specification TYPecccccciiiiiiiiiiiiccrrrr s e 35
A e SO € =Y AV 1T (L 35
8.7.2 PULVAIUE (V, W) ittt s e e e e p e a e e e e an e e R e ne e e e e n 36
8.8 The List SPecification TYPe......ccccciiiiiiiiiiicisiriree s sssss s s e s s s s s s s s s ssmnnn s e e e sessssnnnnnnnnnes 36
8.9 The Completion Specification TYPe.......ccccciiiiiiiiircccerrr e 36
8.10 The Property Descriptor and Property Identifier Specification Types......cccccccvieciiicernininiicciinnns 37
8.10.1 ISACCESSOIrDESCIIPLOr (DESC) ...uuuiiiiiiiiiiiirimreressms s s s e e mn e s s e mn e e e e s mmneenemmn e e e aan 37
8.10.2 ISDataDeSCrIPtOr (DESC)...uuiiiiiiiiicenerrieriiissssssssnnerre s s ssssssssssnmsene e e s s ssssssssnnnseesessssasssssnnnneessenssnsssssnnns 37
8.10.3 ISGeNeriCDESCIIPLOr (DESC) ..cccuiiiiiiimiririimr s e i ee s s s s s ss e s s ms e s e sme s s s e e s s e mn e s e e s mnesa s nmn e e s aann 37
8.10.4 FromPropertyDescCriptor (DESC).....iciiriiiiisieiiniirninsr e 38
8.10.5 TOPropertyDesCriptor ((OD]).....cccuiiicieiriiiimrr e e s n e s mn e e e e e mn e e e aan 38

Identifier Resolution

. Estab gcuti
10.4.1 Entering GIobal Codeccceiiiieiiiiniiii s e 58
10.4.2 Entering EVal Code ... s s e 58
10.4.3 Entering FUNCHION COdEcoiiiieiiiiiiiiinir e s s anr s 58
10.5 Declaration Binding Instantiationcccccriiiiiiiccccns s 59
10.6 Arguments ODJEcCt..........ceeuiiiiiiiicccicerrrr e nn e e e s e s 60
1 T o] =E =T] o o = 63
111 Primary EXPreSSiONSccii i s as e s e e an e e an e e s n s ann e 63
e e T I £ T=T RS (=3 (o 63
11.1.2 Identifier ReferencCe.........oo i —————_—— 63
T T 1= o T 2= =] = o T - 63
11.1.4 Array INQtialiSer ... 63

iv © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

e T o3 = o [T 1 1= - N 65
11.1.6 The Grouping OPErator ... s ss s s s e e s n s n e e e e e e s e n s nnn 67
11.2 Left-Hand-Side EXPreSSioNnsccccciiiiiiiiiiiiisiisssss s s s s ss s ss s s s s s s e s s s s ss s s s s s ss s s s sssssssssssnssssssssssnnnn 67
11.2.1 ProPerty ACCESSOIS ...iciiicccuerrirrriississssssssrrresssssssssssssssrrre s e s aasasssssssersessesasssssssnnnnnassssssssannnnnnessssnsnssnn 67
I 4 T= N T @ T« =Y o oY 68
T T T T 4T 4T o T 0 | N 68
11.2.4 Argument LiStS.......couciiiiiiiiiiiiiiii s 69
11.2.5 FUunCtion EXPreSSIONS...... ... s e smnn e e e s 69
11.3 POStiX EXPreSSIONS.......cuuccccicccscrrrrr s sssss e s e s e s e s s s e e e s e e e e e s e s snsassssssssssssssssnnssnnssnnnnnnnnnan 69
11.3.1 Postfix Increment OPerator...........oooiiiiiiiiiiiiie e er s s an 70
11.3.2 Postfix Decrement OPerator..........ccccccciiiiiiiiiiiiiii s r s s s s e s s ssssssssssssnsssssnnnnnnnnn 70
11.4 L8 LTV O S =T 1 1o Y S 70
I R T I ¢ T= 0 [= =0 o =T o N S T 70
I 12 I T=IRVZ'Y o 0 J Y- - 1 o1 . N U DO 71
T FRC T I ¢ T= T Y7 o T=To) 0 o =T - o = S/ TN 7
11.4.4 Prefix Increment Operator.............oocmiiiieer s assf e b e s ssssssns e e s ssssenas 7
11.4.5 Prefix Decrement Operatorccccccciiiiiiiiiiiisssssses s s ssssessessessssssssssssnsses ommesennnnnnnnsssssssssfasssssssssnnas 72
11.4.6 UNAry + OPeratorcoicciiriiiisirniiimeesssssss s ssssss s s sssss s s s ssssssssssmsssessthpes ssssmnessssssnnessnhusssssssnnens 72
I T U 1 T= T VR © 1 oY1 - 1 o) L. S N PO 72
11.4.8 Bitwise NOT Operator (~) ...cccccecrrrrrssmrrinssnrrssssmsssssssseessssssesesi S ba s s sssssnsssssssmnsssssesssssssmnens 72
11.4.9 Logical NOT Operator (!) ...ccccceccccecssmrrrennnisssssssmserressessssssssssens b bernnssssssssssensssssnsssssssssssnsfeesssssssssnns 73
11.8 Multiplicative Operatorscccccviceicccmrrnieninisscssssnreree e b Tesunnnnnresssssssssssssnsnnsesssssssssssnsfeessssassssns 73
11.8.1 Applying the * Operator..........cccoiiiiiimmmri e S s afass s 73
11.8.2 Applying the 7/ Operator........ccccccvccciimmmmenininiisscssseasfes e sssssssnnnssssessssssssssssssssssssssssssssssssfusssssnsnnnnas 74
11.8.3 Applying the % Operator..........cccciiiiiimmmmrr e o s afassr e 74
11. Y X Lo TTHAYZ=I 07 o =1 - 1 Lo - S SN 75
11.6.1 The Addition Operator (+) ...iicccccrrsrrrrerr e S eneerree s erssssssssssnrrreesssssssssssnnensesssssssssssssnnnsfeesssnnssssnns 75
11.6.2 The Subtraction OpPerator (—)ccccccccrrree S e smnnr e e s s ssmmnnsfre s s s snsnnns 75
11.6.3 Applying the Additive Operators to NumbBers..........cccccciriiiiiiinirmninssceerreeeess e 75
11. Bitwise Shift Operators ... i s sss s s e s s s e s s s e s s s s s s e s e s e s nnssssssssse e neennnnnnnnns 76
11.7.1 The Left Shift Operator (<<) ..oiii e ssn e s smne s s fer e s smne s 76
11.71.2 The Signed Right Shift Operator{(>>)cccccccerrrsrrrriiiiissssssnerrre e ssssssssseerre s s s sssssssssnsfeesssssssssnns 76
11.71.3 The Unsigned Right Shift Operator (>>>).....cooc oo e 77
11.8 Relational Operators........c. .o s snn s s e nnnn e 77
11.8.1 The Less-than Operator ((S)cccccerrrmrrreriiiiciisssssrrrerssnssssssssssssrssssssssssssssssssssssssssssssssssnsesfessssssssssnns 77
11.8§.2 The Greater-than Operator (>)......ccccvcmiiriiiirinnir s b 78
11.8.3 The Less-than-or-equal Operator (<=)....iiiiccccccccerrieiiiiss e ssssssses e e esessssssssssmnesfeesssensssenns 78
11.8§.4 The Greater-than-or-equal Operator (>=)cccccceiriirrrnnsin b 78
11.§.5 The Abstract-Relational Comparison Algorithm...........cccccvriimincsinnnne b 78
11.8.6 The instanceof OPerator ... s s af s s s s s nnas 79
RO I 7= T =Y o P PO 79
11. EqUality Operators...........ooui i sssmsr s snmnn e s e e e s s s s mmnn e s nnssssfasnnnnnnnennas 80
11.9.1 The Equals Operator (==) ... sssss s sssssss s s sssssssns fressnssssenns 80
11.9.2 The.Does-not-equals OPerator (1=)cccccieccccscsmrrrrriiiissssssssserre s s s s ssssssssssssssssssssssssssssesfeesssssssssnns 80
11.9.3(The Abstract Equality Comparison Algorithm............ccccmrrriiniriniiicmninnce e 80
1. he Stri ua erator (===) 000000000000 s 81
11.9.5 The Strict Does-not-equal OpPerator (1== ... sms e me s s 81
11.9.6 The Strict Equality Comparison AIQOrithm ... 82
11.10 Binary BitwisSe OPerators ... s s sms s an s s e snme s s ammn e s e nmne e s 82
11.11 Binary LoOgical OPEeratorscocccoiiiiiiiinriisimesiensse s ssssms s ssssmse s sss s s smss s sassns e s s s smme s sassmne s asssmnens 83
11.12 Conditional OPerator (? =) iiiiccccccccccrrrrriiiicissssssrrrrr s rssssssssssssrre e s e s sssssssssnnersesssssssssssssnnsssesssssnssssnnn 84
g BT X=X T 1 44 T=T g A0 o =T - 1 o) 84
11.13.1 Simple AsSSIgNMENt (=) .o 85
11.13.2 Compound ASSIgNMENT (OP=) .eccccecserrrrriiiisissssnnrrrersssssssssssssssrrssssssssssssssnssssssssssssssssssnnsssesssssassssnnn 85
e S 0 4T 4 = T T 7= = o (R 85
12 85T = 1= .0 1= 0 1 86
72 O = 1o T o 86

© ISO/IEC 2011 — Al rights reserved \"

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

12.2
12.2.1
12.3
12.4
12,5
12.6
12.6.1
12.6.2
12.6.3
12.6.4
12.7
12.8
12.9
12.10

12.15

13
13.1
13.2
13.21
13.2.2
13.2.3

14
14.1

15
15.1
15.1.1
15.1.2
15.1.3
15.1.4
156.1.5
15.2
15.2.1
15.2.2
156.2.3
15.24
15.2.5
15.3
15.3.1
15.3.2
15.3.3
15.3.4
16.3.5
15.4
15.4.1
15.4.2
15.4.3
15.4.4
15.4.5
15.5
15.5.1
15.5.2

Vi

R = L = 1 o (=053 =1 0= 4 1= 1 | OO S 87
Strict Mode ReStICHIONScuiiiieiiiieii i rrre s s rs e e ren e e s s s e a s s e na s s rana s esnnasssennssnennnnnrs 88
Empty Statement........ .. e 88
EXPression Statementcooviiiiicciiimiiiiiiiisscsccsssrrrr e s s e s e e e nn e nnne 89
B G RS = 1 T2 11 =1L S 89
L =Y e Ao TS = 1= 0.4 1= 1 £ 89
The do-WhE 1€ StatemMeENtccceeiiiiiiiicccr e e e r e e s a e s e e s s s n s s e e e e nnnas e e eennnsssnrreens 90
The WhE 1€ Statement...........ciiieiiiii i e e a s e a s ena s e aaa s ren s s rana s eenn s s rnassrennnnn 90
The FOr StatemMeENt oo rre e s s e e e e s s aa s e e e e s nnas s s e e e e nnnas e e s ennnnssnnrrres 90

Stapdard Built-in ECMAScript Objects.... (i 102
QLI = € o o T IN0] o T SN 103
Valpie Properties of the Global Object.........ccccciiiiiiiiciri 103
Furjction Properties of the Global Object.............coo i 104
URI Handling Function Properties...........cccociimiiiiiminiiniiisss s sssss s ssssssss s 105
Constructor Properties of the Global Objectcccoviiiciiimiri s 110
Other Properties of the Global Object.............cccovmiiiiiiiiiicccerrrr e e 111
(0] o1 =Y o2 0 ¢ 1= = 111
Thg Object Constructor/Called as a Function...........cccccciiiniiiiiiiincr e 111
The ObjJeCt CONSLIUCLONooiieiiiiceie e mn e s e mme e s nn e s s e mn e e e mnn e 112
Properties of the:Object CONStrUCLOr ... 112
Properties of.theObject Prototype ObJect ... e 115
Properties of Object INStaNCESccviieiiriiri i —————— 117
FUNCHOM ODJECES ...t e e s 117
Th

Fanction Constructor Called as @ FUNCLION..........coiveeiiieiii e rrs e ese s e e 117

Th 117
Properties of the Function CONStruCtor ... s 118
Properties of the Function Prototype Object.............cccoiomimiiiiiccerrr s 118
Properties of Function INStancCes...........cccociiiiiiiiiicccccrrrre e amnnnes 121
N = 10] = = 122
The Array Constructor Called as @ FUNCLIONcccciiiiiiicccceeirrre e 122
The Array CONSEIUCEONciiiiieii e an s ms e s e me e s e ane e e e mn e e e mn e s e nsmnn e s 123
Properties of the Array CONSErUCEONccciiiiiiiiiiccccerrrre s s snnr e e s s s s snmnnnns 123
Properties of the Array Prototype ODbject..........cccoooiiiiiiiciminr s s 124
Properties of Array INStanCesccocvieiiiiirini e 140
£ (4T 0 o L= o 141
The String Constructor Called as @ FUNCLIONoo i 141
The String CONSIIUCLONcooiiiiicierre e n e e e e s s s smnr e e e e e e s nnn 142

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

15.5.
15.5.

15.5.
15.6
15.6.

15.6.
15.6.
15.6.
15.6.

15.7
15.7.
15.7
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.9.

'unihi»k

ocubhwih=

3
4
5

1
2
3
4
5

1

N =

ISO/IEC 16262:2011(E)

Properties of the String CONStruCtor..........ccoiiiiiiiiccirr s
Properties of the String Prototype Object..........ccoccmiriiiini e

Properties of String Instances

= o ToT =T T 0] o =T o2 PR
The Boolean Constructor Called as a Function.........cccccceeviiimeeceiniireeee e rrr e e eeeeanes

The Boolean Constructor
Properties of the Boolean Constructor

Properties of the Boolean Prototype Object...........cccooomriimiiiiiicccsseerrrer e

Properties of Boolean Instances
Number Objects
The Number Constructor Called as a Function

L L=\ V7] =T gl @ T3 Vw3 e
Properties of the Number Constructor............coo s eee e e b
Properties of the Number Prototype Object...........cccvnmmiminnimnincrreesn b e
Properties of Number Instances
The Math Object
Value Properties of the Math Object...........cccooiiiiiimirrrre e s,
Function Properties of the Math Object
Date Objects
Overview of Date Objects and Definitions of Abstract Operators «..:%.....cccccccoveeccinncennns
The Date Constructor Called as a Function
The Date Constructor
Properties of the Date CONSErUCtOr ..o N
Properties of the Date Prototype Object
Properties of Date Instances ...

Annex B (informative) Compatibility..........cccccommmmiiiiiiiiirirriere e e 230
Annex C (informative) The Strict Mode of ECMASCIIPL.......ccccciiiiiiiiiirriee e e 234
Annex D (informative) Corrections and Clarifications in the 3™ Edition with Possible 2" Edition

Compatibility IMPACH........ .o nnn e e 236
Annex E (informative) Additions and Changes in the 3™ Edition that Introduce Incompatibilities

WIth the 2" EItIONcv.eecveecereeceteec e iesee et essbeassesee s see s s ses s sesssses s et esassssasssssssns s s ses s st s ssssassssssssassneas 237
=TT o 1T - ' 4 /7 240
© ISO/IEC 2011 — Al rights reserved vii

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Foreword

ISO (the International Organization for Standardization) and |IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate inthe development of International Standards through technical committees
established by the respective organ|zat|on to deal W|th par‘ucular f|elds of tec hnical act|V|ty ISO and IEC
technical cg %

and non-go
technology,

ernmental, in liaison with ISO and IEC, also take part in the work. In the fleld of informati
ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Internationa] Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main fask of the joint tech nical committee is to prepare International Standards.‘Draft International

Standards gdopted by the joint technical committee are circulated to national bodies for voting. Publicatioh as
an Internatipnal Standard requires approval by at least 75 % of the national bodies ¢asting a vote.

Attention is [drawn to the possibility that some of the elements of this document.may be the subject of patent
rights. ISO @nd IEC shall not be held responsible for identifying any or all such-patent rights.

ISO/IEC 16262 was prepared by Ecma International (as ECMA-262).and was adopted, under a special “fast-
track proceglure”, by Joint Technical Committee ISO/IEC JTC 1,Anformation technology, in parallel with its
approval by|national bodies of ISO and IEC.

This third edition cancels and replaces the second edition (ISO/IEC 16262:2002), which has been technicg
revised.

y

viii © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Introduction

This International Standard is based on several originating technologies, the most well-known being

Jav:Qr‘rilnf (anennpn) and IQr‘rilnf (I\Ainrncnff) The Inng uage was invented hy Bren d

Eich at

Netscape and firsta ppeared inthat company’s Navigator 2.0 browser. It has appea
subgequent browsers from Netscape and in all browsers from Microsoft starting with Interne
3.0,

The| development of this Internation al Standard started in Nove mber 1996. The first editi
Intefnational Standard was adopted by the Ecma General Assembly of June;1997.

That International Standard was submitted to IS O/IEC JTC 1 forad. option under the
pro¢edure, and approved as ISO/IEC 16262, first edition, in April 1998

red in all
t Explorer

on of this

fast-track

Thel second edition of this International Standard introduced powerful regular expressions, bgtter string

handling, new control statements, try/catch exception handling, tighter definition of errors,
for pumeric output and minor changes in anticipation of farthcoming internationalization fa
future language growth. The second edition of the'ECMAScript standard was pul

CMAScript. Although that wo rk was’ not completed and not publi shed as anew
ECMASCcript, it informs continuin g~ evolution of the language. The present third
IEC 16262 (published as ECMA-262 5th edition) codifies de facto interpretations of the

erties, reflective cre ation” and i nspection of objects, program control of prop erty
addjtional array manipulation functions, support for the JSON o bject encoding format, ar
mode that provides enhanced error checking and program security.

ECMAScript is.awibrant| anguage and the evolution of the lan guage is n ot complete.
technical enhancement will continue with future editions of this International Standard.

ormatting
ilities and
lished as

i massive
language
ird edition
edition of
bdition of

| anguage
rt for new
accessor
attributes,
d a strict

Significant

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

INTERNATIONAL STANDARD ISO/IEC 16262:2011(E)

Information technology — Programming languages, their
environments and system software interfaces — ECMAScript
language specification

1 Sc¢ope

This International Standard defines the ECMAScript scripting language.

2 Conformance

A confprming implementation of ECMAScript must provide and support™all the types, values, pbjects,
propertles, functions, and program syntax and semantics described in this-nternational Standard.

A confgrming implementation of this International Standard shall interpret characters in conformarce with
the Unjcode Standard, Version 3.0 or later, and ISO/IEC 10646 with either UCS-2 or UTF-16|as the
adopte¢l encoding form, implementation level 3. If the adapted ISO/IEC 10646 subset is not otherwise
specifigd, it is presumed to be the BMP subset, collection 300. If the adopted encoding form] is not
otherwise specified, it presumed to be the UTF-16 encoding form.

A confprming implementation of ECMAScript is, permitted to provide additional types, values, pbjects,
propertles, and functions beyond those described'in this International Standard. In particular, a conforming
implementation of ECMAScript is permitted\to provide properties not described in this Interpational
Standald, and values for those properties,fer objects that are described in this International Standarg.

A confgrming implementation of ECMAScript is permitted to support program and regular expressior] syntax
not degcribed in this International Standard. In particular, a conforming implementation of ECMA$cript is
permitted to support program,syntax that makes use of the “future reserved words” listed in 7.6.1.2 of this
International Standard.

3 Neormativereferences

The following“referenced documents are indispensable for the application of this document. Fof dated
referenges, ‘only the edition cited applies. For undated references, the latest edition of the refg¢renced
documént(including any amendments) applies.

ISO/IEC 10646, Information technology & Universal Coded Character Set (UCS)

4 Overview
This clause contains a non-normative overview of the ECMAScript language.
ECMAScript is an object-oriented programming language for performing computations and manipulating

computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or

© ISO/IEC 2011 — All rights reserved 1

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific host objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professiona[programmers.

ECMAScripf was originally designed to be a web scripting language, providing a mechanism to enliven web
pages in bfowsers and to perform server computation as part of a web-based client-server, arehitectpre.
ECMAScripf can provide core scripting capabilities for a variety of host environments, and therefore the fore
scripting language is specified in this document apart from any particular host environment.

Some of thg facilities of ECMAScript are similar to those used in other programmingTanguages; in parti¢ular
Java™, Self] and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, Davjd, and Smith, Randall B. Self: The Power of Simplicity, QOPSLA '87 Conference Proceedifgs,
pp. 227-241, Orlando, FL, October 1987.

IEEE Standgrd for the Scheme Programming Language. IEEE.Std 1178-1990.

41 Web (Scripting

A web browser provides an ECMAScript host envireriment for client-side computation including, for instapce,
objects that|represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/oditput. Further, the host environment-provides a means to attach scripting code to events such as
change of f}cus, page and image loading, tnloading, error and abort, selection, form submission, and mguse
actions. Scilipting code appears withinthe'HTML and the displayed page is a combination of user interface
elements ar|d fixed and computed text'and images. The scripting code is reactive to user interaction and there
is no need fpr a main program.

requests, cllents, and filesj.and mechanisms to lock and share data. By using browser-side and server{side
scripting together, it is-pessible to distribute computation between the client and server while providing a
customised |user interface for a web-based application.

A web servIr provides a different'host environment for server-side computation including objects represeg[sting
I

Each web Hrowsen and server that supports ECMAScript supplies its own host environment, completing|the
ECMAScripl exéeution environment.

4.2 Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are de scribed. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties, each with
zero or more attributes that determine how each property can be used—for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an

2 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the
JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
bindry bitwise operators, binary Togical operators, assignment operators, and the comma operafor.

to serve as
red nor are
ons appear

ECNIAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable i
an gasy-to-use scripting language. For example, a variable is not required to have its type’declz
typels associated with properties, and defined functions are not required to have their“declarat
textdially before calls to them.

4.2, Objects
e created in
ecute code
5 a function
and shared
ple , new
uences that
ht date and

ECNIAScript does not use classes such as those in C++, Smalltalk, or Java: Instead objects may b
varipus ways including via a literal notation or via constructors which_create objects and then e
that|initialises all or part of them by assigning initial values to their\properties. Each constructor
that|has a property named “prototype” that is used to implement-prototype-based inheritance
properties. Objects are created byu sing constructers,in new expressions; for exan
Date(2009,11) creates a new Date object. Invoking a constructor without using new has conseg
depénd on the constructor. For example, Date() produees a string representation of the curre
timg| rather than an object.
the value of

Evefy object created by a constructor has an implicit reference (called the object’s prototype) to

its cpnstructor’s “prototype” property. Furthermore, a prototype may have a non-null implicit ref¢rence to its
protptype, and so on; this is called the protetype chain. When a reference is made to a property in an object,
that|reference is to the property of that name in the first object in the prototype chain that containg a property
of tat name. In other words, first the object mentioned directly is examined for such a property; if that object
confains the named property, that js,the property to which the reference refers; if that object doeq not contain
the pamed property, the prototype.for that object is examined next; and so on.
A b ———— >
T CF implicit prototype link
prototype | CF |
PT .
po CEP1 explicit prototype property
e A A
......... cf1 sz Cf3 Cf4 avanad Cf5 pread
ql ql ql ql ql
g2 g2 q2 g2 q2
Figure 1 — Object/Prototype Relationships
© ISO/IEC 2011 — Al rights reserved 3

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, and structure, behaviour and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this.

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf;, cf,,
cfs, cfs, and cfs. Each of these objects contains properties named q1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfs’s prototype is CF,. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CF,, cf;, cf,, cf;, cfy, or cfs. The property named CFP1 in CF,

is shared b
chain that a

Unlike class
them. That
properties.
assigning a

4.2.2 The

The ECMA
their usage
what they G
choosing. In
of the langy
and modifig
conditions t
the non-stri

The strict V|
selection ar
individual E
mode only i
modify any
complete E
units. In this
code unit.

In order to
unrestricted

cfy, cfy, cfs, cfs, and cfs (but not by CF), as are any properties found in CF,’s implicit prototype

'e not named g1, g2, or CFP1. Notice that there is no implicit prototype link between CF and

p-

-based object languages, properties can be added to objects dynamically by assighing valugs to
s, constructors are not required to name or assign values to all or any of the corstructed object’s

n the above diagram, one could add a new shared property for cf;, cf,, €f;/cfs, and c
new value to the property in CF,.

Strict Variant of ECMAScript

Beript Language recognises the possibility that some users of the<language may wish to re
of some features available in the language. They might do so-in the interests of security, to 8
onsider to be error-prone features, to get enhanced errorchecking, or for other reasons of
support of this possibility, ECMAScript defines a strictdariant of the language. The strict va
age excludes some specific syntactic and semantic features of the regular ECMAScript langd
s the detailed semantics of some features. The strict variant also specifies additional ¢
nat must be reported by throwing error exceptions.in situations that are not specified as error
t form of the language.

5 by

ptrict
void
their
Fiant
age
Brror
S by

pariant of ECMASc ript is commonly referred to as the strict mode of the language. Strict mode

d use of the strict mode syntax and semantics of ECMAScript is explicitly made at the lev
CMAScript code units. Because striet mode is selected at the level of a syntactic code unit,
mposes restrictions that have localeffect within such a code unit. Strict mode does not restri
pspect of the ECMAScript semantics that must operate consistently across multiple code uni
CMAScript program may be"cemposed for both strict mode and non-strict mode ECMAScript
case, strict mode only appties when actually executing code that is defined within a strict ni

conform to this specification, an ECMAS cript implementation must implement both the
ECMAScript Jlanguage and the strict mode variant of the ECMAScript language as defined by

B| of
trict
Ct or
s. A
ode
ode

full
this

specification. In additief,-an implementation must support the combination of unrestricted and strict mode

code units i

4.3 Term

nto a single\)composite program.

s and’definitions

For the purposes of this document, the following terms and definitions apply.

4.31
type

set of data values as defined in Clause 8 of this specification

4.3.2

primitive value
member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8

NOTE

A primitive value is a datum that is represented directly at the lowest level of the language implementation.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

4.3.3
object
member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.
434
constructor

function object that creates and initialises objects

NOTE The value of a constructor’'s “prototype” property is a prototype object that is used to implement inheritance

and Fhared properties.

profotype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor’s “protot
for the purpose of resolving property references. The constructor's “prototype” property can be referg
progfam expression constructor.prototype, and properties added to an object’s prototype are sh
inhefitance, by all objects sharing the prototype. Alternatively, a new object may, b& created with an e xpli
protatype by using the Object. create built-in function.

NOTE Standard native objects are defined in this speeffication. Some native objects are built-in; of
consgtructed during the course of execution of an ECMASCript program.

pe” property
nced by the
red, through
itly specified

ther than by

hers may be

y specify and
Btructor.

4.3.10
Undefined type
type whose sole value is the undefined value

4.3.11
null value
primitive value that represents the intentional absence of any object value

4.3.12

Null type
type whose sole value is the null value

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

4.3.13

Boolean value

member of t

NOTE

4.3.14
Boolean ty

he Boolean type

There are only two Boolean values, true and false.

pe

type consisting of the primitive values true and false

4.3.15

Boolean oljject
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE
value as an
can be coerc

Boolean object is created by using the Boolean constructor in a new expression, supplying’a Boq
rgument. The resulting object has an internal property whose value is the Boolean value(A Boolean o
ed to a Boolean value.

lean
bject

that

4.3.16

String valug

primitive value that is a finite ordered sequence of zero or more 16-bit unsigned jintegers

NOTE A String value is a member of the String type. Each integer value in the 'sequence usually represents a sjngle
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions orrequirements on the values excep
they must be|16-bit unsigned integers.

4.3.17

String type|

set of all pogsible String values

4.3.18

String objert

member of

NOTE
an argument

to a String v4

4.3.19
Number va
primitive va

NOTE

4.3.20

Number ty,
set of all p
negative infi

4.3.21

A

A

he Object type that is an instance of the'standard built-in String constructor
String object is created by using the*String constructor in a new expression, supplying a String vall

The resulting object has an internalproperty whose value is the String value. A String object can be cog
lue by calling the String constructor as a function (15.5.1).

ue
ue correspondingto-a double-precision 64-bit binary format IEEE 754 value

Number value i$*a member of the Number type and is a direct representation of a number.

e
sSible Number values including the special “Not-a-Number” (NaN) values, positive infinity,

e as
rced

and

PN A0
ety

Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE

A Number object is created by using the Number constructor in a new expression, supplying a Number value

as an argument. The resulting object has an internal property whose value is the Number value. A Number object can be

coerced to a

4.3.22
Infinity

Number value by calling the Number constructor as a function (15.7.1).

number value that is the positive infinite Number value

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

4.3.23
NaN
number value that is an IEEE 754 “Not-a-Number” value

4.3.24

function

member of the Object type that is an instance of the standard built-in Function constructor and that may be
invoked as a subroutine

NOTE In addition to its na med properties, a function contains executable code and state that determine how it
behaves when invoked. A function’s code may or may not be written in ECMAScript.

NOTE Examples of bui It-in functions include parselnt and Math.exp. Ani_ mplementation may provide

NOTIE Depending upon the form of the property, the value may be, represented either directly as a |[data value (a

NOTE Standard built-in metheds are defined in this specification, and an ECMAScript implementatior] may specify

owr| property
progerty that is directly contained by its object

4.3.34

inherited property
property of an object that is not an own property but is a property (either own or inherited) of the object’s
prototype

© ISO/IEC 2011 — Al rights reserved 7

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a_g¢

context-free
terminal sy
side of a prg

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols chara
de units) that conform to the rules for SourceCharacter defined in_Clause 6. It defines a s¢t of

(Unicode c(
productions
sequences

Input eleme
ECMAScrip
punctuators
also becom
Simple whi
elements fo
of whether
MultiLineCo
becomes p4

A RegExp

characters as defined by SourceCharacter, |t'defines a set of productions, starting from the goal symbol Pat

that describ

Productions

grammar specifies a language, namely, the (perhaps infinite) set of possible sequénce
nbols that can result from repeatedly replacing any nonterminal in the sequence with a ‘right-|
duction for which the nonterminal is the left-hand side.

starting from the goal symbol InputElementDiv or InputElementRegExp, that describe
bf such characters are translated into a sequence of input elements.

hts other than white space and comments form the terminal,symbols for the syntactic gramma
and are called ECMAScript tokens. These tokens are theyreserved words, identifiers, literals,
of the ECMAScript language. Moreover, line terminaters, although not considered to be tok
e part of the stream of input elements and guide the process of automatic semicolon insertion
e space and single-line comments are discarded’ and do not appearint he stream of i
I the syntactic grammar. A MultiLineComment (that is, a comment of the form “/*...*/” regarg
t spans more than one line) is likewise simply discarded if it contains no line terminator; but
mment contains one or more line terminators, then it is replaced by a single line terminator, W
rt of the stream of input elements for the‘syntactic grammar.

prammar for ECMAScript is giveniin 15.10. This grammar also has as its terminal symbols

e how sequences of characters are translated into regular expression patterns.

of the lexical and RegExp grammars are distinguished by having two colons

iven
5 of
and

ters

how

r for
and
ens,
7.9).
hput
less
if a
hich

the
tern,

as separating

punctuation] The lexical and RegExp grammars share some productions.

5.1.3 Th¢ Numeric String Grammar

Another grammar is\tsed for translating Strings into numeric values. This grammar is similar to the part of the
lexical granpmar/having to do with numeric literals and has as its terminal symbols SourceCharacter. [This
grammar agpearsin 9.3.1.

Productions

of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal s ymbol Program, that describe how sequences of tokens can form syntactically correct
ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript program, it is first converted to a stream of

input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by
a single application of the syntactic grammar. The program is syntactically in error if the tokens in the stream

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

of input elements cannot be parsed as a single instance of the goal nonterminal Program, with no tokens left
over.

“en

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain

“awkward” places.

5.1.p

The
The

The
lexid
lexid
grar

Prog
pun
JSQO
synt

5.1.

Tern
the
thro
ina
the
othe

Non
non
the

suc(

b The JSON Grammar
JSON grammar is used to translate a String describing a set of ECMAScript objects ‘into ac
JSON grammar is given in 15.12.1.

JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar,
al grammar is used to translate character sequences into tokens and is similar to parts of the
al grammar. The JSON syntactic grammar describes how sequences.of tokens from the J
hmar can form syntactically correct JSON object descriptions.

uctions of the JSON lexical grammar are distinguished by having two colons as
N syntactic grammar is similar to parts of the ECMAScript syntactic grammar. Productions ¢
pctic grammar are distinguished by using one colon “:*as‘separating punctuation.

b Grammar Notation

ninal symbols of the lexical, RegExp, and numeric string grammars, and some of the termina
other grammars, are shown in Fixed;width font, both in the productions ofthe gra
ighout this specification whenever theltext directly refers to such a terminal symbol. These a
program exactly as written. All termiinal symbol characters specified in this way are to be un
hppropriate Unicode character fron the ASCII range, as opposed to any similar-looking cha
r Unicode ranges.

ferminal symbols are shown in italic type. The definition of a nonterminal is introduced by the
erminal being defined:followed by one or more colons. (The number of colons indicates to whi
production belongs.) One or mo re alternative right-hand sides for the nonterminal the
eeding lines. For.example, the syntactic definition:

WhileStaterment :
whi le (Expression) Statement

¢sdhat’the nontermlnal WhlIeStatement represents the token while, followed by a left parent

ual objects.

The JSON
ECMAScript
SON lexical

separating

Ctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The

f the JSON

symbols of
mmars and
e to appear
derstood as
acters from

hame of the
ch grammar
n follow on

hesis token,

Expression and Statement are themselves nonterminals. As another example, the syntact|c definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

furrences of

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by
a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined
in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of
nonterminals are common.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

The subscripted suffix “,°, which may appear after a terminal or nonterminal, indicates an optional symbol.
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration :
Identifier Initialiserqy,

is a convenient abbreviation for:
VariableDeclaration :

Identifier
Tdentifier Tnitialiser

and that:

Iterat{onStatement :
Tor (ExpressionNolngy ; Expressiong, ; EXxpressiong,) Statement

is a convenient abbreviation for:

Iterat|onStatement :
Tor (; Expressiong ; EXxpressiong,) Statement
for (ExpressionNoln ; Expressione,: ; Expressiong,) Statement

which in turfp is an abbreviation for:

IteratjonStatement :

for (; ; Expression,) Statement

for (; Expression ; Expressiong) Statement

for (ExpressionNoln ; ; Expressiongy). Statement

Tor (ExpressionNoln ; Expression ; Expressiong) Statement

which in turp is an abbreviation for:

Iterat{onStatement :
for (; ;) Statement

for (; ; Expression)._Statement

for (; Expression«;) Statement

for (; Expressiony; Expression) Statement

for (ExpressionNoln ; ;) Statement

for (ExpressionNoln ; ; Expression) Statement

for (ExpressionNoln ; Expression ;) Statement

for ((ExpressionNoln ; Expression ; Expression) Statement

so the nontgrminallterationStatement actually has eight alternative right-hand sides.
When the words "one of Tollow the colon(s) Ina grammar defmnition, they signify that each of the terminal
symbols on the following line orlines is an alternative definition. For example, the lexical grammar for

ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 45 6 7 8 9

which is merely a convenient abbreviation for:

10 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

NonZeroDigit ::

OCoO~NOOOUPR,WNE

If th
han

If th
may
as g
inw,
the

the

mat
no

—_

If th
indig
inpu

indig
toke

Unle

e-phrase—‘femptyt—appears—astheright-tand—side—of aproduction—tindicatesthat the—produ
i side contains no terminals or nonterminals.

not be used if the immediately following input token is a member of the given set; The set ca
list of terminals enclosed in curly braces. For convenience, the set can also bg Written as a
hich case it represents the set of all terminals to which that nonterminal could.expand. For exa
Hefinitions

DecimalDigit :: one of
0 1 2 3 45 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit
Hefinition
LookaheadExample ::
N [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit}
Ches either the letter n followed by one*or more decimal digits the first of which is even, or a ¢

ollowed by another decimal digit,

e phrase “[no LineTerminator here]*appears in the right-hand side of a production of the syntactic
ates that the production.is-a restricted production: it may not be u sed if a LineTerminator o
t stream at the indicated.position. For example, the production:

ThrowStatement(:
throw. [no LineTerminator here] Expression ;

ates that the production may not be used if a LineTerminator occurs in the program betweer
n and.the-Expression.

ction's right-

b phrase “[lookahead ¢ set]” appears in the right-hand side of a production, it indicates’ that the production

n be written
honterminal,
mple, given

ecimal digit

grammar, it
Ccurs in the

the throw

urrences of

ss.the presence of a LineTerminator is forbidden by a restricted production, any number of oc

LineTerminator may appear befween any t WO consecuilveé tokens In the stream of Inp ut elements without
affecting the syntactic acceptability of the program.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a

mult

i-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
“‘but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

© ISO/IEC 2011 — Al rights reserved

11

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode code unit

5.2 Algorithm Conventions

The specifigation often uses a numbered list to specify steps in an algorithm. These algorithms are usgd to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not interjded
to imply the|use of any specific implementation technique. In practice, there may be more efficient)algorithms
available tolimplement a given feature.

In order to facilitate their use in multiple parts of this specification, some algorithms, called @hstract operatipns,
are named pnd written in parameterised functional form so that they may be referenced by name from wjithin
other algorithms.

When an algorithm is to produce a value as a result, the directive “return x” is used to indicate that the resylt of
the algorithm is the value of x and that the algorithm should terminate. The)notation Result(n) is usegl as
shorthand for “the result of step n”.

For clarity of expression, algorithm steps may be subdivided into sequéntial substeps. Substeps are indehted
and may themselves be further divided into indented substeps. QOutline numbering conventions are usgd to
identify subgteps with the first level of substeps labelled with lower case alphabetic characters and the seq¢ond
level of subgteps labelled with lower case roman numerals. Ifsmore than three levels are required these rfules
repeat with the fourth level using numeric labels. For example:

1. Top-levgl step
a. |Substep.
b. |Substep
i Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a Subsubsubsubstep

A step or substep may be written as an “if’ predicate that conditions its substeps. In this case, the subsfteps
are only ap}lied if the predicate.isitrue. If a step or substep begins with the word “else”, it is a predicate that is
the negation of the preceding~if_predicate step at the same level.

A step may [specify the jtérative application of its substeps.

A step may ass ert\an in variant condition of its a Igorithm. Such assertions are used to make explicit
algorithmic |invafiants that would otherwise be implicit. Such assertions add no additional semantic
requirementis_and” hence need not be checked by an implementation. They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to pe rform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if it is +0 or —0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which is —x if x is negative (less than zero) and
otherwise is x itself.

12 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

The mathematical function sign(x) yields 1 if x is positive and -1 if x is negative. The sign function is not used in
this standard for cases when x is zero.

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero)
such that abs(k) < abs(y) and x-k = q x y for some integer qg.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.
NOTE floor(x) = x—(x modulo 1).

If an algorithm is defined to “throw an exception”, execution of the algorithm is terminated and no result is
retufned. The calling algorithms are also terminated, until an algorithm st ep is reached that explicitly deals

with|the exception, using terminology such as “If an exception was thrown...”. Once such ah.algorithm step
has [been encountered the exception is no longer considered to have occurred.

6 |[Source Text

ECNIAScript source textis represented as a sequence of characters in_the-Unicode charactgr encoding,
verdion 3.0 orlater. Thetextis expected to have been normalised to.\Unicode Normalizatipn Form C
(carfonical composition), as described in Unicode Technical Report #15. Conforming ECMASCcript
implementations are not required to per form any normalisation of-text, or behave as though they were
perfprming normalisation of text, themselves. ECMAScript source text is assumed to be a sequence of 16-bit
code units for the purposes of this specification. Such a source text may include sequences of|16-bit code
unit$ that are not valid UTF-16 character encodings. If an actual source text is encoded in a form other than
16-hit code units it must be processed as if it was first converted to UTF-16.

Syntax

SourceCharacter ::
any Unicode code unit

Thrqughout the rest of this document, the-phrase “code unit” and the word “character” will be used|to refer to a
16-hit unsigned value used to represenb a single 16-bit unit of text. Th e phrase “Unicode charagter” will be
used to refer to the abstract linguistic or typographical unit represented by a s ingle Unicode gcalar value
(which may be longer than 16 bjts-and thus may be represented by more than one code unit).|The phrase
“code point” refers to such a Unicode scalar value. “Unicode character” only refers to entities represented by
single Unicode scalar values: the components of a combining character sequence are still individgal “Unicode
charjacters,” even though‘@a-user might think of the whole sequence as a single character.

In sfring literals, regular expression literals, and identifiers, any character (code unit) may also bg¢ expressed
i i igits. Within a
ng literal or
f the literal.

“string” and the
16-bit un3|gned mteger that is the code unit of that character there is actually no transformation because a “character”
within a “string” is actually represented using that 16-bit unsigned value.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \uOOOA, for example, occurs within a single-line comment, it
is interpreted as a line terminator (Unicode character 000A is line feed) and therefore the next character is not
part of the comment. Similarly, if the Unicode escape sequence \uOOOA occurs within a string literal in a Java
program, it is lik ewise interpreted as a line ter minator, which is not allowed within a string literal—one must
write \n instead of \UOOOA to cause aline feed to be part of the string value of a string literal. In an
ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring

© ISO/IEC 2011 — All rights reserved 13

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

within a string literal in an ECMAScript program always contributes a character to the String value of the literal
and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of characters as the next input element.

There are twa goal symbols for the lexical grammar The InputFlementDiv symbol is used in thase syntactic
grammar cpntexts where a le ading division (/) or division-assignment (/=) operator is permitted, |The
InputElemen{RegExp symbol is used in other syntactic grammar contexts.

NOTE Tlhere are no syntactic grammar contexts where both a leading division or division-assignment} and a legding
RegularExpregsionLiteral are permitted. This is not affected by semicolon insertion (see 7.9); in examples such a$ the
following:

a=»>b
/hi/g.exec(c).map(d);

where the firgt non-whitespace, non-comment character after a LineTerminator is slash.(£) and the syntactic context allows
division or diyision-assignment, no semicolon is inserted at the LineTerminator. That is,"the above example is interpreted in
the same way as:

a=>b / hi / g.exec(c).map(d);

Syntax

InputElemen{Div ::
WhiteSpace
LineTerminator
Comnpent
Token
DivPynctuator

InputElemen{RegExp ::
WhiteBpace
LineTprminator
Comnent
Token
RegulprExpressionLiteral

7.1 Unicpde Format-Control Characters

The Unicode Aformat-control characters (i.e., the characters in category “Cf’ in the Unicode Chargcter
Database slich'ds LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the formgtting
of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals and regular expression literals.

<ZWNJ> and <ZWJ> are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ> and <ZWJ> may also be used in
an identifier after the first character.

<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes

14 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 1.

Table 1 — Format-Control Character Usage

Code Unit Value Name Formal Name Usage
\u200C Zero width non-joiner <ZWNJ> IdentifierPart
\u200D Zero width joiner <ZWJ> IdentifierPart
\uFEFF Byte Order Mark <BOM> Whitespace

7.2| White Space

Whife space characters are used to improve source text readability and to separate tokens (indivsible lexical
unitg) from each other, but are otherwise insignificant. White space characters may occur betwgen any two
tokegns and at the start or end of input. White space characters may also pccur within a StringLiteral or a
RegylarExpressionLiteral (where they are considered significant characters_forming part of the litefal value) or
with|n a Comment, but cannot appear within any other kind of token.

The|ECMASCcript white space characters are listed in Table 2.

Table 2 — Whitespace Characters

Code Unit Value Name Formal Name
\u0009 Tab <TAB>
\u000B VerticalhTab <VT>
\u000C FormFeed <FF>
\u0020 Space <SP>
\uO0O0AO No-break space <NBSP>
\uFEFF Byte Order Mark <BOM>
Other category “Zs* Any other Unicode <USP>
“space separator”

ECNIAScript implementations must recognise all of the white space characters defined in Unicode 3.0. Later
editipns of the Unicode(Standard may define other white space characters. ECMAScript implemerjtations may
recdgnise white spacé characters from later editions of the Unicode Standard.

Syntax

WhiteSpace.::
<TAB>
N>
<SP>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). Aline terminator

© ISO/IEC 2011 — Al rights reserved 15

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

cannot occur within any token except a StringLiteral. Line terminators may only occur within a StringLiteral
token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (7.4) but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space characters that are matched by the \s class in regular

expressions

The ECMAScript line terminator characters are listed in Table 3.

Table 3 — Line Terminator Characters

Only the ch
treated as v
a line termin

Syntax

LineTermina
<LF>
<CRSH
<LS>
<PS>

LineTerminaj
<LF>
<CR>
<LS>
<pPS>
<CRSH

7.4 Com

Comments

Because a
the general
characters f
considered

Code Unit Value Name Formal Name
\uOO0OA Line Feed <LF>
\u000D Carriage Return <CR>
\u2028 Line separator <LS>
\u2029 Paragraph separator <PS>

racters in Table 3 are treated as line terminators. Other new line or ling”breaking characters
hite space but not as line terminators. The character sequence <CR><LF> is commonly use
ator. It should be considered a single character for the purpose of teporting line numbers.

or ::

orSequence ::

[lookahead ¢ <LF>]

<LF>

ments
Can be either single or multi-line. Multi-line comments cannot nest.
single-ling comment can contain any character except a LineTerminator character, and becaus

rule thata token is always as long as possible, a single-line comment always consists @
rom ‘the 7/ marker to the end of the line. However, the LineTerminator at the end of the line i

are
d as

e of
f all

not
and

tob.e part of the single-line comment; itis recognised separately by the lexical grammar

becomes pe

e or the stream or INnput elemernts 10r tne syntactuc gramimnar. ThisS poIntis very Important, bec

use

it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 7.9).

Comments behave like white space and are dis carded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing by
the syntactic grammar.

Syntax

Comment ::

MultiLineComment
SingleLineComment

16

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

MultiLineComment ::
/* MultiLineCommentCharsyp */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsep
* PostAsteriskCommentChars,p

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars,
* PostAsteriskCommentChars,p

MulfiLineNotAsteriskChar ::
SourceCharacter but not *

MultiiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

SingjeLineComment ::
/7 SingleLineCommentCharsop

SingjeLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsgp

SingjeLineCommentChar ::
SourceCharacter but not LineTerminator

7.5| Tokens

Syngax

Tokdn ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral

NOT[E The DivPunctuator and RegularExpressionLiteral productions define tokens, but are not included in the Token
prodpction.

7.6 | Ildentifier Namesand Identifiers

Identifier Names_are*tokens that are interpreted according to the grammar given in the “Identifier$” section of
chapter 5 of thedUnicode standard, with some small modifications. An Identifier is an IdentifierNanje that is not
a R}servedWord (see 7.6.1). The Unicode identifier grammar is based on both no rmative and|informative
character-categories specified by the Unicode Standard. The characters in the specified categorigs in version
3.0 |of{ the' Unic ode standard must be treated as in those categories by all conforming ECMAScript
implementations

This standard specifies specific character additions: The dollar sign ($) and the underscore (_) are permitted
anywhere in an IdentifierName.

Unicode escape sequences are also permitted in an IdentifierName, where they contribute a single character to
the IdentifierName, as computed by the CV of the UnicodeEscapeSequence (see 7.8.4). The \ preceding the
UnicodeEscapeSequence does not contribute a character to the IdentifierName. A UnicodeEscapeSequence cannot
be used to put a character into an IdentifierName that would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequence sequence were replaced by its UnicodeEscapeSequence's CV, the result must still be
a valid IdentifierName that has the exact same sequence of characters as the original IdentifierName. All
interpretations of identifiers within this specification are based upon their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

© ISO/IEC 2011 — All rights reserved 17

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Two IdentifierName that are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values). The intent is that the
incoming source text has been converted to normalised form C before it reaches the compiler.

ECMAScript implementations may rec ognise identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in Unicode

3.0.

Syntax
Identifier ::

IdentifierName but not ReservedWord
IdentifierName ::

IdentifierStart

IdentifierName ldentifierPart
IdentifierStaft ::

UnicddeLetter

\ U icodeEscapeSequence

IdentifierPa

IdentifierStart
UnicddeCombiningMark
UnicddeDigit
UnicgdeConnectorPunctuation
<ZWINJ>

<ZWJ]>

UnicodeLettdr ::

any

(Lt)", [Modifier letter (Lm)”, “Other letter(Lo)”, or “Letter number (NI)”.

UnicodeCo
any

UnicodeDigi ::

any

UnicodeConmectorPunctuation™::

any

The definitigns of the nonterminal UnicodeEscapeSequence is given in 7.8.4

7.6.1 Reserve ords

» o« » o

aracter in the Unicode categories “Uppercase letter (Lu)’, “Lowercase letter (LI)", “Titlecase Igtter

iningMark ::
aracter in the Unicode categories “Non-spacing mark (Mn)” or “Combining spacing mark (Mc

il

aracter in the Upicode category “Decimal number (Nd)”

aracter jn.the Unicode category “Connector punctuation (Pc)”

A reserved word is an IdentifierName that cannot be used as an ldentifier.

Syntax

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

18

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiers in ECMAScript programs.

Syntax

Keyword :: one of
break do instanceof typeof
case else new var
catch finally return void
continue for switch while
debugger Tunction T™is with
default if throw
delete in try

7.6.1.2 Future Reserved Words
Thelfollowing words are used as keywords in proposed extensions and are therefore reserved to
possibility of future adoption of those extensions.
Synfax
FutureReservedWord :: one of
class enum extends super
const export import

bllow for the

The|following tokens are also considered to be FutareReservedWords when they occur within stricf mode code
(seq 10.1.1). The occurrence of any of th esextokens within strict mode code in any con tex{ where the
occTrrence of a FutureReservedWord would produce an error must also produce an equivalent error
impllements let private public yield
interface package protected static
7.7| Punctuators
Syntax
Pungtuator :: one of

{ + ()) L 1

s s > <=

>= == 1= === 1==

+ — * % ++ ——

<< >> >>> & | n

! ~ && 11 ? :

= += —_= *= 0= <<=

>>= >>>= &= |: N=
DivPunctuator :: one of

/ /=
© ISO/IEC 2011 — All rights reserved 19

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

Regul

arExpressionLiteral

7.8.1 Nul

Syntax

NullLiteral :
null

Semantics

The value o)

7.8.2 Bog

Syntax

BooleanLiter
true
falg

Semantics

The value o

The value o

7.8.3 Nun

Syntax

NumericLite
Decin
HexIn

Literals

f the null literal null 1 is the sole value of the Null type, namely null.

lean Literals

f the Boolean literal true is a value of the' Boolean type, namely true.

f the Boolean literal false is a.value of the Boolean type, namely false.
heric Literals
al ::

alLiteral
tegerLiteral

DecimalLiteral ::
DecimalintegerLiteral . DecimalDigitsqs ExponentPartop
_ Dedi 101 ypﬁntanfDa|f'fwJl

DecimallntegerLiteral ExponentPart,

DecimallntegerLiteral ::

0

NonZeroDigit DecimalDigitsop

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of

0 1

20

2 3 45 6 7 8 9

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

NonZeroDigit :: one of

1 2 3 45 6 7 8 9

ExponentPart ::

ExponentIndicator Signedinteger

Exponentindicator :: one of

e E

SignedIinteger ::

DecimalDigits

HexIntegerLiteral ::

Hex

The

NOT

is an

Semantics

An
mat
belo

+DecimatDigits
- DecimalDigits

Ox HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

Digit :: one of
01 2 3 45 6 7 8 9 ab cd e f A\BC D E F

source character immediately following a NumericLiteral must not\be an IdentifierStart or Decim

E For example:
3in
error and not the two input elements 3 and in.

imeric literal stands for a v alue of the Number type . This value is determined in two st
nematical value (MV) is derived from the-fiteral; second, this mathematical value is rounded 3
W.

The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

The MV of NumericLiteral :: HéxlIntegerLiteral is the MV of HexIntegerLiteral.

The MV of DecimalLiteral % DecimallntegerLiteral . is the MV of DecimallntegerLiteral.
The MV of DecimalLiteral :: DecimalintegerLiteral . DecimalDigits is the MV of Decimalintege
(the MV of DecimalDigits times 10™), where n is the number of characters in DecimalDigits.
The MV of DecimalLiteral :: DecimalintegerLiteral . ExponentPart is the MV of Decimallnteger
10°, where e is\the MV of ExponentPart.

The MV <eof-" DecimalLiteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (
DecimallntegerLiteral plus (the MV of DecimalDigits times 10™)) times 10°, where n is the
characters in DecimalDigits and e is the MV of ExponentPart.

The MV of DecimalLiteral ::. DecimalDigits is the MV of DecimalDigits times 10™, where n is th

bIDigit.

bps: first, a
s described

rLiteral plus
iteral times

he MV of
number of

E number of

characters in DecimalDiagits
=)

The MV of DecimalLiteral ::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10°", where n is

the number of characters in DecimalDigits and e is the MV of ExponentPart.
The MV of DecimalLiteral :: DecimalintegerLiteral is the MV of DecimalintegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimalintegerLiter
where e is the MV of ExponentPart.

The MV of DecimallntegerLiteral :: O is O.
The MV of DecimallintegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

The MV of DecimallntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit tim
the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

© ISO/IEC 2011 — Al rights reserved

al times 10°,

es 10" plus

21

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

e The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

e The MV of ExponentPart ::
e The MV of Signedinteger ::
e The MV of Signedinteger ::
. The MV of Signedinteger ::
. The MV of DecimalDigit ::

Exponentindicator Signedinteger is the MV of Signedinteger.
DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV of DecimalDigits.
0 or of HexDigit :: O is 0.

. The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 is 1.
e The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 is 2.
o The M\ -ofDecimalDigit-3-orofNenZeroDigit++3-orof HexDigit++3-s-3-
e The MY of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 is 4.
e The MY of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 is 5.
e The MY of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 is 6.
e The MY of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 is 7.
e The MY of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.
. The MY of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.

. The MY of HexDigit :: a or of HexDigit :: A is 10.
. The MY of HexDigit :: b or of HexDigit :: B is 11.
e The MY of HexDigit :: c or of HexDigit :: Cis 12.
e The MY of HexDigit :: d or of HexDigit :: D is 13.
e The MY of HexDigit :: e or of HexDigit :: E is 14.
e The MY of HexDigit :: ¥ or of HexDigit :: F is 15.
e The MY of HexIntegerLiteral :: Ox HexDigit is the MV of HexDigit.

e TheM

e TheM
MV of

Once the ey
If the MV is
MV (as spe
in which cas
each signifi
replacing e
significant d

. itis no
. there i

A conformir
NumericLite

/ of HexIntegerLiteral :: 0X HexDigit is the MV of HexDigit.

V of HexIntegerLiteral :: HexIntegerLiteral HexDigitis (the MV of HexIntegerLiteral times 16) plus
HexDigit.

act MV for a numeric literal has been determined, it is then rounded to a value of the Number
0, then the rounded value is +0; otherwise, the rounded value must be the Number value fo
Cified in 8.5), unless the literal is a'DecimalLiteral and the literal has more than 20 significant d
e the Number value may be eijther the Number value for the MV of a literal produced by repld
cant digit after the 20th withxa 0 digit or the Number value for the MV of a literal produce
bch significant digit after the 20th with a O digit and then incrementing the literal at the
git position. A digit is.significant if it is not part of an ExponentPart and

0; or
a nonzero digit.to its left and there is a nonzero digit, not in the ExponentPart, to its right.

g implenientation, when processing strict mode code (see 10.1.1), must not extend the syntd
al to include OctallntegerLiteral as described in B.1.1.

7.8.4 String-lLiterals

the

type.

the
gits,
cing
] by
POth

x of

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence. All characters may appear literally in a string literal except for the closing
quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character
may appear in the form of an escape sequence.

Syntax
StringLiteral

** DoubleStringCharactersqy **
" SingleStringCharactersyy; ™

22

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersg

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersgp

DoubleStringCharacter ::
SourceCharacter but not one of ** or \ or LineTerminator
\ EscapeSequence
LineContinuation

Sing[eStringCharacter ::

SourceCharacter but not one of * or \ or LineTerminator
\ EscapeSequence

LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscgpeSequence ::
CharacterEscapeSequence
O [lookahead ¢ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
" "\ b f nr t v

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or LineTerminator

EscgpeCharacter ::
SingleEscapeCharacter
DecimalDigit

X

u

HexEscapeSequence:
X HexDigit HexDigit

UnidodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

1 gt ol n H [[T H I 2 o W W= ol " H Lo 1 1 o
The UTTimionm Ur uic TIOTnerimmiiar TICAUIYIU TS YIVETT T 7.0.0. oUUTLELTIdl dLlTT TS UTTINICSU TTT UldUustT U.

Semantics

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
character values (CV) contributed by the various parts of the string literal. As part of this process, some
characters within the string literal are interpreted as having a mathematical value (MV), as described below or
in 7.8.3.

e The SV of StringLiteral :: "*" is the empty character sequence.
e The SV of StringLiteral :: " is the empty character sequence.
e The SV of StringLiteral :: ** DoubleStringCharacters ** is the SV of DoubleStringCharacters.

© ISO/IEC 2011 — All rights reserved 23

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

e The SV of StringLiteral :: * SingleStringCharacters * is the SV of SingleStringCharacters.

e The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the CV of
DoubleStringCharacter.

e The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of the CV
of DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacters in order.

e The SV of SingleStringCharacters :: SingleStringCharacter is a s equence of one character, the CV of
SingleStringCharacter.

e The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of the CV
of SingleStringCharacter followed by all the characters in the SV of SingleStringCharacters in order.

e The SV of LineContinuation :: \ LineTerminatorSequence is the empty character sequence.

3 The CM of DoubleStringCharacter :: SourceCharacter but not one of ™ or \ or LineTerminator, is| the
SourceCharacter character itself.

e The CY of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CY of DoubleStringCharacter :: LineContinuation is the empty character sequence.

e The C)V of SingleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is| the
SourceCharacter character itself.

e The CY of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CY of SingleStringCharacter :: LineContinuation is the empty character sequéence.

e The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

e The CY of EscapeSequence :: O [lookahead ¢ DecimalDigit] is @ <NUL> charactery(Unicode value 0000).

e The CVY of EscapeSequence :: HexEscapeSequence is the CV of the HexEseapeSequence.

. The CVY of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

e The CJ of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit valye is
deternfined by the SingleEscapeCharacter according to Table 4;

Table 4 — String Single Charactér-Escape Sequences

Escape Sequence Code Unit Value\\g\"’ Name Symbol

\b \u0008 : backspace <BS>
\t \u0009 horizontal tab <HT>
\n \uO00A line feed (new line) <LF>
\v \u000B vertical tab <VT>
\f \uQ00C form feed <FF>
\r \u000D carriage return <CR>
\" \u0022 double quote "

\\ \u0027 single quote)

\\ \u005C backslash \

e The CY of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.
e The CY.ofNonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator ig the

SourceCharastercharacteritself-

e The CV of HexEscapeSequence :: X HexDigit HexDigit is the character whose code unit value is (16 times
the MV of the first HexDigit) plus the MV of the second HexDigit.

e The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the character whose code
unit value is (4096 times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus
(16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit.

A conforming implementation, when processing strict mode code (see 10.1.1), may not extend the syntax of
EscapeSequence to include OctalEscapeSequence as described in B.1.2.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuation to produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \n or \uOOOA.

24 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

7.8.5 Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that
never compare as === to each other even if the two literals' contents are identical. A RegExp object may also
be created at runtime by new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The Strin gs of ¢ haracters comprising the
RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular expression
constructor, which interprets them according to its own, more stringent grammar. An imp lementation may

extgnd the regular expression constructor's grammar, but it must not extend the RegularExpress

RegularExpressionFlags productions or the productions used by these productions.

Synfax

RegylarExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]))
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::

RegularExpressionNonTerminator but not one of *or\ or/ or [
RegularExpressionBackslashSequence

RegularExpressionClass

RegularExpressionChar ::

RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence

RegularExpressionClass

RegularExpressionBackslashSequence
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharactefr but not LineTerminator

RegylarExpressionClass ::
[RegularExpressionClassChars]

RegularEkpressionClassChars ::
lempty]

ReaularExpressionClassChars ReaularExnressionClassChar
~ T ~ T

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of] or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]) -
RegularExpressionFlags IdentifierPart

onBody and

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the

characters // start a single-line comment. To specify an empty regular expression, use: 7(?:)/.

© ISO/IEC 2011 — Al rights reserved

25

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Semantics

A regular expression literal evaluates to a value of the Object type that is an instance of the standard built-in
constructor RegExp. This value is determined intw o steps: first, the characters comprising the regular
expression's RegularExpressionBody and RegularExpressionFlags production expansions are collected
uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a new
object is created as if by the expression new RegExp(Pattern, Flags) where RegExp is the standard
built-in constructor with that name. The newly constructed object becomes the value of
RegularExpressionLiteral. If the call to new RegExp would generate an error as specified in 15.10.4.1, the error
must be treated as an early error (Clause 16).

7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, ‘do-wh

statement,
terminated

convenience, however, such semicolons may be o mitted from the source text in certain.situations. T
situations are described by s aying that semicolons are automatically inserted into thessource code t
stream in thpse situations.

7.9.1 Rul

There are three basic rules of semicolon insertion:

1. When,

is not gllowed by any production of the grammar, then a semicolon is automatically inserted beforg
offendipg token if one or more of the following conditions istrue:

e The offending token is separated from the previous>token by at least one LineTerminator.
e The offending token is }.

2. When,
and th
a semi

3. When,

one of the t

NOTE

the

continue statement, break statement, return statement, and throw statement) mus
with semicolons. Such semicolons may always appear explicitly in the source text.

bs of Automatic Semicolon Insertion

as the program is parsed from left to right, a token (called the offending token) is encountered

as the program is parsed from left to right, the end of the input stream of tokens is encount
parser is unable to parse the input_token stream as a single complete ECMAScript Program,
olon is automatically inserted at the-end of the input stream.

as the program is parsed-from left to right, a token is encountered that is allowed by s
ion of the grammar, but the“production is a restricted production and the token would be the
r a terminal or nonterfminal immediately following the annotation “[no LineTerminator here]” withir]

0 sémicolons in the header of a for statement (see 12.6.3).

ile
t be
For
ese
ken

that
the

bred
hen

bme
first
the
N IS
cally

rted
bme

tricted proauctions In the grammar.

PostfixExpression :

LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] ——

ContinueStatement :

continue [no LineTerminator here] ldentifier ;

BreakStatement :

break [no LineTerminator here] ldentifier ;

ReturnStatement :

26

return [no LineTerminator here] Expression >

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

ThrowStatement :
throw [no LineTerminator here] Expression ;

The practical effect of these restricted productions is as follows:
When a ++ or —- token is encountered where the parser would treat it as a p ostfix operator, and at least one
LineTerminator occurred between the preceding token and the ++ or -- token, then a semicolon is automatically

inserted before the ++ or -- token.

When a continue, break, return, or throw token is encountered and a LineTerminator is encountered before
the next token, a semicolon is automatically inserted after the continue, break, return, or throw token.

The resulting practical advice to ECMAScript programmers is:
A postfix ++ or —- operator should appear on the same line as its operand.
An Expression in a return or throw statement should start on the same line as the return or throw foken.

An ldentifier in a break or continue statement should be on the same line as the break or continug token.

7.9.2 Examples of Automatic Semicolon Insertion

The|source

{12}3
is npt a valid sentence in the ECMAScript grammar, even{wijth the automatic semicolon insertion rules. In
confrast, the source

{1
2}3

is also not a valid ECMAScript sentence, but™is transformed by au tomatic semicolon insertjon into the
following:

{1

32 3} 3;
whigh is a valid ECMAScript sentenee.
Thefsource

for (a; b

)

is not a valid ECMAScript sentence and is not altered by a utomatic semicolon insertion Hecause the
semficolon is needed for the header of a for statement. Automatic semicolon insertion never ingerts one of
the fwo semicolons' in the header of a for statement.

The[source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a + b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminator separates it from the token return.

The source
a=>b
++C

is transformed by automatic semicolon insertion into the following:

© ISO/IEC 2011 — All rights reserved 27

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

NOTE

between b and ++.

The source

if (a>bh)
else c d

The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,
even thoughna praduction of the grammar applies at that point_because an automatically inserted semicolon

would then

The source

is not trans
second line

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea fo

programme
automatic s

8 Types

Algorithms
value types
types and s

An ECMAS
programme
String, Num|

A specificat
ECMAScrip
List, Compl
Specificatio
within an E(
of ECMASCG
ECMAScrip

Within this
ECMAScrip

be parsed as an empty statement.

a=b+c

(d + e).printQ)
ormed by automatic semicolon insertion, because the parenthesised expression that beging
can be interpreted as an argument list for a function call:

a=>b+ c(d+ e).printQ)

to provide an explicit semicolon at the end of the preceding statement rather than to rel
bmicolon insertion.

ithin this specification manipulate values each ‘of ‘which has an associated type. The pos
are exactly those defined in this clause. Types-are further subclassified into ECMAScript langy
becification types.

cript language type corresponds to_walues that are directly manipulated by an ECMAS
using the ECMAScript language, The ECMAScript language types are Undefined, Null, Bool
ber, and Object.

on type corresponds to meta=values that are used within algorithms to describe the semantic
language constructs and ECMAScript language types. The specification types are Refere
etion, Property Descriptor, Property Identifier, Lexical Environment, and Environment Reg
N type values are specification artefacts that do not necessarily correspond to any specific €
CMAScript impleraentation. Specification type values may be used to describe intermediate re
ript expression‘evaluation but such values cannot be stored as properties of objects or value
language ¥ariables.

pecification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers tgq
language and specification types defined in this clause.

the

the
on

sible
age

cript
Pan,

s of
nce,
ord.
ntity
sults
s of

the

8.1

The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.2 The Null Type

The Null type has exactly one value, called null.

28

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript program, in
which case each element in the String is treated as a code unit value (see Clause 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative integers.

The

first element (if any) is_at 'r_\neifinn n, the next element (if nn\ll) at pncifinn 1, and soon._Th

length of a

Strin
cont

Whs
Whs
their
Strin
they

NOT|
pOSS
from
sees
Unic
Norn
as th

8.5

The
preg

excgpt that the 9007199254740990 (that isy 2°°-2) distinct “Not-a-Number” values of the IEEE S

repr
prog
betw
all N

The
are
infin

Inflinity.)

The
posi
corr

g is the number of elements (i.e., 16-bit values) within it. The empty String has length zero~a
ains no elements.

n a String contains actual textual data, each element is considered to be a single -UTF-1
ther or not this is t he actual storage format of a String, the characters within a\String are n
initial code u nit element position as though they were represented using (UFF-16. All op
gs (except as otherwise stated) treat them as sequences of undifferentiated 16-bit unsign
do not ensure the resulting String is in normalised form, nor do they ensurelanguage-sensitiv

E The rationale behind this design was to keep the implementation of Strings as simple and high-{
ible. The intent is that textual data coming into the execution environment from outside (e.g., user in
a file or received over the network, etc.) be converted to Unicode Normalised Form C before the run
it. Usually this would occur at the same time incoming text is, cénverted from its original character
bde (and would impose no additional overhead). Since itis_fecommended that ECMAScript sourcq
halised Form C, string literals are guaranteed to be normalised\(if’source text is guaranteed to be normal
ey do not contain any Unicode escape sequences.

The Number Type

Number type has exactly 18437736874454810627 (that is, 2%-2%3+3) values, representing
ision 64-bit format IEEE 754 values as. specified in the IEEE Standard for Binary Floating-Poin

bsented in ECMAScript as a single) special NaN value. (Note that the NaN value is prod
ram expression NaN.) In some.implementations, external code might be able to detect
yeen various Not-a-Number values, but such behaviour is implementation-dependent; to ECM4
aN values are indistinguishable from each other.

e are two other special values, called positive Infinity and negative Infinity. For brevity, t
also referred to forrexpository purposes by the symbols +eo and —w, respectively. (Note tha
te Number values”are produced by the program expressions +Infinity (or simply Infir

other<18437736874454810624 (that is, 2%-2%%) values are called the finite numbers. Half g
five \numbers and half are negative numbers; for every finite positive Number value
bsponding negative value having the same magnitude.

nd therefore

b code unit.
Limbered by
erations on
bd integers;
b results.

erforming as
but, text read
hing program
encoding to
code be in
sed), as long

the double-
t Arithmetic,
tandard are
ced by the
d ifference
Script code,

hese values
t these two
ity) and -

f these are
there is a

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and -0.)

The

18437736874454810622 (that is, 2*~2°°-2) finite nonzero values are of two kinds:

18428729675200069632 (that is, 2°*~2°*) of them are normalised, having the form

sxmx 2°

where s is +1 or -1, m is a positive integer less than 2°° but not less than 2%?, and e is an integer ranging from
-1074 to 971, inclusive.

© ISO/IEC 2011 — Al rights reserved

29

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

The remaini

where sis +

ng 9007199254740990 (that is, 2°°~2) values are denormalised, having the form

sxm x 2°

1 or -1, mis a positive integer less than 2°2, and e is —1074.

Note that all the positive and negative integers whose magnitude is no greater than 2% are representable in

the Number

type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

In this spdcification, the phrase “the Number value for x” where x represents an exact nonzero
mathematicpl quantity (which might even be an irrational number such as ©) means a Number valug.chos¢n in
the following manner. Consider the set of all finite values of the Number type, with -0 removed and with
additional vilues added to it that are not representable in the Number type, namely 2'%% (whieh’is +1 x
2°™) and -2'%* (which is -1 x 2% x 2°"). Choose the member of this set that is closest in_value to x. If
values of the set are equally close, then the one with an even significand is chosen; for 'this purpose, the
extra valueg 2'° and —2'° are considered to have even significands. Finally, if 2'% was chosen, repla|

with +oo; if

1024 was chosen, replace it with —oo; if +0 was chosen, replace it with ~0\if.and only if x is less

zero; any dther chosen value is used unchanged. The re sult is the Number~value for x. (This proce
corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range —2* thréugh 2%'-1, inclusive, or in the rg
0 through 2{>-1, inclusive. These operators accept any value of the/Ndmber type but first convert each

value to on

respectivelyl.

8.6 The (

An Object i
property, or

e A namd
attributg

e A nam¢g
attributg
associa

e An inte
Internal

There are ty
assignment

of 2% integer values. See the descriptions of the Tolnt32/and ToUint32 operators in 9.5 and

Dbject Type

5 a collection of properties. Each propertytis either a named data property, a named acce
an internal property:

d data property associates a nhame with an ECMAScript language value and a set of Boo
S.

d accessor property associates a name with one or two accessor functions, and a set of Boog
s. The accessor functions are used to store or retrieve an ECMAScript language value th
ed with the property.

nal property.has' no name and is not directly accessible via ECMAScript language opera
properties €xist purely for specification purposes.

vo kinds of access for named (non-internal) properties: get and put, corresponding to retrieval
respectively.

real

two
D53
two
two
Ce it
han
Hure

nge
buch
9.6,

SSor

ean

ean
At is

ors.

and

8.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of named properties. A named data
property associates a name with the attributes listed in Table 5

30

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Table 5 — Attributes of a Named Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript The value retrieved by reading the property.
language type

[[Writable]] Boolean If false, attempts by ECMAScript code to change the
property’s [[Value]] attribute using [[Put]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property 10 be an accessor property, or change it
attributes (other than [[Value]]) will fail.

A ngmed accessor property associates a name with the attributes listed in Table 6.

Table 6 — Attributes of a Named Accessor Property

Attribute Name | Value Domain Description
[[Get]] Object or If the value is an Object it must-be a function Obje¢t. The
Undefined function’s [[Call]] internal metHod (8.6.2) is called With an
empty arguments list to'refurn the property value gach time
a get access of the property is performed.
[[Set]] Object or If the value is an Object it must be a function Obje¢t. The
Undefined function’s [[Call]] internal method (8.6.2) is called With an
arguments list'containing the assigned value as it sole
argument €ach time a set access of the property is
performed. The effect of a property's [[Set]] interngl method
may, but'is not required to, have an effect on the vialue
returhed by subsequent calls to the property's [[G4t]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the propertyl|is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be a data property, or change its attribyites will
fail.

If thé value of an attribute\is not explicitly specified by this specification for a named property, the default value
defiped in Table 7 is Gsed.

Table 7 — Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

8.6.2 Object Internal Properties and Methods

This specification uses various internal properties to define the semantics of object values. These internal
properties are not part of the ECMAScript language. They are defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
internal properties in the manner described here. The names of internal properties are enclosed in double

© ISO/IEC 2011 — All rights reserved 31

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

square brackets [[]]. When an algorithm uses an internal property of an object and the object does not
implement the indicated internal property, a TypeError exception is thrown.

The Table 8 summarises the internal properties used by this specification that are applicable to all
ECMAScript objects. The Table 9 summarises the internal properties used by this specification that are only
applicable to some ECMAScript objects. The descriptions in these tables indicate their behaviour for native
ECMAScript objects, unless stated otherwise in this document for particular kinds of native ECMAScript
objects. Host objects may support these internal properties with any implementation-dependent behaviour as
long as it is consistent with the specific host object restrictions stated in this document.

The “Value Type Domain” columns of the following tables define the types of values associated with internal

properties. [The type names refer to the types defined in Clause 8 augmente d by the following additipnal
names. “any” means the value may be any ECMASCc ript language type. “primitive” means Undefined, Eull,
Boolean, Sfring, or Number. “SpecOp” means the internal property is an internal method, an implementation
provided pr¢cedure defined by an abstract operation specification. “SpecOp” is followed by a list,of descriptive
parameter rjames. If a parameter name is the same as a type name then the name describes-thé type of the
parameter. |f a “SpecOp” returns a value, its parameter list is followed by the symbol “—”.and the type of the
returned value.
Table 8 — Internal Properties Common to All Objects
Interngl Property Value Type Domain Description (4~
[[Protatype]] Obiject or Null The prototype.ofithis object.
[[Clasg]] String A String value indicating a specification defjned
classification of objects.
[[Extensible]] Boolean If true,"~own properties may be added to| the
object:
[[Get]] SpecOp(propertyName) — | Returns the value of the named property.
any
[[GetOwnPropertyl] SpecOp (propertyName) =% Returns the Property Descriptor of the named
Undefined or Property own property of this object, or undefingd if
Descriptor absent.
[[GetProperty]] SpecOp (propertyName) — | Returns the fully populated Property Descrjptor
Undefined or Property of the named property of this object] or
Descriptor undefined if absent.
[[Put]] SpecOp_.(propertyName, Sets the specified named property to the vilue
any, Boolean) of the second parameter. The flag confrols
failure handling.
[[CanHut]] SpecOp (propertyName) — | Returns a Boolean value indicating whethper a
Beolean [[Put]] operation with PropertyName can| be
performed.
[[HasHropertyl] SpecOp (propertyName) — | Returns a Boolean value indicating whethef the
Boolean object already has ap roperty with the dgiven
name.
[[Delete]] SpecOp (propertyName, Removes the specified named own propgerty
Boolean) — Boolean from the object. The flag controls fajlure
IIGIIUIIIIH.
[[DefaultValue]] SpecOp (Hint) — primitive Hint is a String. Returns a default value for the
object.
[[DefineOwnProperty]] | SpecOp (propertyName, Creates or a lters the named own property to
PropertyDescriptor, have the state described by a Property
Boolean) — Boolean Descriptor. The flag controls failure handling.

Every object (including host objects) must implement all of the internal properties listed in Table 8. However,
the [[DefaultValue]] internal method may, for some objects, simply throw a TypeError exception.

All objects have an internal property called [[Prototype]]. The value of this property is either null or an object
and is used for implementing inheritance. Whether or not a native object can have a ho st object as its

32 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

[[Prototype]] depends on the implementation. Every [[Prototype]] chain must have finite length (that is, starting
from any object, recursively accessing the [[Prototypel]] internal property must eventually lead to a null value).
Named data properties of the [[Prototype]] object are inherited (are visible as properties of the child object) for
the purposes of get access, but not for put access. Named accessor properties are inherited for both get
access and put access.

Every ECMAScript object has a Boolean-valued [[Extensible]] internal property that controls whether or not
named properties may be added to the object. If the value of the [[Extensible]] internal property is false then
additional named properties may not be added to the object. In addition, if [[Extensible]] is false the value of
the [[Class]] and [[Prototype]] internal properties of the object may not be modified. Once the value of an

[[Extensible]] internal property has been set to false it may not be subsequently changed to true.

NOTIE This specification defines no ECMAScript language operators or built-in functions that permit
mod|fy an object’s [[Class]] or [[Prototype]] internal properties or to change the value of [[Extensible]] from
Implgmentation specific extensions that modify [[Class]], [[Prototype]] or [[Extensible]] must not' vielate t
defirled in the preceding paragraph.

The|value of the [[Class]] internal property is defined by this specification for everykind of built-in
valug of the [[Class]] internal property of a host object may be any String value except one of ""Ar
“Arfay', "Boolean", "Date', "Error", "Function”, "JSON", “Math", "Number",
"RepExp", and "'String". The value of a [[Class]] internal property is used internally to distingu
kinds of objects. Note that this specification does not provide any means/for a program to acces
except through Object.prototype.toString (see 15.2.4.2).

Unlgss otherwise specified, the common internal methods of native ECMAScript objects behave 3
in 8/12. Array objects have a slightly different implementation of the [[DefineOwnProperty]] inte
(seq 15.4.5.1) and String objects have a slightly different\implementation of the [[GetOwnPrope|
method (see 15.5.5.2). Arguments objects (10.6) have different implementations of [[Get]], [[GetO
[[DefineOwnProperty]], and [[Delete]]. Function objects\(15.3) have a different implementation of [[

Hos} objects may implement these internal metheds in any mann er unless specified otherwise; f
one|possibility is that [[Get]] and [[Put]] for a-patticular host object indeed fetch and store propert
[[HasProperty]] always generates false. Hewever, if any specified manipulation of a host objg
progerties is not supported by an implementation, that manipulation must throw a TypeError exc
attempted.

The

progerty of the host object:

f a property is deseribed as a data property and it may return different values over time, th
both of the [[Writable]] and [[Configurable]] attributes must be true even if no me chanism to
Value is exposed Vvia the other internal methods.

f a property~is described as a data property and its [[Writable]] and [[Configurable]] are both
he SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property
o [[GetOwnProperty]].

h program to
alse to true.
he invariants

object. The
guments",
"Object",
ish different
s that value

s described
nal method
rtyl] internal
vnProperty]],
Set]].

pr example,

values but
ct's internal
bption when

[[GetOwnProperty]] internal method of a host object must conform to the following invariamts for each

len either or
change the

false, then
on all calls

f ti 1T aﬁlibutco Uti ITI tildll [[‘VAVII ItaIUiU]] mriay b;ldllyC UVCI tilllc Ul If t; 1< }JlUpUITy Illiyilt u';bappc
[[Configurable]] attribute must be true.

ar, then the

If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

If the value of the host object’s [[Extensible]] internal property has been observed by ECMAScript code to

be false, then ifa call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls

must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of a host object must not permit the addition of a new property to a
host object if the [[Extensible]] internal property of that host object has been observed by ECMAScript code to

be false.

© ISO/IEC 2011 — Al rights reserved

33

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

If the [[Extensible]] internal property of th at host object has been observed by ECMAScript code to be false
then it must not subsequently become true.

Table 9 — Internal Properties Only Defined for Some Objects

Internal Property Value Type Description
Domain
[[PrimitiveValuel]] primitive Internal state information associated with this object. Of the

standard built-in ECMAScript objects, only Boolean, Date,
Number, and String objects implement [[PrimitiveValue]].

[[Construct]]

SpecOp(a List of

Creates an object. Invoked via the new operator. The

any) — Object

arguments to the SpecOp are the arguments passed fo |the
new operator. Objects that implement this internal 'method
are called constructors.

[[Call]]

SpecOp(any, a List
of any) — any or

Executes code associated with the object. Invoked via a
function call expression. The arguments to-ffié 'SpecOp |are

Reference this object and a list containing the arguments passed tolthe
function call expression. Objects that implement this intefnal
method are callable. Only callable\ objects that are host
objects may return Reference values:

[[HasInstance]] SpecOp(any) — Returns a Boolean value indicating whether the argument is

Boolean likely an Object that was constructed by this object. Of |the

standard built-in ECMASCript objects, only Function objgcts
implement [[HasInstance]).

[[Scopel]

Lexical Environment

A lexical environment that defines the environment in which
a Function objech is executed. Of the standard buift-in
ECMAScript ebjects, only Function objects implement
[[Scope]].

[[FormalParameters]]

List of Strings

A possiblycempty List containing the identifier Strings g¢f a
Function’s* FormalParameterList. Of the standard built-in
ECMAScript objects, only Function objects implement
[[FermalParameterList]].

[[Code]]

ECMAScript code

The ECMAScript code of a function. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Codel]].

[[TargetFumction]]

Object

The target function of a fun ction object created using [the
standard built-in Function.prototype.bind method. Qnly
ECMAScript objects created using Function.prototype.Qind
have a [[TargetFunction]] internal property.

[[BoundThi

7
—_
—_

any

The pre-bound this value of a function Object created uging
the standard built-in Function.prototype.bind method. Qnly
ECMAScript objects created using Function.prototype.qind
have a [[BoundThis]] internal property.

[[BoundArduments]]

List of any

The pre-bound argument values of a function Object cregted
using the standard built-in Function.prototype.bind method.
Only ECMAScript objects created uging

= 'H 4o loisael—lo. LR LA tall ot I
1 UII\JLIUII.plUlUly'Jc.UIIIU nmavc d llL)UuIIUI"\IHUIIICIILOJJ LA~ na

property.

[Match]]

SpecOp(String,
index) —
MatchResult

Tests for a regular expression match and returns a
MatchResult value (see 15.10.2.1). Of the standard built-in
ECMAScript objects, only RegExp objects implement
[[Match]].

[[ParameterMap]]

Object

Provides a mapping between the properties of an arguments
object (see 10.6) and the formal parameters of the
associated function. Only ECMAScript objects that are
arguments objects have a [[ParameterMap]] internal
property.

34

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

8.7 The Reference Specification Type

The Reference type is used to explain the behaviour of such operators as delete, typeof, and the
assignment operators. For example, the left-hand operand of an assignment is expected to produce a
reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on
the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function calls are
permitted to return references. This possibility is admitted purely for the sake of host ob jects. No built-in
ECMAScript function defined by this specification returns a reference and there is no provision for a user-
defined function to return a reference. (Another reason not to use a syntactic case analysis is that it would be
lengthy and awkward, affecting many parts of the specification.)

refefenced name and the Boolean valued strict reference flag. The base value is either undefined, an Object, a
Boolean, a String, a Number, or an environment record (10.2.1). A base value of undefined.indicates that the
refefence could not be resolved to a binding. The referenced name is a String.

A Reference is a resolved name binding. A Reference consists of three components, the basE value, the

Thelfollowing abstract operations are used in this specification to access the components of references:

o [GetBase(V). Returns the base value component of the reference V.

o [GetReferencedName(V). Returns the referenced name component of the-feference V.
e |sStrictReference(V). Returns the strict reference component of the reference V.

e HasPrimitiveBase(V). Returns true if the base value is a Boolean,\String, or Number.

o |sPropertyReference(V). Returns true if either the base value'is an object or HasPrimitiveBasg(V) is true;
btherwise returns false.

¢ |sUnresolvableReference(V). Returns true if the base value is undefined and false otherwise

Thelfollowing abstract operations are used in this specification to operate on references:

8.7. GetValue (V)

1. Jf Type(V) is not Reference, return V.

2. Let base be the result of calling GetBase(V).

3. Jf IsUnresolvableReference(V), throw a ReferenceError exception.

4. |f IsPropertyReference(V), then

a. If HasPrimitiveBase(Y) is false, then let get be the [[Get]] internal method of base, othefwise let get
be the special [{Get]] internal method defined below.

b. Return the resuft of calling the get internal method using base as its this value, and passing
GetReferencedName(V) for the argument.

5. Else, base must.be-an environment record.

a. Return:the result of calling the GetBindingValue (see 10.2.1) concrete method of base passing
GetReferencedName(V) and IsStrictReference(V) as arguments.

Thelfollowing*[[Get]] internal method is used by GetValue when V is a property reference with a prjmitive base
value. Mtiis)called using base as its this value and with property P as its argument. The followirlg steps are
takegn:

D

1. Let O be ToObject(base).

2. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

3. If desc is undefined, return undefined.

4. If IsDataDescriptor(desc) is true, return desc.[[Value]].

5. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]] (see 8.10).

6. |If getter is undefined, return undefined.

7. Return the result calling the [[Call]] internal method of getter providing base as the this value and providing
no arguments.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation

might choose to avoid the actual creation of the object. The only situation where such an actual property access that uses
this internal method can have visible effect is when it invokes an accessor function.

© ISO/IEC 2011 — Al rights reserved 35

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

8.7.2 PutValue (V, W)

=

If Type(V) is not Reference, throw a ReferenceError exception.
Let base be the result of calling GetBase(V).
3. If IsUnresolvableReference(V), then

a. |If IsStrictReference(V) is true, then

i Throw ReferenceError exception.
b. Call the [[Put]] internal method of the global object, passing GetReferencedName(V) for the
property name, W for the value, and false for the Throw flag.

4. Else if IsPropertyReference(V), then

a. If HasPrimitiveBase(V) is false, then let put be the [[Put]] internal method of base, otherwise let put
be the Special [[PuUt]] internal method defined Delow.
b. |Call the put internal method using base as its this value, and passing GetReferencedName(\/)_ forl the
property name, W for the value, and IsStrictReference(V) for the Throw flag.
5. Else bade must be a reference whose base is an environment record. So,

a. [Call the SetMutableBinding (10.2.1) concrete method of base, passing GetReferencedName(V), W,
and IsStrictReference(V) as arguments.

N

6. Return.

The followirlg [[Put]] internal method is used by PutValue when V is a property referencé with a primitive ase
value. It is |called using base as its this value and with property P, value W, and’Boolean flag Throy as
arguments. [The following steps are taken:

1. Let O b¢ ToObject(base).
2. If the repult of calling the [[CanPut]] internal method of O with argument P is false, then
a. [If Throw is true, then throw a TypeError exception.
b. |Else return.
3. Let ownesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
4. If IsDataDescriptor(ownDesc) is true, then
a. |[If Throw is true, then throw a TypeError exception.
b. |Else return.
5. Let desq be the result of calling the [[GetProperty]]«nternal method of O with argument P. This may be
either am own or inherited accessor property descfiptor or an inherited data property descriptor.
6. If IsAccessorDescriptor(desc) is true, then
a. |Let setter be desc.[[Set]] (see 8.10) which cannot be undefined.
b. |Call the [[Call]] internal method\of setter providing base as the this value and an argument list
containing only W.
7. Else, this is a request to create an own property on the transient object O
a. [If Throw is true, then throw a TypeError exception.
8. Return.

NOTE he object that may be created in step 1 is not accessible outside of the above method. An implementgtion
might choos¢ to avoid the actual creation of that transient object. The only situations where such an actual property
assignment that uses this/internal method can have visible effect are when it either invokes an accessor function orlis in
violation of a[Throw predicated error check. When Throw is true any property assignment that would create a new property
on the transignt object\throws an error.

8.8 The List Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function
calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

8.9 The Completion Specification Type

The Completion type is used to explain the behaviour of statements (break, continue, return and throw)
that perform nonlocal transfers of control. Values of the Completion type are triples of the form (type, value,
target), where type is one of normal, break, continue, return, or throw, value is any ECMAScript language
value or empty, and target is any ECMAScript identifier or empty. If cv is a completion value then cv.type,
cv.value, and cv.target may be used to directly refer to its constituent values.

36 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

The term “abrupt completion” refers to any completion with a type other than normal.

8.10 The Property Descriptor and Property Identifier Specification Types

The Property Descriptor type is used to explain the manipulation and reification of named property attributes.
Values of the Property Descriptor type are records composed of named fields where each field’'s name is an
attribute name and its value is a corresponding attribute value as specified in 8.6.1. In addition, any field may
be present or absent.

Property Descrlptor values may be further cIassrﬂed as data property descrlptors and accessor property

named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumdrable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor‘and an accessor
progerty descriptor; however, it may be neither. A generic property descriptor is a Property Des¢riptor value
that|is neither a data property descriptor nor an accessor property descriptor. A~fdlly populafed property
desg¢riptor is one that is either an accessor property descriptor or a data property descfiptor and that has all of
the fields that correspond to the property attributes defined in either 8.6.1 Table 5 or Table 6.

For |notational convenience within this specification, an object literal-like.§yntax can be used |to d efine a
property descriptor value. For example, Property Descriptor {[[Value]]: 42y\[[Writable]]: false, [[Cgnfigurable]]:
true} defines a data pro perty descriptor. Field name order is not sighificant. Any fields that are mot explicitly
listefl are considered to be absent.

In specification text and algorithms, dot notation may be used torefer to a specific field off a Property
Descgriptor. For example, if D is a property descriptor them)D{[Value]] is shorthand for “the field pf D name d
[[Valuel]”.

The|Property Identifier type is used to associate agproperty name with a Property Descriptor. Vplues of the
Property Identifier type are pairs of the form (name, descriptor), where name is a String and depcriptor is a
Progerty Descriptor value.

Thelfollowing abstract operations are usedin this specification to operate upon Property Descriptof values:
8.10.1 IsAccessorDescriptor (.Déesc)

Whgn the abstract operation-IsAccessorDescriptor is called with property descriptor Desc, the follpwing steps
are faken:

1. Jf Desc is undefined,ithen return false.

2. |f both Desc.[[G&t]] and Desc.[[Set]] are absent, then return false.

3. Return true:

8.10.2 IsDataDescriptor (Desc)

Whgn\the abstract operation IsDataDescriptor is called with property descriptor Desc, the followirjg steps are
taken:

1. If Desc is undefined, then return false.

2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.

3. Return true.

8.10.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc, the following steps
are taken:

© ISO/IEC 2011 — Al rights reserved

37

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

1. If Desc is undefined, then return false.
2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.
3. Return false.

8.10.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc, the following
steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1. If Desc i undefined, then return undefined.
2. Let obj be the result of creating a new object as if by the expression new Object() where Object is the ‘stardard
built-in ¢onstructor with that name.
3. If IsDatgDescriptor(Desc) is true, then
a. [Call the [[DefineOwnProperty]] internal method of obj with arguments "value", Property Descriptor
{[[Value]]: Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]{true}, and false
b. |Call the [[DefineOwnProperty]] internal method of obj with arguments "wr i table"\Property Descrigtor
{[[Value]]: Desc.[[Writable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
4. Else, IsAccessorDescriptor(Desc) must be true, so
a. [Call the [[DefineOwnProperty]] internal method of obj with arguments "get’", Property Descriptor
{[[Value]]: Desc.[[Get]], [[Writable]]: true, [[Enumerable]]: true, [[Canfigurable]]: true}, and false.
b. |Call the [[DefineOwnProperty]] internal method of obj with arguments “set", Property Descriptor
{[[Value]]: Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Eonfigurable]]: true}, and false.
5. Call the [[DefineOwnProperty]] internal method of obj with arguments™*enumerable", Property Descriptor
{[[Valud]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]}itrue, [[Configurable]]: true}, and false.
6. Call the [[DefineOwnProperty]] internal method of obj with arguments "configurable", Property Descriptor
{[[Valud]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
7. Return obj.

8.10.5 ToRropertyDescriptor (Obj)

When the apstract operation ToPropertyDescriptor'is called with object Obj, the following steps are taken:

1. If Type(Obj) is not Object throw a TypeError exception.

2. Let desq be the result of creating a newProperty Descriptor that initially has no fields.

3. If the repult of calling the [[HasProperty]] internal method of Obj with argument "enumerable” is true

then

a. |Let enum be the result-of calling the [[Get]] internal method of Obj with "enumerable".
b. |Set the [[Enumerable]] field of desc to ToBoolean(enum).

4. If the repult of calling the [{HasProperty]] internal method of Obj with argument "configurable" is true,

then

a. |Let conf be‘the result of calling the [[Get]] internal method of Obj with argument

"configurable".
b. |Setthe[[Configurable]] field of desc to ToBoolean(conf).

5. If the repult{of calling the [[HasProperty]] internal method of Obj with argument "value" is true, then
a. tetvatuebetheTesuttoftattimg the f{Getimtermatmethodof Objwitmargument—“vattue™
b. Set the [[Value]] field of desc to value.

6. If the result of calling the [[HasProperty]] internal method of Obj with argument "writable" is true, then
a. Letwritable be the result of calling the [[Get]] internal method of Obj with argument "writable".
b. Set the [[Writable]] field of desc to ToBoolean(writable).

7. If the result of calling the [[HasProperty]] internal method of Obj with argument "get" is true, then
a. Let getter be the result of calling the [[Get]] internal method of Obj with argument "get".
b. If IsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.
c. Set the [[Get]] field of desc to getter.

8. If the result of calling the [[HasProperty]] internal method of Obj with argument "set" is true, then
a. Let setter be the result of calling the [[Get]] internal method of Obj with argument "set".
b. If IsCallable(setter) is false and setter is not undefined, then throw a TypeError exception.

38 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

c. Set the [[Set]] field of desc to setter.
9. If either desc.[[Get]] or desc.[[Set]] are present, then

a. |If either desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.
10. Return desc.

8.11 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.12_Algorithms for Object Internal Methods

In the following algorithm descriptions, assume O is a native ECMAScript object, P is a.String, Desc is a
Property Description record, and Throw is a Boolean flag.

8.12.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property name P, the following steps are
taken:

f O doesn’t have an own property with name P, return undefined.
| et D be a newly created Property Descriptor with no fields.
| et X be O’s own property named P.
f X is a data property, then

a. Set D.[[Value]] to the value of X’s [[Value]] attribiute:

b. Set D.[[Writable]] to the value of X’s [[Writable]] attribute
5. Else X is an accessor property, so
a. Set D.[[Get]] to the value of X’s [[Get]] attribute.
b. Set D.[[Set]] to the value of X’s [[Set]] dttribute.
Set D.[[Enumerable]] to the value of X’s [[EnGmerable]] attribute.
Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
Return D.

NP

©~No

However, if O is a String object it has a tmore elaborate [[GetOwnProperty]] internal method defined in 15.5.5.2.

8.12.2 [[GetProperty]] (P)
Whgn the [[GetProperty]].internal method of O is called with property name P, the following steps dre taken:

|_et prop be the resuft of calling the [[GetOwnProperty]] internal method of O with property namg P.
f prop is not undefined, return prop.

| et proto be the value of the [[Prototype]] internal property of O.

f proto.is null, return undefined.

Returnsthe result of calling the [[GetProperty]] internal method of proto with argument P.

agprLODME

8.12.3 [[Get]] (P)

When the [[Get]] internal method of O is called with property name P, the following steps are taken:

Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

If desc is undefined, return undefined.

If IsDataDescriptor(desc) is true, return desc.[[Value]].

Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].

If getter is undefined, return undefined.

Return the result calling the [[Call]] internal method of getter providing O as the this value and providing no
arguments.

oakwhE

© ISO/IEC 2011 — Al rights reserved 39

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

8.12.4 [[CanPut]] (P)

When the [[CanPut]] internal method of O is called with property name P, the following steps are taken:

1.
2. Ifdesci

a.

b.

Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

s not undefined, then
If IsAccessorDescriptor(desc) is true, then
i If desc.[[Set]] is undefined, then return false.
ii. Else return true.
Else, desc must be a DataDescriptor so return the value of desc.[[Writable]].

Let proto be the [[Prototype]] internal property of O.

Let inh

Nogokw

If IsAcg
a.
b.
Else, in
a.
b.

Host object
allow [[Put]]

8.12.5 [[PY

When the [[
steps are ta

If proto[is null, then return the value of the [[Extensible]] internal property of O.

rited be the result of calling the [[GetProperty]] internal method of proto with property name. P:

If inhereited is undefined, return the value of the [[Extensible]] internal property of O.

essorDescriptor(inherited) is true, then

If inherited.[[Set]] is undefined, then return false.

Else return true.

erited must be a DataDescriptor

If the [[Extensible]] internal property of O is false, return false.
Else return the value of inherited.[[Writable]].

5 may define additional constraints upon [[Put]] operations. If possible, host objects should
operations in situations where this definition of [[CanPut]] returns false.

t]1 (P, V, Throw)

Put]] internal method of O is called with property P, valde V, and Boolean flag Throw, the follo
ken:

sult of calling the [[CanPut]] internal method ef*O‘with argument P is false, then

If Throw is true, then throw a TypeError exception.

Else return.

Desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
hDescriptor(ownDesc) is true, then

Let valueDesc be the Property Descriptor {[[Value]]: V}.

Call the [[DefineOwnProperty]] internal method of O passing P, valueDesc, and Throw as
arguments.

Return.

be the result of calling the [[GetProperty]] internal method of O with argument P. This may be

either ap own or inherited accessor property descriptor or an inherited data property descriptor.

essorDescriptor(dest) is true, then

Let setter be desc:[[Set]] which cannot be undefined.

Call the [[€aH]] internal method of setter providing O as the this value and providing V as the s
argument.

ate amamed data property named P on object O as follows

Let newDesc be the Property Descriptor

{b[\alue]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

not

ving

e

1. Ifthere
a.
b.
2. Letown
3. If IsDat
a.
b.
C.
4. Let desq
5. If IsAcq
a.
b.
6. Else, crd
a.
b.
7. Return.

Call the [[DefineOwnProperty]] internal method of O passing P, newDesc, and Throw as argume

8.12.6 [[HasProperty]] (P)

nts.

When the [[HasProperty]] internal method of O is called with property name P, the following steps are taken:

1.
2.
3.

If desc i

40

Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

s undefined, then return false.

Else return true.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

8.12.7 [[Delete]] (P, Throw)

When the [[Delete]] internal method of O is called with property name P and the Boolean flag Throw, the
following steps are taken:

1. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
2. If desc is undefined, then return true.
3. If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.
4. Else if Throw, then throw a TypeError exception.
5. Return false.

8.12.8 [[DefaultValue]] (hint)
Whgn the [[DefaultValue]] internal method of O is called with hint String, the following step$ are taKen:

1. [LettoString be the result of calling the [[Get]] internal method of object O with*argument "toString".

2. |f IsCallable(toString) is true then,

a. Let str be the result of calling the [[Call]] internal method of toString, with O as the this|value and
an empty argument list.

b. If stris a primitive value, return str.

3. Let valueOf be the result of calling the [[Get]] internal method of object O with argument "valueOf".

4. |f IsCallable(valueOf) is true then,

a. Letval be the result of calling the [[Call]] internal.méthod of valueOf, with O as the this|value and
an empty argument list.

b. If val is a primitive value, return val.

5. [Throw a TypeError exception.

Whgn the [[DefaultValue]] internal method of O is_called with hint Number, the following steps are taken:

1. LetvalueOf be the result of calling the [[Get]] internal method of object O with argument "val ueOf".

2. |f IsCallable(valueOf) is true then,

a. Letval be the result of calling the [[Call]] internal method of valueOf, with O as the thiq value and
an empty argument list.

b. Ifval is a primitive value;return val.

3. Let toString be the result of,calling the [[Get]] internal method of object O with argument "toString".

4. |f IsCallable(toString) is true’then,

a. Let str be the result of calling the [[Call]] internal method of toString, with O as the this|value and
an empty argument list.

b. If stris a(primitive value, return str.

5. [Throw a TypeError exception.

Whegn the [[DefaultValue]] internal method of O is called with no hint, then it behaves as if the hint were
Number, unless O is a Date object (see 15.9.6), in which case it behaves as if the hint were String|

The|above” specification of [[DefaultValue]] for native objects can return only primitive values. If g host object
implements its own [[DefaultValue]] internal method it must ensure that its [[DefaultV/alue]] internal method

can return only primitive values.

8.12.9 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithm, the term “Reject” means “If Throw is true, then throw a TypeError exception,
otherwise return false”. The algorithm contains steps that test various fields of the Property Descriptor Desc for
specific values. The fields that are tested in this manner need not actually exist in Desc. If a field is absent
then its value is considered to be false.

When the [[DefineOwnProperty]] internal method of O is called with property name P, property descriptor Desc,
and Boolean flag Throw, the following steps are taken:

© ISO/IEC 2011 — All rights reserved 41

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
2. Let extensible be the value of the [[Extensible]] internal property of O.
3. If current is undefined and extensible is false, then Reject.
4. If current is undefined and extensible is true, then
a. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then

i Create an own data property named P of object O whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of
an attribute field of Desc is absent, the attribute of the newly created property is set to its
default value.

b. Else, Desc must be an accessor Property Descriptor so,

i Create an own accessor property named P of object O whose [[Get]], [[Set]],
[[Enumerable]] and [[ConTigurable]] attribute values are described by Desc. 1T the value] of
an attribute field of Desc is absent, the attribute of the newly created property is set)to its
default value.

c. |Return true.
5. Return ﬂrue, if every field in Desc is absent.
6. Return frue, if every field in Desc also occurs in current and the value of every field in Désc'is the same
value ad the corresponding field in current when compared using the SameValue algorithm’(9.12).
7. If the [[Configurable]] field of current is false then
a. |Reject, if the [[Configurable]] field of Desc is true.
b. |Reject, if the [[Enumerable]] field of Desc is present and the [[Enumerahble]] fields of current and
Desc are the Boolean negation of each other.
8. If IsGenericDescriptor(Desc) is true, then no further validation is required:
9. Else, if |sDataDescriptor(current) and IsDataDescriptor(Desc) have diffetent results, then
a. |Reject, if the [[Configurable]] field of current is false.
b. [If IsDataDescriptor(current) is true, then

i Convert the property named P of object O from\a data property to an accessor property.
Preserve the existing values of the converted property’s [[Configurable]] and
[[Enumerable]] attributes and set the rest of the property’s attributes to their default valges.

c. |Else,

i Convert the property named P of objéct O from an accessor property to a data property.
Preserve the existing values of the.tonverted property’s [[Configurable]] and
[[Enumerable]] attributes and set‘the rest of the property’s attributes to their default valyes.

10. Else, if |sDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. |[If the [[Configurable]] field of current is false, then
i Reject, if the [[Writable]} field of current is false and the [[Writable]] field of Desc is tfue.
ii. If the [[Writable]] field of current is false, then
1. Reject, if the'[[Value]] field of Desc is present and SameValue(Desc.[[Value]],
current[[Value]]) is false.
b. |else, the [[Configurable]] field of current is true, so any change is acceptable.
11. Else, IsfAccessorDescriptar(current) and IsAccessorDescriptor(Desc) are both true so,
a. |If the [[Configlrable]] field of current is false, then

i. Rejectyif the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]]) is

false.
il Reject, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Gel]])
is false.
12. For each attribute field of Desc that is present, set the correspondingly named attribute of the property
named P-of u'ujcut C-tothevatueofthe-fietd:
13. Return true.
However, if O is an Array object, it has a more elaborate [[DefineOwnProperty]] internal method defined in
15.4.5.1.
NOTE Step 10.b allows any field of Desc to be d ifferent from the corresponding field of c urrent if current’s

[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false.
This is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is
first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

42

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

9 Type Conversion and Testing

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion abstract operations. These abstract operations are
not a part of the language; they are defined here to aid the specification of the semantics of the language. The
conversion abstract operations are polymorphic; that is, they can accept a value of any ECMAScript language
type, but not of specification types.

9.1 ToPrimitive

The P4 eRt—and—3 = e edType. The
absfract operation ToPrimitive converts its input argument to a non-Object type. If an objecf\id capable of
conyerting to more than one primitive type, it may use the optional hint PreferredType to~favoyr that type.
Conjersion occurs according to Table 10:

Table 10 — ToPrimitive Conversions

Input Type Result C N
2\
Undefined The result equals the input argument (no conversion).
Null The result equals the input argument (no canversion).
Boolean The result equals the input argument (noconversion).
Number The result equals the input argument(no conversion).
String The result equals the input argument (no conversion).

Object Return a d efault value for .the Object. The default value of an o bject is
retrieved by calling the [[DefaultValue]] internal method of the dbject,
passing the optional “hint PreferredType. The b ehaviour of the
[[DefaultValue]] internalimethod is defined by this specification for all pative
ECMAScript objects‘in 8.12.8.

9.2 ToBoolean

The|abstract operation ToBoolean:converts its argument to a value of type Boolean according to Thble 11:

Table 11 — ToBoolean Conversions

Argument Type ;= Result
yi€)

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, —0, or NaN; otherwise the repult is
true

String The result is false if the argument is the empty String (its length is zero);
otherwise the result is true.

Object true

9.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to Table 12:

© ISO/IEC 2011 — Al rights reserved 43

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Table 12 — To Number Conversions

Argument Type Result

Undefined NaN

Null +0

Boolean The result is 1 if the argument is true. The result is +0 if the argument is
false.

Number The result equals the input argument (no conversion).

String See grammar and note below.

ObjeLt Appiy the fu“uvvillg steps:
1. Let primValue be ToPrimitive(input argument, hint Number).
2. Return ToNumber(primValue).

9.3.1 ToNumber Applied to the String Type

ToNumber @pplied to Strings applies the following grammar to the input String. If the’grammar cannot intefpret
the String a$ an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

Syntax

StringNumerjcLiteral :::
StrWhiteSpace,pt
StrWhiteSpace,, StrNumericLiteral StrWhiteSpaceqp

StrWhiteSpage :::
StrWhiteSpaceChar StrWhiteSpaceqp

@D

StrWhiteSpageChar :::
Whitespace
LineTerminator

StrNumericLfteral :::
StrDefimalLiteral
HexIntegerLiteral

StrDecimalL{teral :::
StrUnsignedDecimalLiteral
+ StUnsignedDecimalLiteral
- StrUnsignedDecimalL.iteral

StrUnsignedDecimallsiteral :::
Infijnity
DecimalDigits . DecimalDigitsy, ExponentPart,y
. DedimalDigits ExponentPart.,
DecimalDigits ExponentPart,p

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 45 6 7 8 9

ExponentPart :::
Exponentindicator Signedinteger

44 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Exponentindicator ::: one of

e E

SignedInteger :::

Hexl

DecimalDigits
+ DecimalDigits
- DecimalDigits

ntegerLiteral :::
Ox HexDigit
0X HexDigit

Hex

Son
7.8.

The
num

litergl toa value of Number type is given here in full.*This value is determined intw o st

mat
asd

HexIntegerLiteral HexDigit

Digit ::: one of
01 2 3 45 6 7 8 9 ab cde f A BCD E'IF

e differences should be noted between the syntax of a StringNumericLiteral-and a NumerigLiteral (see

B):

A StringNumericLiteral may be preceded and/or followed by white space‘ahd/or line terminators.
A StringNumericLiteral that is decimal may have any number of leading, 0*digits.

A StringNumericLiteral that is decimal may be preceded by + or - to-indicate its sign.
A StringNumericLiteral that is empty or contains only white space is'converted to +0.

conversion of a String to a Number value is similar overallto the determination of the Numbef value for a
eric literal (see 7.8.3), but some of the details are diffefent; so the process for converting a St£ng numeric

ps: first, a
hematical value (MV) is derived from the String numeric literal; second, this mathematical valug is rounded

lescribed below.

The MV of StringNumericLiteral ::: [empty] iSO,

The MV of StringNumericLiteral ::: StrwhitéSpace is O.
The MV of StringNumericLiteral :::™StrWhiteSpaceg, StrNumericLiteral StrWhiteSpaceqy is [the MV of
StrNumericLiteral, no matter whether-white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.
The MV of StrNumericLiteral-:"HexIntegerLiteral is the MV of HexIntegerLiteral.
The MV of StrDecimalLiteral:: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.
The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLitefal.

The MV of StrDecimalliteral ::: - StrUnsignedDecimalLiteral is the negative of the MVo f
StrUnsignedDecimalliteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative ¢f this MV is
blso 0. The reunding rule described below handles the conversion of this signless mathemati¢al zero to a
floating-poifit+0 or —0 as appropriate.)
The MV.6f StrUnsignedDecimalLiteral::: Infinity is 10'%% (a value so large that it will round t +o).
The MVAof StrUnsignedDecimalLiteral::: DecimalDigits. is the MV of DecimalDigits.
The-MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits

blus—{the-M\ of the-second-DecimalDigitstimes10-)where-n-is-the-numberofcharacters—nl the s econd
DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.

The MV of StrUnsignedDecimallLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™")) times 10°, where n is the number of characters
in the second DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral:::. DecimalDigits is the MV of DecimalDigits times 10™", where n is the
number of characters in DecimalDigits.

The MV of StrUnsignedDecimalLiteral:::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10°™",
where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits is the MV of DecimalDigits.

© ISO/IEC 2011 — Al rights reserved 45

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

e The MV of StrUnsignedDecimalLiteral:::

where e is the MV of ExponentPart.

e The MV of DecimalDigits :::
e The MV of DecimalDigits :::

DecimalDigit.

e The MV of ExponentPart :::
e The MV of Signedinteger :::
e The MV of Signedinteger :::
e The MV of Signedinteger :::

DecimalDigit is the MV of DecimalDigit.
DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of

Exponentindicator Signedinteger is the MV of SignedInteger.
DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV of DecimalDigits.

DecimalDigits ExponentPart is the MV of DecimalDigits times 10°,

e The MV of DecimalDigit ::: O or of HexDigit ::: 0 is 0.

e The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.

e The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.

e The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.

e The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.

e The MV of DecimalDigit ::: 5 or of HexDigit ::: 5is 5.

e The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.

e The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is 7.

e The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.

e The M\ of DecimalDigit ::: 9 or of HexDigit ::: 9 is 9.

e The MV of HexDigit ::: a or of HexDigit ::: A'is 10.

e The MV of HexDigit ::: b or of HexDigit ::: B is 11.

e The MV of HexDigit ::: c or of HexDigit ::: Cis 12.

e The MV of HexDigit ::: d or of HexDigit ::: D is 13.

e The MV of HexDigit ::: e or of HexDigit ::: E is 14.

e The MV of HexDigit ::: F or of HexDigit ::: F is 15.

e The MV of HexIntegerLiteral ::: Ox HexDigit is the MV=of HexDigit.

e The MV of HexIntegerLiteral ::: OX HexDigit is the MV of HexDigit.

e The MV of HexIntegerLiteral ::: HexlIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plup the
MV of HexDigit.

Once the ekact MV for a String numeric literal has been determined, it is then rounded to a value of the

Number type. If the MV is 0, then the rouinded value is +0 unless the first non white space character irf the

String numaric literal is ‘-, in which case the rounded value is —0. Otherwise, the rounded value must bg the

Number val

Lie for the MV (in the sense defined in 8.5), unless the literal includes a StrUnsignedDecimallLi

teral

and the litefal has more than 20-significant digits, in which case the Number value may be either the Number

value for thp

Number val
and then ing
and

e tis

. ther|e is anonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

not 0; oF

MV of a literal¢produced by replacing each significant digit after the 20th with a 0 digit o
Lie for the MV of & literal produced by replacing each significant digit after the 20th with a 0
rementing the\literal at the 20th digit position. A digit is significant if it is not part of an Exponen{Part

the
Higit

9.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

o

46

Let number be the result of calling ToNumber on the input argument.
If number is NaN, return +0.
If number is +0, =0, +o0, Or —oo, return number.
Return the result of computing sign(number) x floor(abs(number)).

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

9.5 Tolnt32: (Signed 32 Bit Integer)

The abstract operation ToInt32 converts its argument to one of 2% integer values in the range —2* through
2311, inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.
If number is NaN, +0, -0, +o0, or —oo, return +0.

Let posint be sign(number) * floor(abs(number)).

Let int32bit be posint modulo 2°%; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 2%

5. Jf int32bit is greater than or equal to 2*%, return int32bit — 2%, otherwise return int32bit.

o

NOTE Given the above definition of Tolnt32:

e [The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second applicatign leaves that
value unchanged.
e [loInt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latterproperty that +¢o and — are
Mmapped to +0.)

e [loInt32 maps -0 to +0.

9.6| ToUint32: (Unsigned 32 Bit Integer)

The|abstract operation ToUint32 converts its argument to one of 2*2integer values in the range 0 through 2*2-1,
inclysive. This abstraction operation functions as follows:

| et number be the result of calling ToNumber on the inpdt argument.
f number is NaN, +0, —0, +o, or —oo, return +0.

| et posint be sign(number) x floor(abs(number)),

| et int32bit be posint modulo 2% that is, a finite“<integer value k of Number type with positive gign and less
han 2°2 in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 2%
5. Return int32bit.

el A

NOTE Given the above definition of ToUInt32:

e Btep 5is the only difference between ToUint32 and Tolnt32.
e [The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
hat value unchanged.
e [foUint32(Tolnt32(x)) is egual to ToUint32(x) for all values of x. (It is to preserve this latter property that +¢ and — are
Mmapped to +0.)

e [loUint32 maps -0 to #0.

9.7| ToUint16:(Unsigned 16 Bit Integer)

Thel|abstract operation ToUint16 converts its argument to one of 2'° integer values in the range 0 through 2'°-1,
inclysive., This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

If number is NaN, +0, -0, +o0, or —oo, return +0.

Let posint be sign(number) x floor(abs(number)).

Let int16bit be posint modulo 2'¢; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 2.

5. Return intl6bit.

PR

NOTE Given the above definition of ToUint16:

e The substitution of 2'° for 2% in step 4 is the only difference between ToUint32 and ToUint16.
e ToUint16 maps -0 to +0.

© ISO/IEC 2011 — All rights reserved 47

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

9.8 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 13:

Table 13 — ToString Conversions

Argument Type Result
Undefined “undefined"
Null “null™
Boolean If the argument is true, then the result is ""true".
If the argument is false, then the result is "false".
Number See 9.8.1.
Strind Return the input argument (no conversion)
Objeqt Apply the following steps:
1. Let primValue be ToPrimitive(input argument, hint String).
2. Return ToString(primValue).

9.8.1 ToString Applied to the Number Type

The abstragt operation ToString converts a Number m to String format as follows:

1. If mis NaN, return the String "*"NaN"".

2. If mis 40 or -0, return the String ""0"".

3. If mis Igss than zero, return the String concatenation of the Strifig *~"" and ToString(—m).

4. If mis ipfinity, return the String " Infinity".

5. Otherwise, let n, k, and s be integers such that k > 1, 10%! &'s< 10, the Number value for s x 10"* is m,|and
k is as spnall as possible. Note that k is the number of digits in the decimal representation of s, that s is ngt
divisiblg by 10, and that the least significant digit of s«is hot necessarily uniquely determined by these
criteria.

6. Ifk <nEK 21, return the String consisting of the k'digits of the decimal representation of s (in order, with|no
leading geroes), followed by n—k occurrences.of the character ‘0’.

7. If 0 <n[21, return the String consisting of\the most significant n digits of the decimal representation of|s,
followed by a decimal point “.’, followed-by the remaining k—n digits of the decimal representation of s.

8. If—6 < n <0, return the String consisting of the character ‘0’, followed by a decimal point “.’, followed|by
—n occufrences of the character ‘0, followed by the k digits of the decimal representation of s.

9. Otherwipe, if k = 1, return thesString consisting of the single digit of s, followed by lowercase character |e’,
followed by a plus sign ‘+-erminus sign ‘-’ according to whether n—1 is positive or negative, followed py
the decimal representation-of the integer abs(n—1) (with no leading zeroes).

10. Return the String conSisting of the most significant digit of the decimal representation of s, followed by
decimal|point “.”, fellowed by the remaining k-1 digits of the decimal representation of s, followed by the
lowercape character ‘e’, followed by a plus sign ‘+” or minus sign ‘=" according to whether n—1 is positiye
or negatiive, followed by the decimal representation of the integer abs(n—1) (with no leading zeroes).

NOTE 1

requirements of this Standard:

If x is any Number value other than -0, then ToNumber(ToString(x)) is exactly the same Number value as x.
The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

48

Otherwise, let n, k, and s be integers such that k > 1, 10" <'s < 10%, the Number value for s x 10" is m, and k is as small as
possible. If there are multiple possibilities for s, choose the value of s for which s x 10" is closest in value to m. I there are
two such possible values of s, choose the one that is even. Note that k is the number of digits in the decimal representation of
s and that s is not divisible by 10.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as

http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various netlib mirror sites.

9.9

ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 14:

Table 14 — ToObject

Argument Type Result (Y(|

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Create a new Boolean object whose [[PrimitiveValue]] internal propegrty is
set to the value of the argument. See 15.6 for a description of Bgolean
objects.

Number Create a new Number object whose [[PfimitiveValue]] internal propérty is
set to the value of the argument. See 15.7 for a de scription of Nymber
objects.

String Create a new String object whaose [[PrimitiveValue]] internal property|is set
to the value of the argument. See’15.5 for a description of String objefts.

Object The result is the input argument (no conversion).

9.10 CheckObjectCoercible

The
con

9.1

abstract operation CheckObjectCoercible throws an error if its a rgument is a value tha
erted to an Object using ToObject. |t is'defined by Table 15:

Table 15 — CheckObjectCoercible Results

cannot be

Argument Type R€sﬁ1‘t

Undefined :I'hrow a TypeError exception.
Null Throw a TypeError exception.
Boolean Return

Number Return

String Return

Object Return

IsCallable

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language value,
is a callable function Object according to Table 16:

© ISO/IEC 2011 — Al rights reserved

49

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

9.12 The $ameValue Algorithm

Table 16 — IsCallable Results

Argument Type Result

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Object If the argument object has a [[Call]] internal method, then return true,

stherwise-return-false:

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript-lahduage values,

produces true or false. Such a comparison is performed as follows:

A

10 Executable Code and Execution-Contexts

10.1 Typess of Executable Code

There are three types of ECMAScript executable code:

50

If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then.
a. |If xis NaN andy is NaN, return true.
b. |If xis +0 andy is -0, return false.
c. [Ifxis-0andy is +0, return false.
d. [If x is the same Number value as y, return true.
e. |Return false.
If Type(x) is String, then return true if x and y are exactly theysame sequence of characters (same length pnd
same chiracters in corresponding positions); otherwise, return false.
If Type(x) is Boolean, return true if x and y are both trGeor both false; otherwise, return false.
Return true if x and y refer to the same object. OtherwiSe, return false.

Global |code is source~text that is treated as an ECMAScript Program. The global code ¢f a
particullar Program does.not include any source text that is parsed as part of a FunctionBody.

Eval cade is the"source text supplied to the built-in eval function. More precisely, if the paramieter
to the Huilt-inewal function is a String, it is treated as an ECMAScript Program. The eval code for a
particular invocation of eval is the global code portion of that Program.

Functiom COOE 15 SOUrCe text that 15 parsed as part or a runctonBody. The tuncton code of a
particular FunctionBody does not include any source text that is parsed as part of a ne sted
FunctionBody. Function code also denotes the source text supplied when using the built-in
Function object as a constructor. More precisely, the last parameter provided to the Function
constructor is converted to a String and treated as the FunctionBody. If more than one parameter is
provided to the Function constructor, all parameters except the last one are converted to Strings
and concatenated together, separated by commas. The resulting String is interpreted as the
FormalParameterList for the FunctionBody defined by the last parameter. The function code for a
particular instantiation of a Function does not include any source text that is parsed as part of a
nested FunctionBody.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

10.1.1 Strict Mode Code

An ECMAScript Program syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the three types of ECMAScript code are referred to as strict
global code, strict eval code, and strict function code. Code is interpreted as strict mode code in the following

situations:

Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive

(see 14.1).

Eval code is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive or if

10.2

A Ld
and
an |
Env
Fun
cred

An
Lexi

The
outg
surri
Lexi
Env
Env
Env

Lexi
corr
prog

he call to eval is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict moq

Function code that is part of a FunctionDeclaration, FunctionExpression, or accessor RropertyA
strict function code if its FunctionDeclaration, FunctionExpression, or PropertyAssignment’is“conta
mode code or if the function code begins with a Directive Prologue that contains a'Usé Strict D

Function code that is supplied as the last argument to the built-in Function' eonstructor is sf
code if the last argument is a String that when processed as a FunctionBody begins with
Prologue that contains a Use Strict Directive.

) Lexical Environments

xical Environment is a specification type used to define the association of Identifiers to speci
functions based upon the lexical nesting structure of ECIMAScript code. A Lexical Environmen
Environment Record and a possibly null reference té/an outer Lexical Environment. Usual
ronment is as sociated with some specific syntactic structure of ECMAScript code
tionDeclaration, a WithStatement, or a Catch clause-of a TryStatement and a new Lexical En
ted each time such code is evaluated.

Environment Record records the iden tifief bindings that are created within the scope of its
cal Environment.

outer environment reference is used to model the logical nesting of Lexical Environment
r reference of a (inner) Lexical-Environment is a reference to the Lexical Environment t
bunds the inner Lexical Environment. An outer Lexical Environment may, of course, have it

ronments. For examplé;.if'a FunctionDeclaration contains two nested FunctionDeclarations ther]
ronments of eachsof\the nested functions will have as their outer Lexical Environment
ronment of the cdrrent execution of the surrounding function.

cal Environments and Environment Record values are purely specification mechanisms ar
pspond t0 any s pecific artefact of an ECMAScript implementation. Itis impossible for an E
ram towdirectly access or manipulate such values.

10.2

e code.

ssignment is
ned in strict
irective.

rict function
a Directive

fic variables
[consists of
y alLexical
such as a
ironment is

associated

values. The
nat logically
5 own outer

cal Environment. A Lexical’Environment may serve as the outer environment for multiple inner Lexical

the Lexical
the Lexical

d need not
FCMAScrip t

.1 Environment Records

There are two kinds of Environment Record values used in this specification: declarative environment records
and object environment records. Declarative environment records are used to define the effect of ECMAScript
language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch clauses that directly
associate identifier bindings with ECMAScript language values. Object environment records are used to define
the effect of ECMAScript elements such as Program and WithStatement that associate identifier bindings with
the properties of some object.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with two concrete subclasses, declarative
environment record and object environment record. The abstract class includes the abstract specification

© ISO/IEC 2011 — Al rights reserved 51

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

methods defined in Table 17. Th ese abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

Table 17 — Abstract Methods of Environment Records

Method Purpose

HasBinding(N) Determine ifan environment record has a bin ding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D) Create a new mutable binding in an environment record. The

Boolean argument D is true the binding is may be subsequ
deleted.

String value N is the text of the bound name. | f the optional

ntly

SetMutableBinding(N,V, S)

Set the value of an already existing mutable (binding in
environment record. The String value N is the-{ext of the bg
name. V is the value for the binding and may-bé a value of
ECMAScript language type. S is a Boolean'flag. If S is true
the binding cannot be set throw a TypeError exception.
used to identify strict mode references:

an
und
any
and
S is

GetBindingValue(N,S)

Returns the value ofa n already existing binding fr om
environment record. The String value N is the text of the bg
name. S is used to identify strict mode references. If S is
and the binding does ¢hot~exist or is uninitia lised thro
ReferenceError exceptian.

an
und
rue
v a

DeleteBinding(N)

Delete a binding from{an environment record. The String val

the binding and réturn true. If the binding exists but cann

is the text of the beund name If a b inding for N exists, rer;[ove

removed retutf false. If the binding does not exist return trug.

e N

t be

ImplicitThisValue()

Returns the value to use as the this value on calls to fun
objects’, that are obtained as binding values from
envirohment record.

Ction
this

10.21.1 O

Each decla
and/or func
declarationg

In addition
also provide
and a value
are distinct
Declarative

contained within’its-scope.

eclarative Environment Records

ative environment record ‘is associated with an ECMAScript program scope containing vari
lion declarations. A~declarative environment record binds the set of ide ntifiers defined by

o the mutable-bindings supported by all Environment Records, declarative environment rec
for immutable bindings. An immutable binding is one where the association between an iden
may net:bé modified once it has been established. Creation and initialisation of immutable bin
steps jso it is possible for such bindings to exist in either an initialised or uninitialised s
environment records support the methods listed in Table 18 in addition to the Environment Re|

Able
the

brds
tifier
ding
ate.
cord

abstract spe

L e 4l !
CIHICAauurt mmictrious.

Table 18 — Additional Methods of Declarative Environment Records

Method

Purpose

CreatelmmutableBinding(N)

Create a new but uninitialised immutable binding in an
environment record. The String value N is the text of the bound
name.

InitializelmmutableBinding(N,V)

Set the value of an already existing but uninitialised immutable
binding in an environment record. The String value N is the text
of the bound name. V is the value for the binding and is a value

of any ECMAScript language type.

52

© ISO/IEC 2011 — All rights res

erved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

10.2

.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1.

atanvuDAas bhao tha doslavatina anviaronmannt raocoy A foranhich tha oanthod \aac iy alead
TT Ay v oY et e e T

2.
3.

10.2

The
a ne
exis
bind

1.
2.
3.

10.2

The
cha
the

Typ

PoONE

10.2

The

rEge the bound value of the current binding of the identifier whose name is the value of the ar

\2ana cetrre— Ot ooty ey T O e e e coTo T LLEAAT B A Avcoan s R B AV AN o

f envRec has a binding for the name that is the value of N, return true.
f it does not have such a binding, return false.

.1.1.2 CreateMutableBinding (N, D)
concrete Environment Record method CreateMutableBinding for declarative ‘'environment rec
w mutable binding for the name N that is initialised to the value undefined. A binding mus

ing is marked as being subject to deletion.

|_et envRec be the declarative environment record for which the method was invoked.

Assert: envRec does not already have a binding for N.

Create a mutable binding in envRec for N and set its bound-value to undefined. If D is true recor
hewly created binding may be deleted by a subsequent DeleteBinding call.

1.1.3 SetMutableBinding (N,V,S)

concrete Environment Record method SetMutableBinding for declarative environment records

alue of argument V. A binding for Nomust alr eady exist. If the binding is an immutablg
Error is thrown if S is true.

| et envRec be the declarative environment record for which the method was invoked.
Assert: envRec must have a binding for N.

f the binding for N in envRec)is a mutable binding, change its bound value to V.

Flse this must be an attempt to change the value of an immutable binding so if S if true throw a]
pxception.

.1.1.4 GetBindingValue(N,S)

concrete-Environment Record method GetBindingValue for declarative environment rec

rds creates
not already

t])
in this Environment Record for N. If Boolean argument D is provided<and has the value tqjue the new

i that the

attempts to
jument N to
binding, a

['ypeError

brds simply
hust already
eption.

retufns the value of its bound identifier whose name is the value of the argument N. The binding n
exis|. If Sris true and the binding is an uninitialised immutable binding throw a ReferenceError exc
1. et envRec be the declarative environment record for which the method was invoked
2. Assert: envRec has a binding for N.
3. If the binding for N in envRec is an uninitialised immutable binding, then

a. If Sis false, return the value undefined, otherwise throw a ReferenceError exception.
4. Else, return the value currently bound to N in envRec.
10.2.1.1.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only delete

bind

1.
2.

ings that have been explicitly designated as being subject to deletion.

Let envRec be the declarative environment record for which the method was invoked.
If envRec does not have a binding for the name that is the value of N, return true.

© ISO/IEC 2011 — Al rights reserved

53

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

3. If the binding for N in envRec is cannot be deleted, return false.

4. Remove the binding for N from envRec.

5. Return true.

10.2.1.1.6 ImplicitThisValue()

Declarative Environment Records always return undefined as their ImplicitThisValue.

1. Return undefined.

10.2.1.1.7 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environmentirec
creates a ngw immutable binding for the name N that is initialised to the value undefined. A binding.mus
already exist in this environment record for N.

1. LetenviRec be the declarative environment record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create gn immutable binding in envRec for N and record that it is uninitialised.

10.2.1.1.8 | InitializelmmutableBinding (N,V)

brds
not

The concrefe Environment Record method InitializelmmutableBinding for¢declarative environment recordls is

used to set fhe bound value of the current binding of the identifier whose fiame is the value of the argume
to the value|of argument V. An uninitialised immutable binding for N mist already exist.

1. Let enviRec be the declarative environment record for which the method was invoked.
2. Assert: gnvRec must have an uninitialised immutable binding“for N.

3. Set the bound value for N in envRec to V.

4. Record that the immutable binding for N in envRec has®een initialised.

the set of identifier names that_directly correspond to the property names of its binding ob
es that are not an IdentifierName are not included in the set of bound identifiers. Both own

properties ¢an be dynamically added and deleted from objects, the set of identifiers bound by an o
environmenf record may potentially.’change as a side-effect of any operation that adds or deletes prope
Any bindings that are created.as a result of such a side-effect are considered to be a mutable binding ev
the Writablg attribute of the corresponding property has the value false. Immutable bindings do not exis
object envirpnment records.

Object envifonment.records can be configured to provide their binding object as an implicit this value for]
in function ¢alls./This capability is used to specify the behaviour of With Statement (12.10) induced bindi
The capability/is controlled by a provideThis Boolean value that is associated with each object environr

perties are included in the _set regardless of the setting of their [[Enumerable]] attribute. Beciuse

nt N

hent
ect.
and

ject
ies.
en if
t for

use
ngs.
hent

record. By gefault, the value of provideThis is false for any object environment record.

The behaviour of th e concrete specification methods for Object Environment Records is defined by
following algorithms.

10.2.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines i
associated binding object has a property whose name is the value of the argument N:

1. Let envRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[HasProperty]] internal method of bindings, passing N as the property na

the

f its

me.

54 © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

10.2.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method C reateMutableBinding for object environment records creates in
an environment record’s associated binding object a property whose name is the String value and initialises it
to the value undefined. A property named N must not already exist in the binding object. If Boolean argument
D is provided and has the value true the new property’s [[Configurable]] attribute is set to true, otherwise it is

and true as

alue of the
not or is not

s the value
tifier N. The

e property

only delete
te have the

set to false.

1. LetenvRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. Assert: The result of calling the [[HasProperty]] internal method of bindings, passing N as the property
hame, IS Talse.

4. |f D is true then let configValue be true otherwise let configValue be false.

5. [Call the [[DefineOwnProperty]] internal method of bindings, passing N, Property Descriptor
[[[Value]]:undefined, [[Writable]]: true, [[Enumerable]]: true , [[Configurable]]: configValue},
hrguments.

10.2.1.2.3 SetMutableBinding (N,V,S)

The|concrete Environment Record method SetMutableBinding for object environment records attgmpts to set

the yalue of the environment record’s associated binding object’s property: whose name is the

argyment N to the value of argument V. A property named N shouldralready exist but if it does

currgntly writable, error handling is determined by the value of the Boolean argument S.

1. LetenvRec be the object environment record for which the method was invoked.

2. et bindings be the binding object for envRec.

3. [all the [[Put]] internal method of bindings with arguments N, V, and S.

10.21.24 GetBindingValue(N,S)

The|concrete Environment Record method GetBindingValue for object environment records retur

of itp associated binding object’s property whiose name is the String value of the argument iden

progerty should already exist but if it does.not the result depends upon the value of the S argument:

1. LetenvRec be the object environment record for which the method was invoked.

2. et bindings be the binding objéect for envRec.

3. Let value be the result of calling the [[HasProperty]] internal method of bindings, passing N as th
hame.

4. |fvalue is false, then

a. |IfSis falsef return the value undefined, otherwise throw a ReferenceError exception.

5. Return the result of talling the [[Get]] internal method of bindings, passing N for the argument.

10.2.1.2.5 DeleteBinding (N)

The| conerete” Environment Record method De leteBinding for object environment records can

bindings ‘that correspond to properties of the environment object whose [[Configurable]] attribu

valug true.

1. LetenvRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. Return the result of calling the [[Delete]] internal method of bindings, passing N and false as arguments.

10.2.1.2.6 ImplicitThisValue()

Object Environment Records return undefined as their ImplicitThisValue unless their provideThis flag is true.

1.
2.

Let envRec be the object environment record for which the method was invoked.
If the provideThis flag of envRec is true, return the binding object for envRec.

3. Otherwise, return undefined.

© ISO/IEC 2011 — Al rights reserved

55

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

10.2.2 Lexical Environment Operations

The following abstract operations are used in this specification to operate upon lexical environments:

10.2.2.1 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, an identifier String
name, and a Boolean flag strict. The value of lex may be null. When called, the following steps are performed:

1. Iflexis

the value null, then

Rotiirn o valin of thvnn Dafaranon oy bhaoca haca voly o ndafinad bhoca va foroneca dn.
T

a.

Let envIec be lex’s environment record.

Let envRec be a new declarative environment record contdining no bindings.

Let enviRec be a new objeCt environment record containing O as the binding object.

ama 1o
et v oot oty P CTeTre et wviTo St ousT arte—tS OO T T vy O ST TeCTeTeTet oo TicTS

and whose strict mode flag is strict.

s be the result of calling the HasBinding(N) concrete method of envRec passing name ags the
t N.

is true, then

Return a value of type Reference whose base value is envRec, whose referenced ame is name, g
whose strict mode flag is strict.

Let outer be the value of lex’s outer environment reference.
Return the result of calling GetldentifierReference passing outer, name, and strict as arguments.

ewDeclarativeEnvironment (E)

bstract operation NewDeclarativeEnvironment is called<«with either a Lexical Environment or
t E the following steps are performed:

be a new Lexical Environment.

5 environment record to be envRec.

uter lexical environment reference of env to-E.
nv.

ewObjectEnvironment (O, E)

bstract operation NewObjeetEnvironment is called with an Object O and a Lexical Environme
prguments, the following steps are performed:

be a new Lexical Envirenment.
5 environment fecord to be envRec.

uter lexicalenvironment reference of env to E.
nv.

Global Environment

hd

null

nt E

2.
3. Letexis
argume
4. If exists
a.
5. Else
a.
b.
10.2.2.2 N
When the 4
as argumen
1. Letenv
2.
3. Setenv’
4, Setthe
5. Return ¢
10.2.2.3 N
When the &
(or null) as
1. Letenv
2.
3. Setenv’
4, Setthe
5. Return 4
10.2.3 The
The global

executed. The global env |ronments Enwronment Record is an object enwronment record whose binding
object is the global object (15.1). The global environment’s outer environment reference is null.

As ECMAScript code is executed, additional properties may be added to the global object and the initial
properties may be modified.

10.3 Execution Contexts

When control is transferred to ECMAScript executable code, control is entering an execution context. Active
execution contexts logically form a stack. The top execution context on this logical stack is the running
execution context. A new execution context is created whenever control is transferred from the executable

56

© ISO/IEC 2011 — All rights res

erved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

code associated with the currently running execution context to executable code that is not associated with
that execution context. The newly created execution context is p ushed onto the stack and becomes the
running execution context.

An execution context contains whatever state is necessary to track the execution progress of its associated
code. In addition, each execution context has the state components listed in Table 19.

Table 19 —Execution Context State Components

Component Purpose

texicatEnviromment— T tdemntifies thetexicat Environment usedto resotve idemntifier teferpnces
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment #ecord |holds
bindings created by VariableStatements and FunctionDeglarations within

this execution context.

The value associated with the this keyword within 'ECMAScript
associated with this execution context.

ThisBinding code

The
Env
com
whil
exe

LexicalEnvironment and VariableEnvironment components of an 'execution context are alw
ronments. When an execution context is created its LexicalEnvironment and Variablef
ponents initially have the same value. The value of the VariableEnvironment component ne
b the value of the LexicalEnvironment component may/change during execution of cod
ution context.

In

manipulated by algorith ms within this specification:
“VariableEnvironment” and “ThisBinding” are used without qualification they are in
components of the running execution context.

An éxecution context is purely a specification’ mechanism and need not correspond to any partic

ost situations only the running execution context:(the top of the execution context stack
Hence when the terms
refereng

ays Lexical
Environment
er changes
e within an

) is directly

“LexicalEfvironment”,

e to those

lar artefact

of gn ECMAScript implementation. Itis impossible for an ECMAScript program to access ah e xecution

context.

10.3.1 Identifier Resolution

Identifier resolution is the process of determining the binding of an Identifier using the LexicalEnyironment of

the | running execution.” context. During execution of ECMAScript code, the syntactic| production

PrinjaryExpression :ildentifier is evaluated using the following algorithm:

1. et env be-the funning execution context’s LexicalEnvironment.

2. |f the syntactic production that is being evaluated is contained in a strict mode code, then let stri¢t be true,
plse |et,strict be false.

3. Returirthe result of calling GetldentifierReference function passing env, Identifier, and strict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component
equal to the Identifier String.

10.4 Establishing an Execution Context

Evaluation of global code or code using the eval function (15.1.2.1) establishes and enters a new execution
context. Every invocation of an ECMAScript code function (13.2.1) also establishes and enters a new
execution context, even if a function is calling itself recursively. Every return exits an execution context. A
thrown exception may also exit one or more execution contexts.

© ISO/IEC 2011 — All rights reserved 57

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

When control enters an execution context, the execution context’s ThisBinding is set, its VariableEnvironment
and initial LexicalEnvironment are defined, and declaration binding instantiation (10.5) is performed. The exact
manner in which these actions occur depend on the type of code being entered.

10.4.1 Entering Global Code

The following steps are performed when control enters the execution context for global code:

1.

2. Perform

Initialise the execution context using the global code as described in 10.4.1.1.

Declaration Binding Instantiation as described in 10.5 using the global code.

10.4.1.1 I|||itial Global Execution Context

The followin

1. Setthe
2. Setthe
3. Setthe]
10.4.2 Ent
The followin
1. |If there
function
a.
2. Else,
a.
b.
C.
3. If the e\
a.
b.
C.
4. Perform
10.4.2.1
The eval c

context that

g steps are performed to initialise a global execution context for ECMAScript code C:

/ariableEnvironment to the Global Environment.
| exicalEnvironment to the Global Environment.
[hisBinding to the global object.

ering Eval Code
g steps are performed when control enters the execution context\for'eval code:

s no calling context or if the eval code is not being evaluated,by a direct call (15.1.2.1.1) to the
then,

Initialise the execution context as if it was a global exetution context using the eval code as C a
described in 10.4.1.1.

Set the ThisBinding to the same value as the ThisBinding of the calling execution context.
Set the LexicalEnvironment to the same valuéias the LexicalEnvironment of the calling executio
context.

context.

al code is strict code, then

Let strictVarEnv be the result of'calling NewDeclarativeEnvironment passing the
LexicalEnvironment as the argument.

Set the LexicalEnvironment-to strictVarEnv.

Set the VariableEnvirofiment to strictVarEnv.

Declaration Binding-Instantiation as described in 10.5 using the eval code.

Strict Mode Restrictions

invoked the eval if either the code of the calling context or the eval code is strict code. Ins|

such bindinfs are-instantiated in a new VariableEnvironment that is only accessible to the eval code.

bde cannol/ instantiate variable or function bindings in the variable environment of the c3

val

N

Set the VariableEnvironment to the sanie<alue as the VariableEnvironment of the calling execution

lling
ead

10.4.3 Entering Function Code

The following steps are performed when control enters the execution context for function code contained in
function object F, a caller provided thisArg, and a caller provided argumentsList:

nction code is strict code, set the ThisBinding to thisArg.

Else if thisArg is null or undefined, set the ThisBinding to the global object.
Else if Type(thisArg) is not Object, set the ThisBinding to ToObject(thisArg).

the ThisBinding to thisArg.

property of F as the argument.

1. Ifthe fu
2.
3.
4. Else set
5.
6.
58

Set the LexicalEnvironment to localEnv.

Let localEnv be the result of calling NewDeclarativeEnvironment passing the value of the [[Scope]] internal

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

© N

ISO/IEC 16262:2011(E)

Set the VariableEnvironment to localEnv.

Let code be the value of F’s [[Code]] internal property.

Perform Declaration Binding Instantiation using the function code code and argumentsList as described in
10.5.

10.5 Declaration Binding Instantiation

Every execution context has an associated VariableEnvironment. Variables and functions declared in
ECMAScript code evaluated in an execution context are added as bindings in that VariableEnvironment’s
Environment Record. For function code, parameters are also added as bindings to that Environment Record.

Whi
codg
exe
and

PONE

e executed by the execution context, but the remainder of the behaviour is generic.'@n ¢n tering an
ution context, bindings are created in the VariableEnvironment as follows using the caller pfovided code
if it is function code, argument List args:

ch Environment Record is used to bind a declaration and its kind depends upon the type of FCMAScript

| et env be the environment record component of the running execution context’s(MariableEnvirohment.
f code is eval code, then let configurableBindings be true else let configurableBindings be falseg
f code is strict mode code, then let strict be true else let strict be false.
f code is function code, then
a. Let func be the function whose [[Call]] internal method initiated ‘execution of code. Let ames be
the value of func’s [[FormalParameters]] internal property.
b. LetargCount be the number of elements in args.
c. Letn be the number 0.
d. For each String argName in names, in list order do
i. Let n be the current value of n plus 1.
ii. If n is greater than argCount, let v besundefined otherwise let v be the value of the n’th
element of args.
iii. Let argAlreadyDeclared be the result of calling env’s HasBinding concrete method passing
argName as the argument.
iv. If argAlreadyDeclared is false; call env’s CreateMutableBinding concrete methgd passing
argName as the argument:
V. Call env’s SetMutableBinding concrete method passing argName, v, and strict ap the
arguments.
For each FunctionDeclaration fin_code, in source text order do
a. Let fn be the Identifier in FunctionDeclaration f.
b. Let fo be the result(ofjinstantiating FunctionDeclaration f as described in Clause 13.
c. Let funcAlreadyDeclared be the result of calling env’s HasBinding concrete method pasging fn as
the argument:
d. If funcAlreadyDeclared is false, call env’s CreateMutableBinding concrete method passipg fn and
configurableBindings as the arguments.
e. Else ifenv is the environment record component of the global environment then
i Let go be the global object.
il Let existingProp be the resulting of calling the [[GetProperty]] internal method pf go with
argument fn.
iii. If existingProp .[[Configurable]] is true, then

1. Call the [[DefineOwnProperty]] internal method of go, passing fn, Propgerty

6.

7.

Descriptor {[[\Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: configurableBindings }, and true as arguments.
iv. Else if IsAccessorDescriptor(existingProp) or existingProp does not have attribute values
{[[Writable]]: true, [[Enumerable]]: true}, then
1. Throw a TypeError exception.
f. Call env’s SetMutableBinding concrete method passing fn, fo, and strict as the arguments.
Let argumentsAlreadyDeclared be the result of calling env’s HasBinding concrete method passing
"farguments' as the argument.
If code is function code and argumentsAlreadyDeclared is false, then
a. Let argsObj be the result of calling the abstract operation CreateArgumentsObject (10.6) passing
func, names, args, env and strict as arguments.
b. If strictis true, then

© ISO/IEC 2011 — Al rights reserved 59

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

i Call env’s CreateImmutableBinding concrete method passing the String "arguments"
the argument.

ii. Call env’s InitializelmmutableBinding concrete method passing "arguments” and
argsObj as arguments.

i Call env’s CreateMutableBinding concrete method passing the String "arguments" as
argument.

as

the

ii. Call env’s SetMutableBinding concrete method passing "arguments", argsObj, and false

as arguments.

8. For each VariableDeclaration and VariableDeclarationNoln d in code, in source text order do

a.

Let dn be the Identifier in d

b.

C.

Let varAlreadyDeclared be the result of calling env’s HasBinding concrete method passing dn.a
argument.
If varAlreadyDeclared is false, then
i Call env’s CreateMutableBinding concrete method passing dn and configurahfeBindingg
the arguments.
ii. Call env’s SetMutableBinding concrete method passing dn, undefined, anhd-trict as the
arguments.

10.6 ArguI'nents Object

When cont
specified in
occurs as th

The argums
the function
names, args

ol enters an exec ution context for fu nction code, an arguments’ object is created unless
10.5) the identifier arguments occurs as an Identifier in thé. function’s FormalParameterLi
e ldentifier of a VariableDeclaration or FunctionDeclaration contained in the function code.

nts object is created by calling the abstract operation €reateArgumentsObject with arguments
object whose code is to be evaluated, names a List containing the function’s formal param
the actual arguments passed to the [[Call]] interhal method, env the variable environment fo

function cogle, and strict a Boolean that in dicates whethep or not the function code is strict code. W

CreateArgu

Let len
Let obj
Set all t
Set the
Let Obj
Set the
Call the
{[[Valu
8. Letmap
the stan
9. Letmap
10. Let indX
11. Repeat
a.
b.

NogakwpdpE

mentsObject is called the following steps are‘performed:

pe the number of elements in args.

be the result of creating a new ECMASCript object.

ne internal methods of obj as specified in 8.12.

[Class]] internal property of qbjto~""Arguments"”.

et be the standard built-in @bject constructor (15.2.2).

[Prototype]] internal property of obj to the standard built-in Object prototype object (15.2.4).
[[DefineOwnProperty]Jhinternal method on obj passing *'length™, the Property Descriptor

]]: len, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}, and false as argument
be the result of creating a new object as if by the expression new Object() where Object i
Hard built-in constructor with that name

pedNames kelan empty List.

=len - 1.

vhile indx >= 0,

Let val be the element of args at 0-origined list position indx.

Callthe [[DefineOwnProperty]] internal method on obj passing ToString(indx), the property

the

as

(as
5t or

func
eter

the
hen

C.

60

descriptor {[[Value]]: val, [[Writable]]: true, [[EnUMerable]]: true, [[Contigurable]]: truey, and
false as arguments.
If indx is less than the number of elements in names, then
i Let name be the element of names at 0-origined list position indx.
ii. If strict is false and name is not an element of mappedNames, then
1. Add name as an element of the list mappedNames.
2. Let g be the result of calling the MakeArgGetter abstract operation with argume
name and env.

nts

3. Let p be the result of calling the MakeArgSetter abstract operation with arguments

name and env.

4. Call the [[DefineOwnProperty]] internal method of map passing ToString(indx),

Property Descriptor {[[Set]]: p, [[Get]]: g, [[Configurable]]: true}, and false as
arguments.

the

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

12.

13.

ISO/IEC 16262:2011(E)

d. Letindx=indx-1
If mappedNames is not empty, then
a. Set the [[ParameterMap]] internal property of obj to map.
b.
to the definitions provided below.
If strict is false, then
a. Call the [[DefineOwnProperty]] internal method on obj passing "cal lee", the property

Set the [[Get]], [[GetOwnProperty]], [[DefineOwnProperty]], and [[Delete]] internal methods of obj

descriptor

{[[\Value]]: func, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}, and false as

arguments.

14. Else, strict is true so

a. Letthrower be the [[ThrowTypeError]] function Object (13.2.3).

b.~ Call the [[DefineOwnProperty]] internal method of obj with arguments "calTer,
PropertyDescriptor {[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configu
false}, and false.

c. Call the [[DefineOwnProperty]] internal method of obj with arguments "*cal kee”,
PropertyDescriptor {[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false[[Configu
false}, and false.

15. Return obj
The|abstract operation MakeArgGetter called with String name and environment record env create

obje

The
obje

=

The
callg

1.
2.

3.

ct that when executed returns the value bound for name in env. It performs’the following steps:

|_et body be the result of concatenating the Strings "return ", name,Jand ";".
Return the result of creating a function object as described in 13.2.using no FormalParameterLis
FFunctionBody, env as Scope, and true for Strict.

abstract operation MakeArgSetter called with String name/and environment record env create
ct that when executed sets the value bound for name.in‘env. It performs the following steps:

|_et param be the String name concatenated with the'String "_arg".
|_et body be the String ""<name> = <param>3;*{ with <name> replaced by the value of name and
replaced by the value of param.

Return the result of creating a function elsject as described in 13.2 using a List containing the sin
baram as FormalParameterList, body fer FunctionBody, env as Scope, and true for Strict.

[[Get]] internal method of an arguments object for a non-strict mode function with formal paran
d with a property name P petforms the following steps:

| et map be the value ofithe. [[ParameterMap]] internal property of the arguments object.
| et isMapped be the résult of calling the [[GetOwnProperty]] internal method of map passing P &
hrgument.

f the value of isMapped is undefined, then

a. Let vhethe result of calling the default [[Get]] internal method (8.12.3) on the argumen
passing P as the argument.

b. P is"caller'™ andv isa strict mode Function object, throw a TypeError exceptio

¢~ “Return v.

Flse; map contains a formal parameter mapping for P so,

able]]:

able]]:

s a function

t, body for

s a function

<param>

gle String

neters when

s the

s object

.

d

Return the result of calling the [[Get]] internal method of map passing P as the argument.

The [[GetOwnProperty]] internal method of an arguments object for a no n-strict mode function with formal
parameters when called with a property name P performs the following steps:

1.

2.
3.
4

Let desc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on the arguments

object passing P as the argument.
If desc is undefined then return desc.
Let map be the value of the [[ParameterMap]] internal property of the arguments object.

Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the

argument.
If the value of isMapped is not undefined, then
a.
argument.

© ISO/IEC 2011 — Al rights reserved

Set desc.[[Value]] to the result of calling the [[Get]] internal method of map passing P as the

61

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

6.

Return desc.

The [[DefineOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P, Property Descriptor Desc, and Boolean flag Throw performs
the following steps:

1.
2.

3.

6.

The [[Deletg]] internal method of an arguments object for a non-strict mopde function with formal params

Let map

be the value of the [[ParameterMap]] internal property of the arguments object.

Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.

Let allowed be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on the
arguments object passing P, Desc, and false as the arguments.

If allow

ad_is fnlcn, then

a.
If the va
a.

b.

If Throw is true then throw a TypeError exception, otherwise return false.
lue of isMapped is not undefined, then
If IsAccessorDescriptor(Desc) is true, then
i Call the [[Delete]] internal method of map passing P, and false as the argumenits:

Return 1

when called

Let map
Let isM

Else
i. If Desc.[[Value]] is present, then
1. Call the [[Put]] internal method of map passing P, Desc.[[Value]], and Throw a
arguments.
ii. If Desc.[[Writable]] is present and its value is false, then
1. Call the [[Delete]] internal method of map passing P(and false as arguments.
rue.

with a property name P and Boolean flag Throw performs the following steps:

be the value of the [[ParameterMap]] internal property“of the arguments object.
hpped be the result of calling the [[GetOwnProperty]internal method of map passing P as the

"cal lee" which throw a TypeError exception on access. The "cal lee" property has a more specific meaning for
strict mode functions and a "cal ler" property has historically been provided as an implementation-defined extension by
some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is
defined in any other manner by conforming ECMAScript implementations.

62

the

ters

bject
tially
ging
en if
hode
and

pject
b are
use

and
non-

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

11

ISO/IEC 16262:2011(E)

Expressions

11.1 Primary Expressions

Syntax

PrimaryExpression :

this
Identifier
Literal
Arrayl iteral

11.1

The

11.1

An |
Iden

11.1

A Li

11.1

ObijectLiteral
(Expression)

.1 The this Keyword

this keyword evaluates to the value of the ThisBinding of the current execution’context.

.2 Identifier Reference

dentifier is evaluated by performing Identifier Resolution as specified in 10.3.1. The result of e
ifier is always a value of type Reference.

.3 Literal Reference

eral is evaluated as described in 7.8.

.4 Array Initialiser

An

aluating an

rray initialiser is an expression describing the initialisation of an Array object, written in a fornE of a literal.

It is| a list of zero or more expressions, each of which represents an array element, enclosefl in square
bradkets. The elements need not be literals; they are evaluated each time the array initialiser is evaluated.
Array elements may be elided at\the beginning, middle or end of the element list. Whenever a cgmma in the
element list is not preceded by’ an AssignmentExpression (i.e., a comma at the beginning or after another
comma), the missing array_element contributes to the length of the Array andinc reases the index of
subsequent elements. Elided array elements are not defined. If an element is elided at the end [of an array,
that|element does not contribute to the length of the Array.
Synfax
ArrayLiteral

[(Elisiongy: 1

[ElementList]

| ol | +l ot Elics . |

L LICTTICTITLTOU Lllalullopt J
ElementList :

Elisiongp: AssignmentExpression

ElementList , Elisiongg: AssignmentExpression
Elision :

Elision ,
Semantics
The production ArrayLiteral : [Elision,,:] is evaluated as follows:
© ISO/IEC 2011 — Al rights reserved 63

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

1. Letarray be the result of creating a new object as if by the expression new Array() where Array is
the standard built-in constructor with that name.

Let pad be the result of evaluating Elision; if not present, use the numeric value zero.

Call the [[Put]] internal method of array with arguments "length", pad, and false.

4. Return array.

w

The production ArrayLiteral : [ElementList] is evaluated as follows:

1. Return the result of evaluating ElementList.

The production ArrayLiteral : [ElementList , Elision,, 1 is evaluated as follows:

Let arrdy be the result of evaluating ElementList.

Let pad|be the result of evaluating Elision; if not present, use the numeric value zero.

Let len be the result of calling the [[Get]] internal method of array with argument " length"

Call the|[[Put]] internal method of array with arguments " length™, ToUint32(pad+len), ahdyfalse.
Return grray.

agrwdE

The producfion ElementList : Elisiony, AssignmentExpression is evaluated as follows:

1. Letarrdy be the result of creating a new object as if by the expression new Arrxay() where Array |s
the stanglard built-in constructor with that name.

Let firsﬂ:ndex be the result of evaluating Elision; if not present, use the numeric value zero.
Let initResult be the result of evaluating AssignmentExpression.

Let initYalue be GetValue(initResult).

Call the|[[DefineOwnProperty]] internal method of array with argtments ToString(firstindex), the Propef
Descripfor { [[Value]]: initValue, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and
false.
6. Return array.

akrwd
—

y

The production ElementList : ElementList , Elisiony, AssignmentExpression is evaluated as follows:

Let arrdy be the result of evaluating ElementList.

Let pad|be the result of evaluating Elision;.if_hot present, use the numeric value zero.

Let initResult be the result of evaluatingsAssignmentExpression.

Let initYalue be GetValue(initResult).

Let len be the result of calling the [[Get]] internal method of array with argument " length".
Call the|[[DefineOwnProperty]}.internal method of array with arguments ToString(ToUint32((pad+len))|and
the Progerty Descriptor { [[\alue]]: initvalue, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}, ahd false.
7. Return grray.

oahrwNE

The production Elision’s(; is evaluated as follows:

1. Return the numeric value 1.

The production.“Elision : Elision , is evaluated as follows:

1. Let preceding be the result of evaluating Elision.
2. Return preceding+1.

NOTE [[DefineOwnProperty]] is used to ensur e that own properties are defined for the array even if the standard

built-in Array prototype object has been modified in a manner that would preclude the creation of new own properties
using [[Put]].

64 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

111

ISO/IEC 16262:2011(E)

.5 Object Initialiser

An object initialiser is an expression describing the initialisation of an Object, written in a form re sembling a
literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces. The
values need not be literals; they are evaluated each time the object initialiser is evaluated.

Syntax

Obje

ctLiteral :

{1}
{ PropertyNameAndValueList }

Proy

Prop

{PropertyNameAnavaluetist—, ¥

ertyNameAndValueList :
PropertyAssignment
PropertyNameAndValueList , PropertyAssignment

ertyAssignment :
PropertyName - AssignmentExpression
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody~}:

ProgertyName :
IdentifierName
StringLiteral
NumericLiteral
PropertySetParameterList :
Identifier
Senjantics
The|production ObjectLiteral : { } is evaludted as follows:
1. Return a new object created as if bysthe expression new Object() where Object is the stanpard built-
n constructor with that name.
The|productions ObjectLiteral.: £ PropertyNameAndValueList } and
ObjdctLiteral : { PropertylNameAndValueList ,} are evaluated as follows:
1. Return the result of evaluating PropertyNameAndValueList.
The|production{PropertyNameAndValueList : PropertyAssignment is evaluated as follows:
1. |Letobjsbe the result of creating a new object as if by the expression new Object() where Ogject is the
standard built-in constructor with that name.
2. |Let'propld be the result of evaluating PropertyAssignment.
3. Call the [[DefineOwnProperty]] internal method of obj with arguments propld.name, propld.descriptor, and
false.
4. Return obj.
The production

PropertyNameAndValueList : PropertyNameAndValueList , PropertyAssignment
is evaluated as follows:

1.
2.
3

4.

Let obj be the result of evaluating PropertyNameAndValueList.
Let propld be the result of evaluating PropertyAssignment.

Let previous be the result of calling the [[GetOwnProperty]] internal method of obj with argument
propld.name.
If previous is not undefined then throw a SyntaxError exception if any of the following conditions are true

© ISO/IEC 2011 — Al rights reserved

65

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

a. This production is contained in strict code and IsDataDescriptor(previous) is true and
IsDataDescriptor(propld.descriptor) is true.

b. IsDataDescriptor(previous) is true and IsAccessorDescriptor(propld.descriptor) is true.

IsAccessorDescriptor(previous) is true and IsDataDescriptor(propld.descriptor) is true.

d. IsAccessorDescriptor(previous) is true and IsAccessorDescriptor(propld.descriptor) is true and
either both previous and propld.descriptor have [[Get]] fields or both previous and propld.descriptor
have [[Set]] fields

5. Call the [[DefineOwnProperty]] internal method of obj with arguments propld.name, propld.descriptor, and
false.
6. Return obj.

o

If the abovd
(Clause 16)

The producfion PropertyAssignment : PropertyName - AssignmentExpression is evaluated as follows;

Let propName be the result of evaluating PropertyName.

Let expfValue be the result of evaluating AssignmentExpression.

Let propValue be GetValue(exprValue).

Let desq be the Property Descriptor{[[Value]]: propValue, [[Writable]]: true, [[Equnierable]]: true,
[[Confiqurable]]: true}

5. Return Rroperty ldentifier (propName, desc).

PoONPE

The production PropertyAssignment : get PropertyName () { FunctionBogdy" } is evaluated as follows:

1. Let propName be the result of evaluating PropertyName.
2. Let clospre be the result of creating a new Function object as specified in 13.2 with an empty parameter list
and body specified by FunctionBody. Pass in the LexicalEnvitenment of the running execution context a$ the

ion PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody [} is

1. Let propName be the result of evaluating PropertyName.

2. Let clospre be the result of creating a new Function object as specified in 13.2 with parameters specified|by
PropertySetParameterList and.body specified by FunctionBody. Pass in the LexicalEnvironment of the
running|execution context as the Scope. Pass in true as the Strict flag if the PropertyAssignment is contajned
in strict|code or if its FunctionBody is strict code.

3. Let desq be the Property:Descriptor{[[Set]]: closure, [[Enumerable]]: true, [[Configurable]]: true}

4. Return Property ldeptifier (propName, desc).

It is a SyngaxError+if the Identifier "eval' or the ldentifier "arguments™ occurs as the Identifier n a
PropertySetHarameterList of a PropertyAssignment that is contained in strict code or if its FunctionBody is strict che.

The production PropertyName : IdentifierName is evaluated as follows:

1. Return the String value containing the same sequence of characters as the IdentifierName.
The production PropertyName : StringLiteral is evaluated as follows:

1. Return the SV of the StringLiteral.

The production PropertyName : NumericLiteral is evaluated as follows:

1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return ToString(nbr).

66 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

11.1.6 The Grouping Operator
The production PrimaryExpression : (Expression) is evaluated as follows:

1. Return the result of evaluating Expression. This may be of type Reference.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this
is so that operators such as delete and typeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions

SynLax

MenberExpression :

PrimaryExpression
FunctionExpression
MemberExpression [Expression]
MemberExpression . IdentifierName
new MemberExpression Arguments

NewExpression :
MemberExpression
new NewExpression

CallExpression :

MemberExpression Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . ldentifierName

Argyments :

O
(ArgumentList)

ArgymentList :
AssignmentExpression
ArgumentList , AssignmentExpression

LeftiHandSideExpression :

NewEXxpression
CallExpression

11.2.1 Propérty Accessors

Properties are accessed by name, using either the dot notation:

MEMmBDerTEXpression - TdentiiierName
CallExpression . IdentifierName

or the bracket notation:

MemberExpression [Expression]
CallExpression [Expression]

The dot notation is explained by the following syntactic conversion:
MemberExpression . IdentifierName

is identical in its behaviour to

© ISO/IEC 2011 — Al rights reserved 67

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

MemberExpression [<identifier-name-string>]

and similarly

CallExpression . IdentifierName

is identical in its behaviour to

CallExpression [<identifier-name-string>]

where <identifier-name-string> is a string literal containing the same sequence of characters after processing
of Unicode escape sequences as the IdentifierName.

The producff

NogaprwbhRE

Let basgReference be the result of evaluating MemberExpression.

Let basgValue be GetValue(baseReference).

Let progertyNameReference be the result of evaluating Expression.

Let propertyNameValue be GetValue(propertyNameReference).

Call Ch¢ckObjectCoercible(baseValue).

Let propertyNameString be ToString(propertyNameValue).

If the sy|ntactic production that is being evaluated is contained in strict mode code, lét’strict be true, else
strict bd false.

Return g value of type Reference whose base value is baseValue and whose referenced name is
propertyNameString, and whose strict mode flag is strict.

let

The producfion CallExpression : CallExpression [Expression] is evaluated in exactly the same manner, except

that the contained CallExpression is evaluated in step 1.

11.2.2 Theg new Operator

The producfion NewExpression : new NewExpression is evaluated as follows:

agrwNE

The production MemberExpressiont-hew MemberExpression Arguments is evaluated as follows:

ok~hwnE

Let ref e the result of evaluating NewExpressionk

Let congtructor be GetValue(ref).

If Type(constructor) is not Object, throw axTypeError exception.

If const]uctor does not implement the [[€enstruct]] internal method, throw a TypeError exception.
Return the result of calling the [[Construct]] internal method on constructor, providing no arguments (th
is, an empty list of arguments).

Let ref e the result of evatdating MemberExpression.

Let congtructor be GetValue(ref).

Let argllist be the-result of evaluating Arguments, producing an internal list of argument values (11.2.4).
If Type(constructor) is not Object, throw a TypeError exception.

If constfuctor does not implement the [[Construct]] internal method, throw a TypeError exception.
Return thetrésult of calling the [[Construct]] internal method on constructor, providing the list argList ag

argument-vakies-

11.2.3 Function Calls

The production CallExpression : MemberExpression Arguments is evaluated as follows:

akrwNE

68

Let ref be the result of evaluating MemberExpression.
Let func be GetValue(ref).
Let argList be the result of evaluating Arguments, producing an internal list of argument values (see 11.2
If Type(func) is not Object, throw a TypeError exception.
If IsCallable(func) is false, throw a TypeError exception.
If Type(ref) is Reference, then
a. If IsPropertyReference(ref) is true, then

—

—

he

4).

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

i. Let thisValue be GetBase(ref).
b. Else, the base of ref is an Environment Record
i. Let thisValue be the result of calling the ImplicitThisValue concrete method of
GetBase(ref).

7. Else, Type(ref) is not Reference.

a. Let thisvValue be undefined.

8. Return the result of calling the [[Call]] internal method on func, providing thisValue as the this value and
providing the list argList as the argument values.

The production CallExpression : CallExpression Arguments is evaluated in exactly the same manner, except that
the contained CallExpression is evaluated in step 1.

NOT
host
mus

11.2

The

Th

D

The

The

N

The

el

11.2

The

E The returned result will never be of type Reference if func is a native ECMAScript object. \Whe
object can return a value of type Reference is implementation-dependent. If a value of type Reférence
be a non-strict Property Reference.

.4 Argument Lists

evaluation of an argument list produces a List of values (see 8.8).
production Arguments : () is evaluated as follows:

Return an empty List.

production Arguments : (. ArgumentList) is evaluated as-follows:
Return the result of evaluating ArgumentList.

production ArgumentList : AssignmentExpression cis evaluated as follows:
| et ref be the result of evaluating AssignmentExpression.

| et arg be GetValue(ref).

Return a List whose sole item is arg.

production ArgumentList : ArgumentList , AssignmentExpression is evaluated as follows:

| et precedingArgs be the result of evaluating ArgumentList.
| et ref be the result of evaluating AssignmentExpression.

| et arg be GetValue(ref).

Return a List whose\length is one greater than the length of precedingArgs and whose items are t
brecedingArgs,qin‘erder, followed at the end by arg which is the last item of the new list.

.5 Function Expressions

production MemberExpression : FunctionExpression is evaluated as follows:

ther calling a
s returned, it

he items of

eturn the result ot evaluating FunctionExpression.

11.3 Postfix Expressions

Syntax

PostfixExpression :

LeftHandSideExpression
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

© ISO/IEC 2011 — Al rights reserved

69

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

11.3.1 Postfix Increment Operator
The production PostfixExpression : LeftHandSideExpression [no LineTerminator here] ++ is evaluated as follows:

1. Let Ihs be the result of evaluating LeftHandSideExpression.
2. Throw a SyntaxError exception if the following conditions are all true:

. Type(lhs) is Reference is true

. IsStrictReference(lhs) is true

. Type(GetBase(lhs)) is Environment Record

3 GetReferencedName(lhs) is either ""eval™ or "arguments"
3. LetoldValue he Tanlmhpr((?.pr\/alup(lhq)\
4. Let newpalue be the result of adding the value 1 to oldValue, using the same rules as for the + operator,_(see
11.6.3).
Call Putivalue(lhs, newValue).
Return ¢ldValue.

oo

11.3.2 Podtfix Decrement Operator
The producfion PostfixExpression : LeftHandSideExpression [no LineTerminator here] —— jS_eyvaluated as follows:

1. Let Ihs Ipe the result of evaluating LeftHandSideExpression.
2. Throw g SyntaxError exception if the following conditions are all true:
. Type(lhs) is Reference is true
. IsStrictReference(lhs) is true
. Type(GetBase(lhs)) is Environment Record
. GetReferencedName(lhs) is either "eval' or "arguments"
3. Letoldalue be ToNumber(GetValue(lhs)).
4. Let newpalue be the result of subtracting the value 1 from oldValue, using the same rules as for the -
operatof| (11.6.3).
Call Putivalue(lhs, newValue).
Return ¢ldValue.

o0

11.4 Unary Operators

Syntax

UnaryExpregsion :
PostfikExpression
delgte UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
—- UnaryExpression
+ UngryExXpression
- UnaryExpression
~ UnaryEXxpression
I UnaryExpression

11.4.1 The delete Operator
The production UnaryExpression : de lete UnaryExpression is evaluated as follows:

1. Let ref be the result of evaluating UnaryExpression.

2. If Type(ref) is not Reference, return true.

3. If IsUnresolvableReference(ref) then,
a. |If IsStrictReference(ref) is true, throw a SyntaxError exception.
b. Else, return true.

70 © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

4. If IsPropertyReference(ref) is true, then
a. Return the result of calling the [[Delete]] internal method on ToObject(GetBase(ref)) providing
GetReferencedName(ref) and IsStrictReference(ref) as the arguments.
5. Else, ref is a Reference to an Environment Record binding, so
a. |If IsStrictReference(ref) is true, throw a SyntaxError exception.
b. Let bindings be GetBase(ref).
c. Return the result of calling the DeleteBinding concrete method of bindings, providing
GetReferencedName(ref) as the argument.

ISO/IEC 16262:2011(E)

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its
UnaryExpression is a direct reference to a variable, function argument, or function name. In addition, if a delete operator

occ
exception is thrown.

1.

The|production UnaryExpression : void UnaryExpression is evaluated as follows:

N =

.2 The void Operator

|_et expr be the result of evaluating UnaryExpression.
Call GetValue(expr).

3. Return undefined.

-8 TypeError

NOTE GetValue must be called even though its value is not used because it may have observable side-gffects.

11.4.3 The typeoT Operator

The|production UnaryExpression : typeof UnaryExpression.is evaluated as follows:

=

|_et val be the result of evaluating UnaryExpression.

2. |f Type(val) is Reference, then

a. If IsUnresolvableReference(val) is-true, return "undefined".
b. Letval be GetValue(val).
3. Return a String determined by Type(val) according to Table 20.

Table 20 — typeof Operator Results

Type of val' Result

Undefined “undefined"

Null “object™

Boolean "boolean™

Number ""number™

String “'string"

Object (native and does "object"

not implement [[Call]])

Object (native or host and | "function"

does implement [[Call]])

Object (host and does not | Implementation-defined except may

implement [[Call]]) not be ""'undefined"”, "boolean",
"number"”, or “'string".

11.4.4 Prefix Increment Operator

The production UnaryExpression : ++ UnaryExpression is evaluated as follows:

1. Let expr be the result of evaluating UnaryExpression.
2. Throw a SyntaxError exception if the following conditions are all true:

© ISO/IEC 2011 — Al rights reserved

71

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

3.
4,
11.6.3).
5. Call Put
6.
11.4.5 Pre;
The produc
1. Letexpt
2. Throw 4
[]
[]
[]
[]
3. Letold
4. Letnew
operato
5. Call Puf
6.

11.4.6 Unary + Operator

The unary +
The produc

1. Letexpt
2. Return

11.4.7 Unary - Operator

The unary

produces —Q, and negating.—0-produces +0.

The produc

Let expt
Let old

Return newValue.

Type(expr) is Reference is true

IsStrictReference(expr) is true

Type(GetBase(expr)) is Environment Record
GetReferencedName(expr) is either ""eval™ or "arguments'’

Let oldValue be ToNumber(GetValue(expr)).
Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see

Value(expr, newValue).

Return newValue.

fix Decrement Operator

ion UnaryExpression : —— UnaryExpression is evaluated as follows:

be the result of evaluating UnaryExpression.
SyntaxError exception if the following conditions are all true:
Type(expr) is Reference is true
IsStrictReference(expr) is true
Type(GetBase(expr)) is Environment Record
GetReferencedName(expr) is either "eval* or "arguments”
alue be ToNumber(GetValue(expr)).
Value be the result of subtracting the value 1 from oldValue, using'the same rules as for the -
(see 11.6.3).
\VValue(expr, newValue).

operator converts its operand to Number type:
ion UnaryExpression : + UnaryExpressionis’evaluated as follows:

be the result of evaluating UnaryEXxpression.
[oNumber(GetValue(expr)).

- operator converts its operand to Number type and then negates it. Note that negating

ion UnaryExpression : — UnaryExpression is evaluated as follows:

be thejresult of evaluating UnaryExpression.
aluébe ToNumber(GetValue(expr)).

If oldV

el N

sign.

Il NP N 4 NP N
TOC TS INATY, TCTOTIT INATN,

Return the result of negating oldValue; that is, compute a Number with the same magnitude but opposite

11.4.8 Bitwise NOT Operator (~)

The production UnaryExpression : ~ UnaryExpression is evaluated as follows:

1. Let expr be the result of evaluating UnaryExpression.
2. LetoldValue be Tolnt32(GetValue(expr)).

3.

72

Return the result of applying bitwise complement to oldValue. The result is a signed 32-bit integer.

+0

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

11.4.9 Logical NOT Operator (!)

The production UnaryExpression : I UnaryExpression is evaluated as follows:

PwopdE

Let expr be the result of evaluating UnaryExpression.
Let oldValue be ToBoolean(GetValue(expr)).

f oldValue is true, return false.

Return true.

11.5 Multiplicative Operators

Semantics

The

of tHe operators in the above definitions, is evaluated as follows:

NookwbhE

11.5

The
Mulf

The
arith

Syn}ax
MultiiplicativeExpression :

|_et left be the result of evaluating MultiplicativeExpression;

_et leftValue be GetValue(left).

|_et right be the result of evaluating UnaryExpression,

|_et rightValue be GetValue(right).

|_et leftNum be ToNumber(leftValue).

|_et rightNum be ToNumber(rightValue).

Return the result of applying the specified operation (*, /, or %) to leftNum and rightNum. See th
pelow 11.5.1,11.5.2,11.5.3.

UnaryExpression

MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stg

.1 Applying the * Operator

* operator performs multiplication, producing the product of its operands. Multiplication is ¢
iplication is not always assoeiative in ECMAScript, because of finite precision.

result of a floa ting=peint multiplication is governed by the rules of IEEE 754 binary doul
metic:
o |If eitherleperand is NaN, the result is NaN.

e Thesign of the result is positive if bot h operands have the same sign, neg
operands have different signs.

¢« Multiplication of an infinity by a zero results in NaN.
o Multiplication of an infinity by an infinity results in an infinity. The sign is determ

nds for one

b Notes

bmmutative.

le-precision

ative if the

ned by the

1 1 ol botoal o
rarc aincauy otditu auuve.

e Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is

determined by the rule already stated above.

¢ In the remaining cases, where neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too large to represent, the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

© ISO/IEC 2011 — Al rights reserved

73

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

11.5.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:

11.5.3 Apj

The % operator yields the remainder of its operands_from an implied division; the left operand is the divig
and the righ

NOTE

point operan

The result

“remainder”
from a roun|
integer rem
behave in a
C library fun

If either operand is NaN, the result is NaN.

The sign of the result is positive if b oth operands have the same sign, negative if t he
operands have different signs.

Division of an infinity by an infinity results in NaN.
ivision of an infinity by a zero results in an infinity. The sign is determined by the
Iready stated above.
ivision of an infinity by a nonzero finite value results in a signed infinity. The’ sig
etermined by the rule already stated above.
ivision of a finite value by an infinity results in zero. The sign is determined by the
Iready stated above.

ivision of a zero by a zero results in NaN; division of zero by any other finite value res
in zero, with the sign determined by the rule already stated above.

ivision of a nonzero finite value by a zero results in a signed infinity. The sig
etermined by the rule already stated above.

the remaining cases, where neither an infinity, nor a¢zero, nor NaN is inv olved,| the
uotient is computed and rounded to the nearest representable value using IEEE 754 royind-
-nearest mode. If the magnitude is too large to représent, the operation overflows;| the
sult is then an infinity of appropriate sign. If the /magnitude is too small to represent| the
¢peration underflows and the result is a zero of ‘the appropriate sign. The ECMASgript
Ianguage requires support of gradual underflow as defined by IEEE 754.

rule

rule
ults

N s

lying the % Operator

end
t operand is the divisor.

Ih C and C++, the remainder operator aecepts only integral operands; in ECMAScript, it also accepts flodting-

S.

bf a floating-point remainder” operation as computed by the % operator is not the same adthe

operation defined by IEEE 754. The IEEE 754 “remainder” operation computes the remai
ding division, not a(trun cating division, and so its behaviour is not analogous to that of the u
ainder operator.(Instead the ECMAScript language defines % on floating-point operation
manner analogeus to that of the Java integer remainder operator; this may be compared with
ction fmod:

The result o
[]
[]
[]

74

f an EEMAScript floating-point remainder operation is determined by the rules of IEEE arithme

hder
sual
5 to

the

i

C.

If either operand is NaN, the result is NaN.
i ian of tha rli\lirlnnri'

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is nonzero and finite, the result is the same as the
dividend.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is inv olved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical
relation r =n - (d x q) where q is an integer that is negative only if n/d is negative and
positive only if n/d is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of n and d. r is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

11.6 Additive Operators

Syntax

AdditiveExpression :

11.6

MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

.1 The Addition operator (+)

The

The

NoopwbE

NOT|
obje
hint

NOT
logic

11.6

The

NogokwbhE

11.6

addition operator either performs string concatenation or numeric addition.
production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as follg

|_et Iref be the result of evaluating AdditiveExpression.
| et lval be GetValue(lref).
_et rref be the result of evaluating MultiplicativeExpression.
| et rval be GetValue(rref).
| et Iprim be ToPrimitive(lval).
| et rprim be ToPrimitive(rval).
f Type(lprim) is String or Type(rprim) is String, then
a. Return the String that is the result of concatenating ToString(Iprim) followed by ToStrin
Return the result of applying the addition operation to ToNumber(lprim) and ToNumber(rprim).
Note below 11.6.3.

E 1 No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects
Cts handle the absence of a hint as if the hint Number were. given; Date objects handle the absence of 4
Btring were given. Host objects may handle the absence\of a hint in some other manner.

E 2 Step 7 differs from step 3 of the comparison algorithm for the relational operators (11.8.5),
al-or operation instead of the logical-and operation.

.2 The Subtraction Operator (=)
production AdditiveExpression <‘AdditiveExpression — MultiplicativeExpression is evaluated as follg

| et Iref be the result of gvaluating AdditiveExpression.

| et lval be GetValue(lref).

_et rref be the result.of evaluating MultiplicativeExpression.

|_et rval be GetValue(rref).

| et Inum be ToNumber(lval).

| et rnum be<ToNumber(rval).

Return the-result of applying the subtraction operation to Inum and rnum. See the note below 11.

.3 <Applying the Additive Operators to Numbers

WS!

g(rprim)
See the

except Date
hint as if the

by using the

WS!

b.3.

The + operator performs addition when applied to tw o operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Add

ition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:

o |If either operand is NaN, the result is NaN.

e The sum of two infinities of opposite sign is NaN.

e The sum of two infinities of the same sign is the infinity of that sign.

¢ The sum of an infinity and a finite value is equal to the infinite operand.

© ISO/IEC 2011 — Al rights reserved

75

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

e The sum of two negative zeroes is —0. The sum of two positive zeroes, or of two zeroes of

opposite sign, is +0.
e The sum of a zero and a nonzero finite value is equal to the nonzero operand.
¢ The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

¢ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and
operands have the same sign or have different magnitudes, the sum is computed
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
magnitude is too large to represent, the operation overflows and the result is then an inf

the
and
the
inity

of appropriate sign. The ECMAScript language requires support of gradual underflow as

defined by IEEE 754.

The - oper;lator performs subtraction when applied to two operands of numeric type, producing the differs

nce

of its opergnds; the left operand is the minuend and the right operand is the subtrahend. Givenynunperic

operands a pnd b, it is always the case that a—b produces the same result as a +(—b).
11.7 Bitwise Shift Operators

Syntax

ShiftExpressijon :
AdditiveExpression
ShiftBxpression << AdditiveExpression
ShiftBxpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

11.7.1 Th¢ Left Shift Operator (<<)
Performs a pitwise left shift operation on the left operand by.the amount specified by the right operand.
The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows:

Let Iref joe the result of evaluating ShiftExpression.

Let Ival|be GetValue(lref).

Let rref|be the result of evaluating AdditiveExpression.

Let rval{be GetValue(rref).

Let Inup be Tolnt32(lval).

Let rnum be ToUint32(rval).

Let shiffCount be the result 0f\masking out all but the least significant 5 bits of rnum, that is, compute rn
& Ox1F
8. Return the result of leftishifting Inum by shiftCount bits. The result is a signed 32-bit integer.

Nogokwbhr

11.7.2 The Signed-Right Shift Operator (>>)

Performs a|sign-filling bitwise right shift operation on the left operand by the amount specified by the

Fight

operand.

The production ShiftExpression : ShiftExpression >> AdditiveExpression is evaluated as follows:

Let Iref be the result of evaluating ShiftExpression.

Let Ival be GetValue(lref).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

Let Inum be ToInt32(lval).

Let rnum be ToUint32(rval).

Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rn
& Ox1F.

NogogkrwhE

um

76 © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

8.

ISO/IEC 16262:2011(E)

Return the result of performing a sign-extending right shift of Inum by shiftCount bits. The most
bit is propagated. The result is a signed 32-bit integer.

11.7.3 The Unsigned Right Shift Operator (>>>)

significant

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression : ShiftExpression >>> AdditiveExpression is evaluated as follows:

NoakrwhE

1.

Syngax

RelationalExpression :

RelationalExpressionNoln :

NOTE The-“Noln” variants are needed to avoid confusing the In operator in a relational expression
operptor ima'for statement.

Semantics

et Ival be GetValue(lref).
et rref be the result of evaluating AdditiveExpression.
et rval be GetValue(rref).

et Inum be ToUint32(lval).

et rnum be ToUint32(rval).

et shiftCount be the result of masking out all but the least significant 5 bits of yrUm, that is, con
Ox1F.

eturn the result of performing a zero-filling right shift of Inum by shiftCeunt-bits. Vacated bits
ith zero. The result is an unsigned 32-bit integer.

Relational Operators

ShiftExpression

RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShiftExpression
RelationalExpression in ShiftExpression

ShiftExpression

RelationalExpressionNoln < ShiftExpression
RelationalExpressionNotn > ShiftExpression
RelationalExpressionNoln <= ShiftExpression
RelationalExpressionNoln >= ShiftExpression
RelationalExpressionNoln instanceoTf ShiftExpression

ipute rnum

hre filled

with the in

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The RelationalExpressionNoln productions are evaluated in the same manner as the RelationalExpression
productions except that the contained RelationalExpressionNoln is evaluated instead of the contained
RelationalExpression.

11.8.1 The Less-than Operator (<)

The production RelationalExpression : RelationalExpression < ShiftExpression is evaluated as follows:

© ISO/IEC 2011 — Al rights reserved

77

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison lval < rval. (see 11.8.5)
If r is undefined, return false. Otherwise, return r.

ok~whE

11.8.2 The Greater-than Operator (>)

The production RelationalExpression : RelationalExpression > ShiftExpression is evaluated as follows:

1. Let Irefoe the result of evaluating RelationalExpression.

2. Let Ivallbe GetValue(Iref).

3. Let rref]be the result of evaluating ShiftExpression.

4. Let rvallbe GetValue(rref).

5. Let r be|the result of performing abstract relational comparison rval < Ival with LeftFirst equal to false. (see
11.8.5).

6. If riis updefined, return false. Otherwise, return r.

11.8.3 The Less-than-or-equal Operator (<=)
The production RelationalExpression : RelationalExpression <= ShiftExpression is evaluated as follows:

Let Iref pe the result of evaluating RelationalExpression.
Let Ival|be GetValue(lref).

Let rref|be the result of evaluating ShiftExpression.

Let rval{be GetValue(rref).

Let r be|the result of performing abstract relational comparison rval < Ival with LeftFirst equal to false. |(see
11.8.5).
If r is trjue or undefined, return false. Otherwise, return true.

agrwNdE

S

11.8.4 Th¢g Greater-than-or-equal Operator (.>=)
The producfion RelationalExpression : RelatiohalExpression >= ShiftExpression is evaluated as follows:

Let Iref pe the result of evaluating RelationalExpression.

Let Ival|be GetValue(lref).

Let rref|be the result of evaluating ShiftExpression.

Let rval{be GetValue(rref).

Let r be[the result of performing abstract relational comparison Ival < rval. (see 11.8.5)
If r is trlue or undefined, return false. Otherwise, return true.

oakwhPE

11.8.5 The Abstract Relational Comparison Algorithm

nd =) S nrod = 8 80 ndefined-Lwhich-indi =) hat at

The compatise W andyarevalues—p ue—false —orunde . G
least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter. The flag is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirst is true and indicates that the x parameter corresponds to an expression that
occurs to the left of the y parameter’s corresponding expression. If LeftFirst is false, the reverse is the case
and operations must be performed upon y before x. Such a comparison is performed as follows:

1. If the LeftFirst flag is true, then
a. Let px be the result of calling ToPrimitive(x, hint Number).
b. Let py be the result of calling ToPrimitive(y, hint Number).

2. Else the order of evaluation needs to be reversed to preserve left to right evaluation
a. Let py be the result of calling ToPrimitive(y, hint Number).

78 © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

b. Let px be the result of calling ToPrimitive(x, hint Number).

3. Ifitis not the case that both Type(px) is String and Type(py) is String, then

a. Let nx be the result of calling ToNumber(px). Because px and py are primitive values evaluation
order is not important.

b. Let ny be the result of calling ToNumber(py).

c. If nxis NaN, return undefined.

d. Ifnyis NaN, return undefined.

e. If nx and ny are the same Number value, return false.

f. If nxis +0 and ny is =0, return false.

g. Ifnxis—0and ny is +0, return false.

h. If nx is +oo, return false.

i. Ifnyis +oo, return true.

j. Ifnyis —oo, return false.

k. If nxis —oo, return true.

I. If the mathematical value of nx is less than the mathematical value of ny —naote that thede
mathematical values are both finite and not both zero—return true. Otherwise, feturn false.

4. Else, both px and py are Strings

a. |If pyisa prefix of px, return false. (A String value p is a prefix of String.value q if q car| be the
result of concatenating p and some other String r. Note that any String is a prefix of itself, because r
may be the empty String.)

b. If px is a prefix of py, return true.

c. Letk be the smallest nonnegative integer such that the charaeter at position k within px if different
from the character at position k within py. (There must be such a k, for neither String is g prefix of
the other.)

d. Letm be the integer that is the code unit value for the character at position k within px.

e. Letn be the integer that is the code unit value for'the character at position k within py.

f. 1fm <n, return true. Otherwise, return false.

NOTEE 1 Step 3 differs from step 7 in the algorithm for the addition operator + (11.6.1) in using and instead| of or.

NOTE 2 The comparison of Strings uses a simplg\leXicographic ordering on sequences of code unit values$. There is no
attempt to use the more complex, semantically-oriented definitions of character or string equality and cpllating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unidgode standard
couldl test as unequal. In effect this algorithm-assumes that both Strings are already in normalised form. Also} note that for
strings containing supplementary characters;lexicographic ordering on sequences of UTF-16 code unit valugs differs from
that pn sequences of code point values:

11.8.6 The instanceof operator

The|production RelationalExpression: RelationalExpression instanceoT ShiftExpression is evaluated fas follows:
1. Let Iref be thesresult of evaluating RelationalExpression.

2. et lval be-GetValue(lref).

3. Let rrefe-the result of evaluating ShiftExpression.

4. |Let rvalhbe GetValue(rref).

5. Jf Type(rval) is not Object, throw a TypeError exception.

6. Lfrval does not have a [[Haslnstance]] internal method, throw a TypeFError exception

7. Return the result of calling the [[HaslInstance]] internal method of rval with argument Ival.

11.8.7 The in operator
The production RelationalExpression : RelationalExpression in ShiftExpression is evaluated as follows

Let Iref be the result of evaluating RelationalExpression.
Let Ival be GetValue(lref).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

If Type(rval) is not Object, throw a TypeError exception.

ook whE

© ISO/IEC 2011 — Al rights reserved

Return the result of calling the [[HasProperty]] internal method of rval with argument ToString(lval).

79

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

11.9 Equality Operators

Syntax

EqualityExpression :
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression 1= RelationalExpression
EqualityExpression === RelationalExpression
EqualityExpression == RelationalExpression

EqualityExpifessionNoln :
RelatipnalExpressionNoln
EquallityExpressionNoln == RelationalExpressionNoln
EqualfityExpressionNoln = RelationalExpressionNoln
EqualfityExpressionNoln === RelationalExpressionNoln
EquallityExpressionNoln == RelationalExpressionNoln

Semantics

The result ¢f e valuating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The EqualifyExpressionNoln productions are evaluated in the same (manner as the EqualityExpresgsion
productions| except that the contained EqualityExpressionNoln and_RelationalExpressionNoln are evalupted
instead of the contained EqualityExpression and RelationalExpressionsrespectively.

11.9.1 The Equals Operator (==
The producfion EqualityExpression : EqualityExpression =< RelationalExpression is evaluated as follows:

Let Iref pe the result of evaluating EqualityExpression.

Let lvallbe GetValue(lref).

Let rref|be the result of evaluating RelationalExpression.

Let rval{be GetValue(rref).

Return the result of performing abstract-equality comparison rval == lval. (see 11.9.3).

agrwdE

11.9.2 The Does-not-equals Operator (1=
The production EqualityExpression : EqualityExpression = RelationalExpression is evaluated as follows:

Let Iref pe the resultof evaluating EqualityExpression.

Let Ival|be Get\alue(lref).

Let rref|be the tesult of evaluating RelationalExpression.

Let rval{be GetValue(rref).

Let r belthe Tesult of performing abstract equality comparison rval == lval. (see 11.9.3)
If r is true, return false. Otherwise, return true.

oukwhE

11.9.3 The Abstract Equality Comparison Algorithm

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is the same as Type(y), then
a. If Type(x) is Undefined, return true.
b. If Type(x) is Null, return true.
c. If Type(x) is Number, then
i If x is NaN, return false.

80 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

ii. If y is NaN, return false.
iii. If x is the same Number value as y, return true.

iv. If x is +0 and y is -0, return true.
V. If x is =0 and y is +0, return true.
Vi Return false.

d. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same

length and same characters in corresponding positions). Otherwise, return false.

e. If Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.

f. Return true if x and y refer to the same object. Otherwise, return false.

2. If xis null and y is undefined, return true.
3. [If xis undefined and y is null, return true.
4. It Type(x) 1s Number and Type(y) Is String,
Feturn the result of the comparison x == ToNumber(y).
5. Jf Type(x) is String and Type(y) is Number,
Feturn the result of the comparison ToNumber(x) ==y.
6. |f Type(x) is Boolean, return the result of the comparison ToNumber(x) ==y.
7. |f Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
8. |f Type(x) is either String or Number and Type(y) is Object,
Feturn the result of the comparison x == ToPrimitive(y).
9. |Jf Type(x) is Object and Type(y) is either String or Number,
feturn the result of the comparison ToPrimitive(x) ==.
10. Return false.
NOTIE 1 Given the above definition of equality:
e String comparison can be forced by: """ + a == " & b.
e Numeric comparison can be forced by: +a == +b
¢ Boolean comparison can be forced by: 'a ==\}b.
NOT[E 2 The equality operators maintain the following {Avariants:
e A I=Bis equivalentto ' (A ==B).
e A ==Bis equivalent to B == A, except'in the order of evaluation of A and B.
NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String pbjects, each
repr¢senting the same String value; each String object would be considered equal to the String value by thel == operator,
but the two String objects would not be.equal to each other. For Example:
e new String("a")~/=\'a" and ""a" == new String("'a')are both true.
e new String("a") ==new String(a") is false.
NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is po attempt to
use the more complex,(semantically oriented definitions of character or string equality and collating order defined in the
Unicpde specificationiTherefore Strings values that are canonically equal according to the Unicode standard|could test as
unedual. In effect/this algorithm assumes that both Strings are already in normalised form.
11.9.4 The Strict Equals Operator (===
The|preduction EqualityExpression : EqualityExpression === RelationalExpression is evaluated as follows:
1. Let Iref be the result of evaluating EqualityExpression.
2. Let Ival be GetValue(lref).
3. Let rref be the result of evaluating RelationalExpression.
4. Let rval be GetValue(rref).
5. Return the result of performing the strict equality comparison rval === lval. (See 11.9.6)

11.9.5 The Strict Does-not-equal Operator (1==)

The production EqualityExpression : EqualityExpression !== RelationalExpression is evaluated as follows:

1.

Let Iref be the result of evaluating EqualityExpression.

© ISO/IEC 2011 — Al rights reserved

81

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Let Ival be GetValue(lref).

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

Let r be the result of performing strict equality comparison rval === lval. (See 11.9.6)
If r is true, return false. Otherwise, return true.

oak~wn

11.9.6 The Strict Equality Comparison Algorithm

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

1. If Type(x) is different from Type(y), return false.

2. If Type(x) is Undefined, return true.

3. If Type(x) is Null, return true.

4. If Type(x) is Number, then

If x is NaN, return false.
If y is NaN, return false.
If x is the same Number value as y, return true.
If xis +0 and y is =0, return true.
If x is =0 and y is +0, return true.
f. |Return false.
5. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length pnd
same chpracters in corresponding positions); otherwise, return false.
6. If Type(x) is Boolean, return true if x and y are both true or both false;*etherwise, return false.
7. ReturnJrue if x and y refer to the same object. Otherwise, return false.

NOTE

oo oe

his algorithm differs from the SameValue Algorithm (9.12).in'its treatment of signed zeroes and NaNs.
11.10 Bihary Bitwise Operators

Syntax
BitwiseANDExpression :

EqualfityExpression

BitwigeANDEXxpression & EqualityExpression

BitwiseANDExpressionNoln :
EquallityExpressionNoln
BitwigeANDEXxpressionNoln & EgualityExpressionNoln

BitwiseXORExpression :
BitwigeANDEXxpression
BitwigeXOREXxpresston ~ BitwiseANDEXxpression

BitwiseXORHExpressionNoln :
BitwigeANDEXpressionNoln
Bitwide XORExpressionNoln » BitwiseANDEXxpressionNoln

BitwiseOREXxpression :
BitwiseXORExpression
BitwiseORExpression | BitwiseXORExpression

BitwiseORExpressionNoln :
BitwiseXORExpressionNoln
BitwiseORExpressionNoln | BitwiseXORExpressionNoln

Semantics

The production A: A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

82 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Let Iref be the result of evaluating A.

Let Ival be GetValue(lref).

Let rref be the result of evaluating B.

Let rval be GetValue(rref).

Let Inum be Tolnt32(lval).

Let rnum be ToInt32(rval).

Return the result of applying the bitwise operator @ to Inum and rnum. The result is a signed 32 bit integer.

NookrwbE

11.11 Binary Logical Operators

Syntax

Logical ANDEXxpression :
BitwiseORExpression
LogicalANDEXxpression && BitwiseORExpression

LogicalANDExpressionNoln :
BitwiseORExpressionNoln
Logical ANDExpressionNoln && BitwiseORExpressionNoln

Logical ORExpression :
Logical ANDEXxpression
LogicalORExpression | | LogicalANDEXxpression

LogicalORExpressionNoln :
Logical ANDExpressionNoln
LogicalORExpressionNoln | | LogicalANDExpressionNoin

Semantics

The|production LogicalANDExpression : Logical ANDExpression && BitwiseORExpression is evaluated as follows:

| et Iref be the result of evaluating LogicalANDExpression.
|_et Ival be GetValue(lref).

f ToBoolean(lval) is false, return Ival.

|_et rref be the result of evaluating BitwiseORExpression.
Return GetValue(rref).

agRrwNbE

The|production LogicalOREXpression : LogicalORExpression | | LogicalANDExpression is evaluated a$ follows:

| et Iref be the resulp of evaluating Logical ORExpression.

| et lval be GetValue(lref).

f ToBooleaplval) is true, return lval.

| et rref be the result of evaluating Logical ANDExpression.
ReturnsGetValue(rref).

aohodE

The|LogicalANDExpressionNoln and LogicalORExpressionNoln productions are evaluated in the sgme manner
as the LogicalANDEXpression and LogiCalOREXpression productions except that the contained
LogicalANDExpressionNoln, BitwiseORExpressionNoln and LogicalORExpressionNoln are evaluated instead of the
contained Logical ANDEXxpression, BitwiseORExpression and Logical ORExpression, respectively.

NOTE The value produced by a && or | | operator is not necessarily of type Boolean. The value produced will always
be the value of one of the two operand expressions.

© ISO/IEC 2011 — Al rights reserved 83

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

11.12 Conditional Operator (? :)

Syntax

ConditionalExpression :
Logical ORExpression
LogicalORExpression ? AssignmentExpression : AssignmentExpression

ConditionalExpressionNoln :
Logical ORExpressionNoln
LogicalORExpressionNoln ? AssignmentExpression - AssignmentExpressionNoln

Semantics
The produc
evaluated a

1.
2.

Let Iref
If ToBo
a.
b.
Else
a.
b.

The Condit
production

AssignmentE|
AssignmentE|

NOTE
each allow th
The motivatig
conditional a

Tlhe grammar for a ConditionalExpression in ECMASCcript is a little bit different from that in C and Java, v

ion ConditionalExpression : LogicalORExpression ? AssignmentExpression - AssignmentExpression i
5 follows:

be the result of evaluating Logical ORExpression.
Dlean(GetValue(lIref)) is true, then

Let trueRef be the result of evaluating the first AssignmentExpression.
Return GetValue(trueRef).

Let falseRef be the result of evaluating the second AssignmentExprgssion.
Return GetValue(falseRef).

onalExpressionNoln production is evaluated inthe same “manner asthe ConditionalExpre
except that the contained LogicalORExpressionNoln, AssignmentExpression

kpressionNoln are evaluated instead of the contained LogicalORExpression,

kpression and second AssignmentExpression, respectively.

e second subexpression to be an Expression but restrict the third expression to be a ConditionalExpres]
n for this difference in ECMAScript is to allow an assignment expression to be governed by either arm
d to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

Uy

sion
and
first

hich
Sion.
of a

AssignmentOperator : one of

Semantics

*= /= %= += <<= >>= >>>= &= A=

The AssignmentExpressionNoln productions are evaluated in the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoln and AssignmentExpressionNoln are evaluated
instead of the contained ConditionalExpression and AssignmentExpression, respectively.

84

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

11.13.1 Simple Assignment (=)
The production AssignmentExpression : LeftHandSideExpression = AssignmentExpression is evaluated a

Let Iref be the result of evaluating LeftHandSideExpression.
Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).
Throw a SyntaxError exception if the following conditions are all true:
. Type(lref) is Reference is true
IsStrictReference(lref) is true

PwopdE

s follows:

]

o Type(GetBase(lref)) is Environment Record

. GetReferencedName(lref) is either "eval’ or ""arguments"
all PutValue(lref, rval).
eturn rval.

o 0

NOTE When an assignment occurs within strict mode code, its LeftHandSide must not evaluate to an
reference. Ifitdo es a ReferenceError exception is thrown upon assignment. The LeftHandSide also nj
reference to a data property with the attribute value {[[Writable]]:false}, to an accessor property with the &
{[[S4t]]:undefined}, nor to a non-existent property of an object whose [[Extensible]] intefnal property has the
thesg cases a TypeError exception is thrown.

11.13.2 Compound Assignment (op=)

The|production AssignmentExpression : LeftHandSideExpression AssighmentOperator AssignmentExpre
AssignmentOperator is @= and @ represents one of the operators indicated above, is evaluated as

| et Iref be the result of evaluating LeftHandSideExpression.
| et lval be GetValue(lref).
| _et rref be the result of evaluating AssignmentExpression.
|_et rval be GetValue(rref).
|_et r be the result of applying operator @ te-lval and rval.
Throw a SyntaxError exception if the following conditions are all true:
. Type(lref) is Reference is true
. IsStrictReference(lref) istrue
. Type(GetBase(lref)) is\Environment Record
. GetReferencedName(Iref) is either "eval' or "arguments"
7. [Call PutValue(lref, r).
8. Returnr.

ok wnNE

NOTE See NOTE(11,13.1.

11.14 Comma-Operator(,)

Syngax

unresolvable
ay not be a
ttribute value
alue false. In

sion, where
follows:

Expression :

ASSIgNMENTEXPression
Expression , AssignmentExpression

ExpressionNoln :

AssignmentExpressionNoln
ExpressionNoln , AssignmentExpressionNoln

Semantics

The production Expression : Expression , AssignmentExpression is evaluated as follows:

1. Let Iref be the result of evaluating Expression.
2. Call GetValue(Iref).

© ISO/IEC 2011 — Al rights reserved

85

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

3. Let rref be the result of evaluating AssignmentExpression.
4. Return GetValue(rref).

The ExpressionNoln production is evaluated in the same manner as the Expression production except that the
contained ExpressionNoln and AssignmentExpressionNoln are evaluated instead of the contained Expression and

AssignmentExpression, respectively.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

12 Statements

Syntax

Statement :
Block
Varia|
Empty

bleStatement
Statement
ssionStatement

Expre
IfStat

ment

Iterat|onStatement
ContinueStatement
BreakiStatement
ReturpStatement
WithStatement
Label|edStatement
SwitchStatement
ThrowStatement
TryStatement

Debu

Semantics

A Statement
labels introg
of individua
a label set,
empty. The

The result o

NOTE S
Statement. Ho
to such Func
results in cod
either disallo
ECMAScript

gerStatement

f evaluating a Statement’is always a Completion value.

can be part of a LabelledStatement, which itself can be part of a LabelledStatement, and so on.|The
uced this way are collectively referred to as the “current label set” when describing the semaptics
statements. A LabelledStatementthas no semantic meaning other than the introduction of a labgl to
The label set of an ItergtionStatement or a SwitchStatement initially contains the single elerpent
label set of any other statement is initially empty.

everal widely used.implementations of ECMAScript are known to support the use of FunctionDeclaration|as a
Wwever there are significant and irreconcilable variations among the implementations in the semantics applied
ionDeclarations. Because of these irreconcilable differences, the use of a FunctionDeclaration as a Statgment
e that js‘\net'reliably portable among implementations. It is recommended that ECMAScript implementafions
v thisusage of FunctionDeclaration or issue a warning when such a usage is encountered. Future editiohs of
may define alternative portable means for declaring functions in a Statement context.

12.1 Block

Syntax
Block :

{ StatementListop }

StatementList :
Statement

StatementList Statement

86

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Semantics
The production Block : { } is evaluated as follows:
1. Return (normal, empty, empty).
The production Block : { StatementList }is evaluated as follows:
1. Return the result of evaluating StatementList.
The production StatementList : Statement is evaluated as follows:
1. |Lets be the result of evaluating Statement.
2. |f an exception was thrown, return (throw, V, empty) where V is the exception. (Executign\now|
f no exception were thrown.)
3. Returns.
The|production StatementList : StatementList Statement is evaluated as follows:
1. Let sl be the result of evaluating StatementList.
2. |fslisan abrupt completion, return sl.
3. Let s be the result of evaluating Statement.
4. Jf an exception was thrown, return (throw, V, empty) where V is th€_ exception. (Execution now
f no exception were thrown.)
5. [Ifs.value is empty, let V = sl.value, otherwise let V = s.value,
6. Return (s.type, V, s.target).
NOTE Steps 5 and 6 of the above algoritm ensure that'the value of a StatementList is the value of {
producing Statement in the StatementList. For example, the following calls to the eval function all return the \
eval("15;55:5™)
eval ("1;{}")
eval('1;var a;™)
12.2 Variable Statement
Syngax
VaripbleStatement :
var VariableDeclaratienList ;
VaripbleDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration
VaripbleDeclarationListNoln :
VariableDeclarationNoln
VariableDeclarationListNoln , VariableDeclarationNoln

proceeds as

proceeds as

he last value
alue 1:

VariableDeclaration :

Identifier Initialiserqy,

VariableDeclarationNoln :

Identifier InitialiserNolngp

Initialiser :

= AssignmentExpression

InitialiserNoln :

= AssignmentExpressionNoln

© ISO/IEC 2011 — Al rights reserved

87

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

A variable statement declares variables that are created as defined in 10 .5. Variables are initialised to
undefined when created. A variable with an Initialiser is assigned the value of its AssignmentExpression when

the Variable

Semantics

Statement is executed, not when the variable is created.

The production VariableStatement : var VariableDeclarationList ; is evaluated as follows:

1.
2.

The producfon VariabteDectarationtist T variapteDectaration ;s evatuated as fottows———————————————_]

1. Evaluat
The produc

1.
2.

Evaluat
Evaluat

The produc
1. Return g

The produc

Evaluate VariableDeclarationList.
Return (normal, empty, empty).

VariableDeclaration.
ion VariableDeclarationList : VariableDeclarationList , VariableDeclaration is evaluated as follow

VariableDeclarationList.
VariableDeclaration.

ion VariableDeclaration : Identifier is evaluated as follows:
String value containing the same sequence of characters as in theMdentifier.

ion VariableDeclaration : Identifier Initialiser is evaluated asdollows:

Let Ihs

agrwNRE

NOTE

If a Variablg

e the result of evaluating Identifier as described in 11.1:2.

Let rhs pe the result of evaluating Initialiser.

Let value be GetValue(rhs).

Call Putivalue(lhs, value).

Return g String value containing the same sequence of\characters as in the Identifier.

he String value of a VariableDeclaration is usgd in the evaluation of for-in statements (12.6.4).

Declaration is nested within a with:statement and the Identifier in the VariableDeclaration is

same as a property name of the binding object of the with statement’s object environment record, then st

will assign V
The produc

1.

The Variabl
same manr
contained

are evalug
AssignmentE|

alue to the property instead-0f{o the VariableEnvironment binding of the Identifier.

ion Initialiser : = AssignmentExpression is evaluated as follows:

Return the result of evaluating AssignmentExpression.

bDeclarationbistNoln, VariableDeclarationNoln and InitialiserNoln productions are e valuated in
er as thé VariableDeclarationList, VariableDeclaration and Initialiser productions except that
ariableBeclarationListNoln, VariableDeclarationNoln, InitialiserNoln and AssignmentExpression
ted \instead of the contained VariableDeclarationList, VariableDeclaration, Initialiser
kpression, respectively.

2

the
Ep 4

the
the
Noln
and

12.2.1 Stri

ct Mode Restrictions

It is a SyntaxError if a VariableDeclaration or VariableDeclarationNoln occurs within strict code and its Identifier
is either ""eval™ or "arguments"'.

12.3 Empty Statement

Syntax
EmptyStatem

88

ent :

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Semantics

The

1.

production EmptyStatement : ; is evaluated as follows:

Return (normal, empty, empty).

12.4 Expression Statement

Syn

tax

ExpressionStatement :

L = | - H
—ftookattead—= {5 furctiom T EXPresston—;

NOTE An ExpressionStatement cannot start with an opening curly brace because that might makecit.amb)

Bloc

. Also, an ExpressionStatement cannot start with the function keyword because that might make jit'amb

FunctionDeclaration.

Semantics

The

=

production ExpressionStatement : [lookahead « {{, function}] Expression; is evaluated as follows:

|_et exprRef be the result of evaluating Expression.
Return (normal, GetValue(exprRef), empty).

12.% The 1T Statement

Synfax

IfStatement :

Eac
if th

i T (Expression) Statement else Statement
i T (Expression) Statement

nh else for which the choice of associated i f is ambiguous shall be associated with the near
bt would otherwise have no corresponding el se.

Semantics

The

=

The

1.
2.
3.

production IfStatement : i F\CExpression) Statement e I se Statement is evaluated as follows:

| et exprRef be the result’ of evaluating Expression.
f ToBoolean(GetValue(exprRef)) is true, then

a. ReturnitheTesult of evaluating the first Statement.
Flse,

a. Return the result of evaluating the second Statement.

production IfStatement : i ¥ (Expression) Statement is evaluated as follows:

guous with a
guous with a

st possible

Ct CTAMI Rcf bc thC ICOu:t Uf cva:uutillu EI\'JICQD;UII.
If ToBoolean(GetValue(exprRef)) is false, return (normal, empty, empty).
Return the result of evaluating Statement.

© ISO/IEC 2011 — Al rights reserved

89

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

12.6 Iteration Statements

Syntax

IterationStatement :
do Statement while (Expression) ;
while (Expression) Statement
Tor (ExpressionNolngg; EXpressiong ; Expressiong,) Statement
Tor (var VariableDeclarationListNoln ; Expressiong: ; Expressiong,) Statement
for (LeftHandSideExpression in Expression) Statement
for (var VariableDeclarationNoln in Expression) Statement

12.6.1 The do-whi le Statement
The producfion do Statement whi le (Expression) ; is evaluated as follows:

1. LetV =lempty.
2. Let iterating be true.
3. Repeat, while iterating is true

a. |Let stmt be the result of evaluating Statement.

b. |If stmt.value is not empty, let V = stmt.value.

c. |[If stmt.type is not continue || stmt.target is not in the current labehset, then
i If stmt.type is break and stmt.target is in the current label set, return (normal, V, empty
ii. If stmt is an abrupt completion, return stmt.

d. |Let exprRef be the result of evaluating Expression.

e. |If ToBoolean(GetValue(exprRef)) is false, set iterating“to false.
4. Return (normal, V, empty);

~

12.6.2 Thewhile Statement
The producfion IterationStatement : whi le (Expression,) Statement is evaluated as follows:

1. LetV =lempty.

2. Repeat
a. |Let exprRef be the result of evaldating Expression.
b. |If ToBoolean(GetValue(exprRef)) is false, return (normal, V, empty).
c. |Let stmt be the result of evaluating Statement.
d. |If stmt.value is not empty, let V = stmt.value.
e. |If stmt.type is not-continue || stmt.target is not in the current label set, then

i. If stmt;type is break and stmt.target is in the current label set, then
IS Return (normal, V, empty).
il If-stmt is an abrupt completion, return stmt.

12.6.3 The for.Statement

The production
IterationStatement : For (ExpressionNolngg ; Expressiongg: ; Expressiongg) Statement
is evaluated as follows:

1. If ExpressionNoln is present, then.
a. Let exprRef be the result of evaluating ExpressionNoln.
b. Call GetValue(exprRef). (This value is not used but the call may have side-effects.)
2. LetV =empty.
3. Repeat
a. |If the first Expression is present, then
i Let testExprRef be the result of evaluating the first Expression.
ii. If ToBoolean(GetValue(testExprRef)) is false, return (normal, V, empty).
b. Let stmt be the result of evaluating Statement.

90 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

If stmt.value is not empty, let V = stmt.value

oo

e. If stmt.type is not continue || stmt.target is not in the current label set, then
i If stmt is an abrupt completion, return stmt.

f. If the second Expression is present, then
i. Let incExprRef be the result of evaluating the second Expression.
ii. Call GetValue(incExprRef). (This value is not used.)

The production
IterationStatement : for (var VariableDeclarationListNoln ; Expressiong, ; Expressiong,) Statement
is evaluated as follows:

1.
2.
3.

12.6.4 The for-in Statement

The| production IterationStatement : for (LeftHandSideExpression in Expression) Statement is €
follows:

ok wnh R

If stmt.type is break and stmt.target is in the current label set, return (normal, V, empty).

Fvaluate VariableDeclarationListNoln.
| et V = empty.
Repeat
a. If the first Expression is present, then

i. Let testExprRef be the result of evaluating the first Expression.

ii. If ToBoolean(GetValue(testExprRef)) is false, then return (normal, V, empty).
Let stmt be the result of evaluating Statement.
If stmt.value is not empty, let V = stmt.value.

® 00 o

If stmt.type is not continue || stmt.target is not in the current label set, then
i If stmt is an abrupt completion, return stmt.

f. If the second Expression is present, then.

i. Let incExprRef be the result of evaluating the second Expression.

ii. Call GetValue(incExprRef). (This value.i§ not used.)

|_et exprRef be the result of evaluating the Expression.

| et experValue be GetValue(exprRef)-

f experValue is null or undefined; return (normal, empty, empty).
|_et obj be ToObject(experVatue).

| et V = empty.

Repeat

such propertys return (normal, V, empty).

Let IhsRef-be the result of evaluating the LeftHandSideExpression (it may be evaluated
Call-PutValue(lhsRef, P).

Let,stmt be the result of evaluating Statement.

if-stmt.value is not empty, let V = stmt.value.

QD 0T

If stmt.type is not continue || stmt.target is not in the current label set, then

If stmt.type is break and stmt.target is in the current label setreturn (normal, V, empty).

If stmt.type is break and stmt.target is in the current label set, return (normal, V, empty).

valuated as

a. Let P be the-name of the next property of obj whose [[Enumerable]] attribute is true. If fhere is no

epeatedly).

i f stmt is an nhrllpf r\nmplnfinn, return stmt

The production

IterationStatement : For (var VariableDeclarationNoln in Expression) Statement

is evaluated as follows:

ouk~whE

Let varName be the result of evaluating VariableDeclarationNoln.
Let exprRef be the result of evaluating the Expression.

Let experValue be GetValue(exprRef).

If experValue is null or undefined, return (normal, empty, empty).
Let obj be ToObject(experValue).

Let V = empty.

© ISO/IEC 2011 — Al rights reserved

91

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 1

7. Repeat

=

Q@ -+ho oo

The mechavLics and order of enumerating the properties (step 6.a in the first algorithm, step 7.a in theysecpnd)
ied. Properties of the object being enumerated may be deleted during enumeration. If @\property
yet been visited during enumeration is deleted, then it will not be visited. If new propertieq are

is not speci
that has no

6262:2011(E)

Let P be the name of the next property of obj whose [[Enumerable]] attribute is true. If there is
such property, return (normal, V, empty).

no

Let varRef be the result of evaluating varName as if it were an Identifier Reference (11.1.2); it may

be evaluated repeatedly.
Call PutValue(varRef, P).
Let stmt be the result of evaluating Statement.
If stmt.value is not empty, let V = stmt.value.
If stmt.type is break and stmt.target is in the current label set, return (normal, V, empty).
If stmt.type is not continue || stmt.target is not in the current label set, then
i If stmt is an abrupt completion, return stmt.

added to th¢ object being enumerated during enumeration, the newly added properties are not guaranteqd to

be visited in

Enumeratin
the prototyy
because so

[[Enumerab

the active enumeration. A property name must not be visited more than once in‘any enumeratjion.

j the properties of an object includes enumerating properties of its prototype, and the prototyge of
e, and so on, recursively; but a property of a p rototype is not enunferated if it is “shadoyed”

by a previoys object on the prototype chain.

NOTE Yee NOTE 11.13.1.

12.7 The

Syntax

continue Statement

ContinueStatement :
contlinue ;

contlinue [no LineTerminator here] ldentifier ;

Semantics

A program i

A ContinueS

5 considered syntactically incerrect if either of the following is true:

The program contains.a continue statement without the optional Identifier, which is|
nested, directly (or indirectly (but not crossing function boundaries), within
IterationStatement.

does not.appear in the label setof an enclosing (but not crossing function bounda
IterationStatement.

atement without an ldentifier is evaluated as follows:

Ime previous object in the prototype chain has a property with the.same name. The valugs of

e]] attributes are not considered when determining if a property of-a-prototype object is shadgwed

not
an

The program.c¢ontains a continue statement with the optional ldentifier, where ldentifier

ies)

1. Return (continue, empty, empty).

A ContinueStatement with the optional Identifier is evaluated as follows:

1. Return (continue, empty, Identifier).

92

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

12.8 The break Statement

Syntax

BreakStatement :
break ;

break [no LineTerminator here] Identifier ;

Semantics

A program is considered syntactically incorrect if either of the following is true:

e The program contains a break statement without the optional ldentifier, "which is not
nested, directly or indirectly (but not crossing function boundaries), |within an
IterationStatement or a SwitchStatement.

e The program contains a break statement with the optional Identifier;-where Identifier does
not appear in the label set of an enclosing (but not crossing function boundaries)|Statement.

A BreakStatement without an Identifier is evaluated as follows:
1. Return (break, empty, empty).
A BrleakStatement with an Identifier is evaluated as follows:

1. Return (break, empty, Identifier).
12.9 The return Statement

Syngax

RetuynStatement :
return ;

return [no LineTerminator here] Expression ;

Semantics

An ECMAScript program is coensidered syntactically incorrect if it contains a return statement thatis not
with|n a FunctionBody. A return statement causes a function to cease execution and return a yalue to the
callgr. If Expression is omitted, the return value is undefined. Otherwise, the return value is the value of
Expression.

A RgturnStatement«ds\evaluated as follows:
1. |f the Expression is not present, return (return, undefined, empty).

2. et exprRef be the result of evaluating Expression.
3. Returp/return, GetValue(exprRef), empty).

12.10 The with Statement

Syntax
WithStatement :
with (Expression) Statement

The with statement adds an object environment record for a computed object to the le xical environment of
the current execution context. It then executes a statement using this augmented lexical environment. Finally,
it restores the original lexical environment.

© ISO/IEC 2011 — Al rights reserved 93

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Semantics

The production WithStatement : with (Expression) Statement is evaluated as follows:

Let val be the result of evaluating Expression.

Let obj be ToObject(GetValue(val)).

Let oldEnv be the running execution context’s LexicalEnvironment.
Let newEnv be the result of calling NewObjectEnvironment passing obj and oldEnv as the arguments.
Set the provideThis flag of newEnv to true.

Set the running execution context’s LexicalEnvironment to newEnv.

Let C be the result of evaluating Statement but if an exception is thrown during the evaluation, let C be
(throw, —y i i ioAwere-thrown
8. Set the funning execution context’s Lexical Environment to oldEnv.
9

NogabkrwhpE

N

Return €.

NOTE No matter how control leaves the embedded Statement, whether normally or by some(form of abrupt

completion of exception, the LexicalEnvironment is always restored to its former state.

12.10.1 Strict Mode Restrictions

Strict mode| code may not include a WithStatement. The oc currence of a WithStatement in such a contekt is

treated as a SyntaxError.
12.11 The switch Statement

Syntax

SwitchStatement :
switich (Expression) CaseBlock

CaseBlock :
{ CageClausesqp: ¥
{ CaseClauses,, DefaultClause CaseClausesqp:. ¥

CaseClauses|:
CaseClause
CaseClauses CaseClause

CaseClause
casel Expression - StatementListop

DefaultClauge :
default : StatementListyy

Semantics

The production‘SwitchStatement : switch (Expression) CaseBlock is evaluated as follows:

Let exprRef be the result of evaluating Expression.

Let R be the result of evaluating CaseBlock, passing it GetValue(exprRef) as a parameter.
If R.type is break and R.target is in the current label set, return (normal, R.value, empty).
Return R.

PN pE

The production CaseBlock : { CaseClausesqp: } is given an input parameter, input, and is evaluated as follows:

LetV = empty.
Let A be the list of CaseClause items in source text order.
Let searching be true.
Repeat, while searching is true
a. Let C be the next CaseClause in A. If there is no such CaseClause, return (normal, V, empty).

AN E

94 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

b. Let clauseSelector be the result of evaluating C.
c. Ifinputis equal to clauseSelector as defined by the === operator, then
i Set searching to false.
ii. If C has a StatementList, then
1. Evaluate C’s StatementList and let R be the result.
2. If Ris an abrupt completion, then return R.
3. LetV=R.value.
5. Repeat
a. Let C be the next CaseClause in A. If there is no such CaseClause, return (normal, V, empty).
b. If C has a StatementList, then
i Evaluate C’s StatementList and let R be the result.
il It R.value 1s not empty, then Tet V = R.value.
iii. If R is an abrupt completion, then return (R.type, V, R.target).

The|production CaseBlock : { CaseClauses,: DefaultClause CaseClausesq } is given an jnput’parammeter, input,
and|is evaluated as follows:

| et V = empty.
|_et A be the list of CaseClause items in the first CaseClauses, in source text order.
|_et B be the list of CaseClause items in the second CaseClauses, in source text'order.
|_et found be false.
Repeat letting C be in order each CaseClause in A
a. Iffound is false, then
i Let clauseSelector be the result of evaluating C.
ii. If input is equal to clauseSelector as defined by.the === operator, then set found to trgie.
b. If found is true, then
i. If C has a StatementList, then
1. Evaluate C’s StatementList and let R be the result.
2. If R.value is not empty, then'et V = R.value.
3. Risan abrupt completian,-then return (R.type, V, R.target).

aprwnPE

o

| et foundInB be false.
7. |ffound is false, then
a. Repeat, while foundInB is false and-all elements of B have not been processed
i Let C be the next CaseClause in B.
ii. Let clauseSelector be‘the result of evaluating C.
iii. If input is equal o clauseSelector as defined by the === operator, then
1. Set foundInB to true.
2. . If Chas a StatementList, then
a Evaluate C’s StatementList and let R be the result.
b If R.value is not empty, then let V = R.value.
¢ Risanabrupt completion, then return (R.type, V, R.target).
8. |f foundInB is false'and the DefaultClause has a StatementList, then
a. Evaluate the DefaultClause’s StatementList and let R be the result.
b. JfRlvalue is not empty, then let V = R.value.
¢~ ~IFR is an abrupt completion, then return (R.type, V, R.target).
9. Repeat(Note that if step 7.a.i has been performed this loop does not start at the beginning of B)
d. Let C be the next CaseClause in B. If there is no such CaseClause, return (normal, V, empty).
b. If C has a StatementList, then
i Evaluate C’s StatementList and let R be the result.
ii. If R.value is not empty, then let V = R.value.
iii. If R is an abrupt completion, then return (R.type, V, R.target).

The production CaseClause : case Expression - StatementListyy is evaluated as follows:

1. Let exprRef be the result of evaluating Expression.
2. Return GetValue(exprRef).

NOTE Evaluating CaseClause does not execute the associated StatementList. It simply evaluates the Expression and
returns the value, which the CaseBlock algorithm uses to determine which StatementList to start executing.

© ISO/IEC 2011 — Al rights reserved 95

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

12.12 Labelled Statements

Syntax

LabelledStatement :

Identi

Semantics

fier - Statement

A Statement may be prefixed by a label. Labelled statements are only used in conjunction with labelled break
and continue statements. ECMAScript has no goto statement.

An ECMAS
by a Labelle

Cript program is considered syntactically incorrect if it contains a LabelledStatement that is encl
Statement with the same Identifier as label. This does not apply to labels appearing withinthe

of a FunctionDeclaration that is nested, directly or indirectly, within a labelled statement.

The produc
evaluating
the label s€
equal to Ide

Prior to the

ion ldentifier - Statement is evaluated by adding Identifier to the label set of .Statement and

tatement. If the LabelledStatement itself has a non-empty label set, these labels-are also adde
t of Statement before evaluating it. If the result of evaluating Statement is (break, V, L) where
ntifier, the production results in (normal, V, empty).

label set, ufless it is an IterationStatement or a SwitchStatement, in which case-it is regarded as possessi

label set co

hsisting of the single element, empty.

12.13 The throw Statement

Syntax

ThrowStaten]
thro

Semantics

The produc

1.
2.

Let expt

ent :
W [no LineTerminator here] Expression ;

ion ThrowStatement : throw [no LineTerminator here] Expression ; is evaluated as follows:

Ref be the result of evaluating Expression.

Return (throw, GetValue(exprRef), empty).

12.14 The try Statement

Syntax

TryStatemeng :

try [
tryH

lock €atch
lock Finally

try

i

sed
ody

hen
d to
Lis

evaluation of a LabelledStatement, the contained Statement is regarded as possessing an empty

g a

loeK Catch Finally

Catch :
catc

Finally :

h (Identifier) Block

finally Block

The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime
error or a throw statement. The catch clause provides the exception-handling code. When a catch clause
catches an exception, its Identifier is bound to that exception.

96

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Semantics
The production TryStatement : try Block Catch is evaluated as follows:
1. Let B be the result of evaluating Block.
2. |If B.type is not throw, return B.
3. Return the result of evaluating Catch with parameter B.value.
The production TryStatement : try Block Finally is evaluated as follows:
1. Let B be the result of evaluating Block.
2. [etFhetheresuiofevatvatingaty-
3. |f F.type is normal, return B.
4. Return F.
The|production TryStatement : try Block Catch Finally is evaluated as follows:
1. |Let B be the result of evaluating Block.
2. |f B.type is throw, then
a. Let C be the result of evaluating Catch with parameter B.value.
3. Else, B.type is not throw,
a. LetCbeB.

4. et F be the result of evaluating Finally.
5. |f F.type is normal, return C.
6. Return F.
The|production Catch : catch (Identifier) Block is evaluated as follows:
1. |Let C be the parameter that has been passed to this*preduction.
2. et oldEnv be the running execution context’s LéxXicalEnvironment.
3. Let catchEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument
4. [Call the CreateMutableBinding concrete .method of catchEnv passing the ldentifier String

hrgument.
5. [Call the SetMutableBinding concrete. method of catchEnv passing the Identifier, C, and false a

Note that the last argument is immaterial in this situation.
6. Pet the running execution context’s LexicalEnvironment to catchEnv.
7. Let B be the result of evaluating Block.
8. Pet the running execution context’s LexicalEnvironment to oldEnv.
9. Return B.
NOTE No matter how-eontrol leaves the Block the LexicalEnvironment is always restored to its former st
The|production Finally - Finally Block is evaluated as follows:
1. Return.theresult of evaluating Block.
12.14.1 Strict Mode Restrictions

alue as the

arguments.

hte.

It is a SyntaxError if a TryStatement with a Catch occurs within strict code and the Identifier of the Catch
production is either ""eval’ or ""arguments™.

12.15 The debugger statement

Syntax

DebuggerStatement :

debugger ;

© ISO/IEC 2011 — Al rights reserved

97

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Semantics

Evaluating the DebuggerStatement production may allow an implementation to cause a breakpoint when run

under a debugger. If a debugger is not present or active this statement has no observable effect.

The production DebuggerStatement : debugger ; is evaluated as follows:

1. If an implementation defined debugging facility is available and enabled, then
a. Perform an implementation defined debugging action.
b. Let result be an implementation defined Completion value.

2. Else
a. [eetresut-betrormal-empty—emptyr

3. Return fesult.

13 Function Definition

Syntax

FunctionDec]

aration :

fungtion ldentifier (FormalParameterList,y) { FunctionBody }

FunctionExp

ression :

fungtion ldentifiery, (FormalParameterList,,) { FunctionBody }

FormalParal
Identi
Form

FunctionBod
Sourc

Semantics

The produc
FunctionQ

heterList :
Fier
hIParameterList , ldentifier

y

pElementsgp

ion
eclaration : function Identifier\(-FormalParameterList,,:) { FunctionBody }

is instantiat¢d as follows during Declaration-Binding instantiation (10.5):

1

The production
FunctionBxpression:-function (FormalParameterList,,) { FunctionBody }
is evaluated as,follows:

1.

Return the result of creating @ new Function object as specified in 13.2 with parameters specified by
FormalHarameterList,,, and body specified by FunctionBody. Pass in the VariableEnvironment of the rurjning
executiop context as the Scope~Pass in true as the Strict flag if the FunctionDeclaration is contained in strict code
or if its FunctionBody is strict code.

Return 1€ eSt v, créatmg—=a v tC T—0101€C asS—sSPeC e 1 . VtH ' by
FormalParameterList,,; and body specified by FunctionBody. Pass in the LexicalEnvironment of the running
execution context as the Scope. Pass in true as the Strict flag if the FunctionExpression is contained in strict code or
if its FunctionBody is strict code.

o v

The production
FunctionExpression : function ldentifier (FormalParameterList,,) { FunctionBody }
is evaluated as follows:

1. Let funcEnv be the result of calling NewDeclarativeEnvironment passing the running execution context’s Lexical
Environment as the argument

2. LetenvRec be funcEnv’s environment record.

3. Call the CreatelmmutableBinding concrete method of envRec passing the String value of Identifier as the argument.

98 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

4. Let closure be the result of creating a new Function object as specified in 13.2 with parameters specified by
FormalParameterList,,: and body specified by FunctionBody. Pass in funcEnv as the Scope. Pass in true as the
Strict flag if the FunctionExpression is contained in strict code or if its FunctionBody is strict code.

5. Call the InitializelmmutableBinding concrete method of envRec passing the String value of Identifier and closure as
the arguments.

6. Return closure.

NOTE The Identifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBody to
allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Identifier in a FunctionExpression
cannot be referenced from and does not affect the scope enclosing the FunctionExpression.

TheproductionmFunctionBody—SourceEtementsopr s evatuatedas fottows

1. [The code of this FunctionBody is strict mode code if it is part of a FunctionDeclaration or FunctionExpression that
s contained in strict mode code or if the Directive Prologue (14.1) of its SourceElements.'contains|a Use Strict
Directive or if any of the conditions in 10.1.1 apply. If the code of this FunctionBady-is stricf mode code,
SourceElements is evaluated in the following steps as strict mode code. Otherwise, SodrceElements if evaluated in
he following steps as non-strict mode code.

f SourceElements is present return the result of evaluating SourceElements.
3. Else return (normal, undefined, empty).

n

13.1 Strict Mode Restrictions

It isfa SyntaxError if any Identifier value occurs more than once within a FormalParameterList of g strict mode
FungtionDeclaration or FunctionExpression.

It is |a SyntaxError if the Identifier "*eval' or the Identifier “arguments’ occurs within a FormalHarameterList
of alstrict mode FunctionDeclaration or FunctionExpression;

It is]a SyntaxError if the Identifier ""eval" or thé [dentifier ""arguments™ occurs as the Identifigr of a strict
mode FunctionDeclaration or FunctionExpression.

13.2 Creating Function Objects

Given an optional parameter list spegified by FormalParameterList, a body specified by FunctionBogly, a Lexical
Environment specified by Scope;-and a Boolean flag Strict, a Function object is constructed as folloys:

Create a new native ECMASCript object and let F be that object.

Set all the internal methods, except for [[Get]], of F as described in 8.12.

Set the [[Class]] infernal property of F to ""Function™.

Set the [[Prototypel] internal property of F to the standard built-in Function prototype object as specifiegl in 15.3.3.1.

Set the [[Get]].internal property of F as described in 15.3.5.4.

Set the [[Call]] internal property of F as described in 13.2.1.

Set thesf[€onstruct]] internal property of F as described in 13.2.2.

Setthe [[HasInstance]] internal property of F as described in 15.3.5.3.

Setthe [[Scope]] internal property of F to the value of Scope.

0. Cer mames De a LISt contaiming, 1 teft 1o Tight textual order, the Strings corresponding o the identifiers of

FormalParameterList. If no parameters are specified, let names be the empty list.

11. Set the [[FormalParameters]] internal property of F to names.

12. Set the [[Code]] internal property of F to FunctionBody.

13. Set the [[Extensible]] internal property of F to true.

14. Let len be the number of formal parameters specified in FormalParameterList. If no parameters are specified, let len
be 0.

15. Call the [[DefineOwnProperty]] internal method of F with arguments "*length", Property Descriptor {[[Value]]:
len, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}, and false.

16. Let proto be the result of creating a new object as would be constructed by the expression new Object(Qwhere
Object is the standard built-in constructor with that name.

17. Call the [[DefineOwnProperty]] internal method of proto with arguments "‘constructor", Property Descriptor
{[[Value]]: F, { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}, and false.

BOONO O~ WNE

© ISO/IEC 2011 — Al rights reserved 99

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

18.

19.

20.

Call the [[DefineOwnProperty]] internal method of F with arguments "prototype’, Property Descriptor
{[[Value]]: proto, { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false}, and false.
If Strict is true, then
a. Let thrower be the [[ThrowTypeError]] function Object (13.2.3).
b. Call the [[DefineOwnProperty]] internal method of F with arguments ""‘cal ler™, PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
c. Call the [[DefineOwnProperty]] internal method of F with arguments ""arguments"’, PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
Return F.

NOTE A prototype property is automatically created for every function, to allow for the possibility that the function

will be used gs a constructor.

13.2.1 [[C3lI]]

When the [[[Call]] internal method for a Function object F is called with a this value and a listof-arguments| the

following ste¢ps are taken:

1.

o0 AwW

13.2.2 [[Construct]]

Let fundCtx be the result of establishing a new execution context for function code’ using the value of F's
[[FormalParameters]] internal property, the passed arguments List args, and the\this value as described ip
10.4.3.
Let resylt be the result of evaluating the FunctionBody that is the value of\F'S/[[Code]] internal property |If
F does njot have a [[Code]] internal property or if its value is an empty EtinctionBody, then result is (normal,
undefined, empty).

EXit the|execution context funcCtx, restoring the previous executigmcontext.
If resultftype is throw then throw result.value.

If resultftype is return then return result.value.

Otherwise result.type must be normal. Return undefined.

When the [[Fonstruct]] internal method for a Functienobject F is called with a possibly empty list of arguments,

the following steps are taken:

No ok whE

©

9.
10.

Let obj je a newly created native ECMASetipt object.

Set all tHe internal methods of obj as specified in 8.12.

Set the [[Class]] internal property of objto ""Object".

Set the [[Extensible]] internal property of obj to true.

Let protg be the value of calling\the [[Get]] internal property of F with argument ""prototype"".
If Type(proto) is Object, set the'[[Prototype]] internal property of obj to proto.

If Type(proto) is not Qbject, set the [[Prototype]] internal property of obj to the standard built-in Object protqtype
object ag described in15:2.4.
Let result be the resuftof calling the [[Call]] internal property of F, providing obj as the this value and providinp the
argument list passed into [[Construct]] as args.
If Type(fesult).is Object then return result.
Return opj.

13.2.3 The [[ThrowTypeError]] Function Object

The [[ThrowTypeError]] object is a unique function object that is defined once as follows:

Nook~kownE

100

Create a new native ECMAScript object and let F be that object.

Set all the internal methods of F as described in 8.12.

Set the [[Class]] internal property of F to ""Function"".

Set the [[Prototype]] internal property of F to the standard built-in Function prototype object as specified in 15.3.3.1.
Set the [[Call]] internal property of F as described in 13.2.1.

Set the [[Scope]] internal property of F to the Global Environment.

Set the [[FormalParameters]] internal property of F to an empty List.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

8. Setthe [[Code]] internal property of F to be a FunctionBody that unconditionally throws a TypeError exception and
performs no other action.

9. Call the [[DefineOwnProperty]] internal method of F with arguments "*length™, Property Descriptor {[[Value]]: 0,
[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}, and false.

10. Set the [[Extensible]] internal property of F to false.

11. Let[[ThrowTypeError]] be F.

14 Program

Syntax

Program :
SourceElementsqp

SourceElements :
SourceElement
SourceElements SourceElement

SourjceElement :
Statement
FunctionDeclaration

Semantics

The|production Program : SourceElements,; is evaluated as follows:

1. [The code of this Program is strict mode code if the Directive Prologue (14.1) of its SourceElemepts contains
b Use Strict Directive or if any of the conditions of*10.1.1 apply. If the code of this Program is sfrict mode
code, SourceElements is evaluated in the followifg steps as strict mode code. Otherwise Sourceflements is
bvaluated in the following steps as non-strict mode code.

f SourceElements is not present, return (netmal, empty, empty).

|_et progCxt be a new execution context,for global code as described in 10.4.1.
|_et result be the result of evaluating SourceElements.

FXit the execution context progCxt.

Return result.

SEGR YN

NOTE The processes for initiating the evaluation of a Program and for dealing with the result of such gn evaluation
are defined by an ECMAScriptiimplementation and not by this specification.

The|production SourceElements : SourceElements SourceElement is evaluated as follows:

| et headResult-be the result of evaluating SourceElements.

f headResult is an abrupt completion, return headResult.

| et tailResult be result of evaluating SourceElement.

f tailResult.value is empty, let V = headResult.value, otherwise let V = tailResult.value.
Return (tailResult.type, V, tailResult.target)

g wNE

The production SourceElement : Statement is evaluated as follows:

1. Return the result of evaluating Statement.

The production SourceElement : FunctionDeclaration is evaluated as follows:

1. Return (normal, empty, empty).

14.1 Directive Prologues and the Use Strict Directive

A Directive Prologue is the longest sequence of ExpressionStatement productions occurring as the initial
SourceElement productions of a Program or FunctionBody and where each ExpressionStatement in the sequence

© ISO/IEC 2011 — All rights reserved 101

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

consists entirely of a StringLiteral token followed a semicolon. The semicolon may appear explicitly or may be
inserted by automatic semicolon insertion. A Directive Prologue may be an empty sequence.

A Use Strict Directive is an ExpressionStatement in a Directive Prologue whose StringLiteral is either the exact

character sequences '"‘use strict" or

EscapeSeque

nce or LineContinuation.

"use strict". AUs e Strict Directive may not contain an

A Directive Prologue may contain more than one Use Strict Directive. However, an implementation may issue

a warning if

NOTE

this occurs.

The ExpressionStatement productions of a Directive Prologue are evaluated normally during evaluation of the

containing
ExpressionSta
appropriate
Prologue an
implementati

15 Stand

There are
global obje
properties O

Unless spe
object has
property. U
value true.

Many built-
constructorg

bourceElements production. Implementations may define implementation specific meanings
ement productions which are not a Use Strict Directive and which occur in a Directive Prologue.
otification mechanism exists, an implementation should issue a warning if it encounters in(a\Dirg
ExpressionStatement that is not a Use Strict Directive or which does not have a meaning defined by
bN.

ard Built-in ECMAScript Objects

ertain built-in ob jects available whenever an ECMAScript program-begins execution. One
t, is part of the lexical environment of the executing program. Others are accessible as i
f the global object.

cified otherwise, the [[Class]] internal property of a built-ir object is *"Function® if that bu
a [[Call]] internal property, or ""Object™ if that built-itn object does not have a [[Call]] inte
hless specified otherwise, the [[Extensible]] internal property of a built-in object initially has

n objects are functions: they can be invoked. with arguments. Some of them furthermore|
: they are functions intended f or use with“the new operator. For each built-in function,

for
f an
ctive
the

the
hitial

ilt-in
rnal
the

are
this

specification describes the arguments required by thatfunction and properties of the Function object. For ¢ach

built-in con
constructor
constructor.

Unless othsg
this clause
behave exa
undefined

Unless othsg
this clause
by the call §
behaviour r
that is predi

Structor, this specification furthermere* describes properties of the p rototype object of
and properties of specific object(instances returned by a new expression that invokes

rwise specified in the des¢ription of a particular function, if a function or constructor describg
s given fewer arguments’than the function is specified to require, the function or constructor
ctly asifit had beeni'given sufficient additional arguments, each such argument be ing
alue.

rwise specifiédiin the description of a particular function, if a function or constructor describe
s given more arguments than the function is specified to allow, the extra arguments are evalu
nd thenm\gnored by the function. However, an implementation may define implementation spg

cated simply on the presence of an extra argument.

hat
that

d in
shall
the

din
hted
cific

blating to such arguments as long as the behaviour is not the throwing of a TypeError exception

NOTE

adding new functions rather than adding new parameters to existing functions.

Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by

Every built-in function and every built-in constructor has the Function prototype object, which is the initial value
of the expression Function.prototype (15.3.4), as the value of its [[Prototype]] internal property.

Unless otherwise specified every built-in prototype object has the Object prototype object, which is the initial
value of the expression Object._prototype (15.2.4), as the value of its [[Prototype]] internal property,
except the Object prototype object itself.

None of the built-in functions described in this clause that are not constructors shall implement the
[[Construct]] internal method unless otherwise specified in the description of a particular function. None of the

102 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

built-in functions described in this clause shall have a prototype property unless otherwise specified in the
description of a particular function.

This clause generally describes distinct behaviours for when a constructor is “called as a function” and for
when itis “called as part of a new expression”. The “called as a function” behaviour corresponds to the
invocation of the constructor’s [[Call]] internal method and the “called as part of a new expression” behaviour
corresponds to the invocation of the constructor’s [[Construct]] internal method.

Every built-in Function object described in this clause—whether as a constructor, an ordinary function, or
both—has a Iength property whose value is an integer. Unless otherwise specified, this value is equal to the
largest number of named arguments shown in the subclause headings for the function description, including

opti
NOT

desg
and

In e

{ I

clau
spe

15.1

The

Unle

true|, [[Enumerable]]: false, [[Configurable]]: true}.

The
cong

The
fund

The
dep

In a
prog

nal parameters.

E For example, the Function object that is the initial value of the slice property of the String.proto
ribed under the subclause heading “String.prototype.slice (start, end)” which shows the two-named ar
bnd; therefore the value of the Iength property of that Function object is 2.

very case, the length property of a built-in Function object described in this-clause has tk

5e has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[ConfigUrable]]: true } unles
ified.

The Global Object
unique global object is created before control enters any-execution context.
ss otherwise specified, the standard built-in properties of the global object have attributes
global object does not have a [[Construct]] internal property; it is not possible to use the globa
tructor with the new operator.

global object does not have a [[Call]] internal property; it is not possible to invoke the global
tion.

values of the [[Prototype}} and [[Class]] internal properties of the global object are imp
endent.

Hdition to the properties defined in this specification the global object may have additional
erties. This may/include a property whose value is the global object itself; for example, i

docliment object model the window property of the global object is the global object itself.

15.1.1 Value-Properties of the Global Object

15.1.1.1

NaN

!

type object is
uments start

e attributes

ritable]]: false, [[Enumerable]]: false, [[Configurable]]: false }. Every ather property desciibed in this

s otherwise

[[[Writable]]:

object as a

object as a

ementation-

ost defined
the HTML

The value of NaN is NaN (see 8.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,

[[Co

15.1

nfigurable]]: false }.

1.2 Infinity

The value of Infinity is +w (see 8.5). This property has the attributes { [[Writable]]: false, [[Enumerable]l:
false, [[Configurable]]: false }.

© ISO/IEC 2011 — Al rights reserved

103

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15113 wu

ndefined

The value of undefined is undefined (see 8.1). This property has the attributes {[[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

15.1.2 Function Properties of the Global Object

15.1.21

eval (x)

When the eval function is called with one argument x, the following steps are taken:

1. If Type(
2. Let pro
SyntaxH
3. Leteval
4, Letresu
5. Exitthe
6. |If result,
7. |Ifresult,
8. Otherwi
15.1.21.1
A direct cal
conditions:
The Refere

record as itg

) is not String, return x.
be the ECMAScript code that is the result of parsing x as a Program. If the parse fails, thrg
rror exception (but see also clause 16).
Ctx be the result of establishing a new execution context (10.4.2) for the eval code prog.
t be the result of evaluating the program prog.
running execution context evalCtx, restoring the previous execution context.
fype is normal and its completion value is a value V, then return the value V.
fype is normal and its completion value is empty, then return the value undefingd.
e, result.type must be throw. Throw result.value as an exception.

Direct Call to Eval

to the eval function is one that is expressed as a CallExpression that meets the following

nce that is the result of evaluating the MemberExpression in the CallExpression has an environr
base value and its reference name is ""eval’~.

efined in 15.1.2.1.

rselnt (string , radix)

I nt function produces an-integer value dictated by interpretation of the contents of the s

ccording to the specified radix. Leading white space in string is ignored. If radix is undefined
imed. If radix is 16, the number may also optionally begin with the character pairs Ox or OX.
Arse Int fufiction is called, the following steps are taken:

tStringshe ToString(string).

be ~a\.newly created substring of inputString consisting of the first character that is n
pSpaceChar and all characters following that character. (In other words, remove leading v

W a

—

\"'[e]

hent

f calling the abstract operation GetValuewith that Reference as the argument is the standard built-

fring
br 0,

d to be 10 except whenthe number begins with the character pairs 0x or 0X, in which case a ffadix

Dt a
hite

The result o
in function d
15.1.2.2
The pars
argument a
it is assume
of 16 is ass
When the p
1. Letinpy
2. Let S
Strwhit
space.)
3. Letsign
4,
5.
from S.
6. LetR=
7.
8. IfR=0,
a.
b.
9. Else,R=
a.

T INpUtString does not contain any SUCh Characters, Iet S e the empty string.
be 1.

If S is not empty and the first character of S is a minus sign -, let sign be —1.
If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character

Tolnt32(radix).

Let stripPrefix be true.

then

If R<2orR > 36, then return NaN.
If R = 16, let stripPrefix be false.

0

Let R = 10.

10. If stripPrefix is true, then

104

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

a.
the first two characters from S and let R = 16.

If the length of S is at least 2 and the first two characters of S are either “0x” or “0X”, then remove

11. If S contains any character that is not a radix-R digit, then let Z be the substring of S consisting of all
characters before the first such character; otherwise, let Z be S.

12.

If Z is empty, return NaN.

13. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters
A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20
significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the

implementation; and if R is not 2, 4, 8, 10, 16, or 32, then mathint may be an implementatio

approximation to the mathematical integer value that is represented by Z in radix-R notation.)

14.

Let number be the Number value for mathint.

n-dependent

15.

NOT
canr
igno

15.1

The
argy

Wh

=

4.

5.

NOT
canr
igno

15.1

eturn sign x number.

E parselnt may interpret only a leading portion of string as an integer value; it ignores any. ch
ot be interpreted as part of the notation of an integer, and no indication is given that any Such cha
ed.

.2.3 parseFloat (string)

parseFloat function produces a Number value dictated by interpretation of the contents
ment as a decimal literal.

n the parseFloat function is called, the following steps are taken:

| et inputString be ToString(string).
| et trimmedString be a substring of inputString consisting of the leftmost character th
StrwhiteSpaceChar and all characters to the right of.that character. (In other words, remove le

f neither trimmedString nor any prefix of trimmedString satisfies the syntax of a StrDecima
D.3.1), return NaN.

|_et numberString be the longest prefix of trimmedString, which might be trimmedString itself,
he syntax of a StrDecimalLiteral.

Return the Number value for the MV of\numberString.

E
ot be interpreted as part of the notation of an decimal literal, and no indication is given that any such ch
ed.

.2.4 isNaN (number)

Returns true if the argument coerces to NaN, and otherwise returns false.

1.
2.

NOT|
resu

f ToNumber{number) is NaN, return true.
Dtherwisé, neturn false.

E Avreliable way for ECMAScript code to test if a value X is a NaN is an expression of the form X
t wilk be true if and only if X is a NaN.

space.) If inputString does not contain any such characters, let trimmedString be the empty string.

parseFloat may interpret only.a leading portion of string as a Number value; it ignores any ciLa

aracters that
racters were

bf the string

pt IS not a
ading white

Literal (see

hat satisfies

racters that
racters were

I== X. The

15.1

.2.5 isFinite (number)

Returns false if the argument coerces to NaN, +w©, or —o, and otherwise returns true.

1.
2.

15.1

If ToNumber(number) is NaN, +o, or —oo, return false.

Otherwise, return true.

.3 URI Handling Function Properties

Uniform Resource Identifiers, or URIs, are Strings that identify resources (e.g. web pages or files) and transport protocols
by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language itself does not provide any

© ISO/IEC 2011 — Al rights reserved

105

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

support for using URIs except for functions that encode and decode URIs as described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and

15.1.3.4.

NOTE

these functions are beyond the scope of this standard.

Many implementations of ECMAScript provide additional functions and methods that manipulate web pages;

A URI is composed of a sequence of components separated by component separators. The general form is:

Scheme : First / Second ; Third ? Fourth
where the italicised names represent components and “:”, “/”, “;” and “?” are reserved characters used as
separators. | The encodeURI and decodeURI functions are intended to work with complete URIs; fthey

assume thg
encoded. T
individual c
encoded so
URI.

The followin

Syntax
uri :::
uriCh

uriCharacter
uriCh

that they are not interpreted as reserved characters when the component is partyof a com

g lexical grammar specifies the form of encoded URIs.

Aractersopt

5 1
practer uriCharactersqp

uriCharacter] :::

uriRe
uriun
uriks

uriReserved
5/

uriUnescape
uriAlfg
Decin
uriMag

uriEscaped :}:

% HeX

uriAlpha :::
a

b
A B

erved
escaped
aped

:: one of
2 -

e

1

ha
alDigit
rk

Digit HexDigit
bne of:

d f g h
D F G H

(&=
X
~ ==
=3
=235
oo
pehe]
loNe]
0=
nn
=+
cc
<<
==
x X

c e
¢ E

<<

uriMark :::

NOTE
3986.

one of

I ~ * -

QD)

t any reserved characters in the URI are intended to have special meaning and sohare| not
ne encodeURIComponent and decodeURIComponent functions are intended to werk)with the
mponent parts of a URI; they assume that any reserved characters represent text and.so mugt be

lete

The above syntax is based upon RFC 2396 and does not reflect changes introduced by the more recent RFC

When a character to be included in a URI is not listed above or is not intended to have the special meaning
sometimes given to the reserved characters, that character must be encoded. The character is transformed
into its UTF-8 encoding, with surrogate pairs first converted from UTF-16 to the corresponding code point
value. (Note that for code units in the range [0,127] this results in a single octet with the same value.) The
resulting sequence of octets is then transformed into a String with each octet represented by an escape
sequence of the form “%xx”.

106

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

The encoding and es caping process is described by the abstract operation Encode taking two String
arguments string and unescapedSet.

1. Let strLen be the number of characters in string.
2. Let R be the empty String.
3. LetkbeO.
4. Repeat
a. If k equals strLen, return R.
b. Let C be the character at position k within string.
c. If Cisin unescapedSet, then
i. Let S be a String containing only the character C.
. Cet R be a new String value computed by concatenating the previous value of R pnd S.
d. Else, Cis notin unescapedSet
i If the code unit value of C is not less than 0xDCO00 and not greater than, OxDHFF, throw a
URIError exception.
ii. If the code unit value of C is less than 0xD800 or greater than 0XDBER¢then
1. LetV be the code unit value of C.
iii. Else,
1. Increase k by 1.
2. If kequals strLen, throw a URIError exception:
3. Let kChar be the code unit value of the charactefat position k within stfing.
4. If kChar is less than OxDCOO or greater—than OxDFFF, throw g URIError
exception.
5. Let V be (((the code unit value of C)="0xD800) x 0x400 + (kChar 4 0xDCO00) +
0x10000).
iv. Let Octets be the array of octets resulting by applying the UTF-8 transformatipn to V, and
let L be the array size.
V. Let j be 0.
Vi. Repeat, while j <L
1. Let jOctet be the valug-at/position j within Octets.
2. Let S be a String containing three characters “%XY” where XY are two uppercase
hexadecimal digitsiencoding the value of jOctet.
3. Let R be a new String value computed by concatenating the previous vglue of R and
S.
4. Increase j by 1.
e. Increase k by 1.
The| unescaping and decoding-process is described by the abstract operation Decode takind two String
argyments string and reservedSet.
1. LetstrLen be the humber of characters in string.
2. |LetR be the empty String.
3. LetkbeO.
4. Repeat
a, < k equals strLen, return R.
b.) Let C be the character at position k within string.
¢, If Cisnot ‘%’, then
T et S e the String contaiming onfy the character C:
d. Else, Cis ‘%’
i Let start be k.
il If k + 2 is greater than or equal to strLen, throw a URIError exception.
iii. If the characters at position (k+1) and (k + 2) within string do not represent hexadecimal

digits, throw a URIError exception.

iv. Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k

+2).
V. Increment k by 2.
Vi. If the most significant bit in B is 0, then

1. Let C be the character with code unit value B.
2. If Cis not in reservedSet, then
a Let S be the String containing only the character C.

© ISO/IEC 2011 — Al rights reserved

107

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

NOTE

RFC 3986 which replaces RFC 2396, A formal description and implementation of UTF-8 is given in RFC 3629.

3. Else, Cisin reservedSet

a Let S be the substring of string from position start to position k included.

Vii. Else, the most significant bitin Bis 1
1. Let n be the smallest non-negative number such that (B << n) & 0x80 is equal to 0.
2. Ifnequals 1 ornisgreater than 4, throw a URIError exception.
3. Let Octets be an array of 8-bit integers of size n.
4. Put B into Octets at position 0.
5. Ifk+ (3 x(n-1))is greater than or equal to strLen, throw a URIError exception.
6. Letjbel.
7. Repeat, whilej <n

a Increment k by 1.

b~ If the character af position K 1s not "%, throw a URTError exception.

c If the characters at position (k +1) and (k + 2) within string. do
represent hexadecimal digits, throw a URIError exception.

d Let B be the 8-bit value represented by the two hexadecimat digi
position (k + 1) and (k + 2).

e If the two most significant bits in B are not 10, throw a URIE
exception.

f Increment k by 2.

g Put B into Octets at position j.

h Increment j by 1.

8. Let V be the value obtained by applying the UTF-8-transformation to Octets, th
from an array of octets into a 21-bit value. If Octets“does not contain a valid U
encoding of a Unicode code point throw an URKError exception.

9. If Vis less than 0x10000, then

a Let C be the character with codefunit value V.
b If Cis not in reservedSet, then
i. Let S be the String containing only the character C.
c Else, Cisin reservedSet
i Let S be the substring of string from position start to positi
included.
10. Else, V is > 0x10000
a LetL be (((V+0x10000) & 0x3FF) + 0xDCO00).
b Let H be (((V - 0x10000) >> 10) & 0x3FF) + 0xD800).
c Let S be the String containing the two characters with code unit valu
and L,
Let R be a new String valug-computed by concatenating the previous value of R and S.
Increase k by 1.

his syntax of Uniform_Resource Identifiers is based upon RFC 2396 and does not reflect the more r¢g

not
s at

Fror

tis,
[F-8

bn K

bs H

cent

In UTF-8, chgracters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence" of one has the hi
0, the remaining 7 bits being used to encode the character value. In a sequence of n octets, n>1, the initial

order bit set

octet has the| n higher-erder bits set to 1, followed by a bit set to 0. The remaining bits of that octet contain bits fro
value of the ¢haragter, 1o be encoded. The following octets all have the higher-order bit set to 1 and the following bit get to
its”in“each to contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript

0, leaving 6
characters a

108

Spécified in Table 21.

her-

the

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

Table 21 — UTF-8 Encodings

ISO/IEC 16262:2011(E)

Code Unit Value Representation 1% Octet 2" Octet 3@ Octet 4™ Octet
0x0000 - OxO007F 00000000 0zzzzzzz 0zzzzzzz
0x0080 - OxO7FF 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxD7FF XXXXYYYY YYZ2277Z7 1110XXXX 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110vV VVWWWWXX
followed by followed by 11110uuu 10uuwwww 10xxyyyy | 10zzzzzz
0xDCOO — OxDFFF 110111yy yyzzzzzz
0xD800 - OxDBFF
____nat followed hy causes URIFrror
0OxDCO0 — OXDFFF
0xDCOO — OxDFFF causes URIError
OXEOOO - OxFFFF XXXXYYVY YYyZzz777 1110XXXX 10yyyyyy 10zzzZzz

Whete

uuuuu =vvwv +1

to aqcount for the addition of 0x10000 as in Surrogates, section 3.7, of the Unicode Standard.

The fange of code unit values 0xD800-0xDFFF is used to encode surrogate pairs; the above transformatiop combines a
UTF116 surrogate pair into a UTF-32 representation and encodes thewresulting 21-bit value in UTF{8. Decoding
recopstructs the surrogate pair.

RFC] 3629 prohibits the decoding of invalid UTF-8 octet sequenceS:\For example, the invalid sequence C(Q 80 must not
decdde into the character U+0000. Implementations of the Decode algorithm are required to throw a URIError when
encduntering such invalid sequences.

15.1.3.1 decodeURI (encodedURI)

The|decodeURI function computes a new-version of a URIlin which each escape sequence|and UTF-8
encgding of the sort that might be introduced by the encodeURI1 function is replaced with the chafacter that it
represents. Escape sequences that could not have been introduced by encodeURI are not replaced.

When the decodeURI function is called with one argument encodedURI, the following steps are taken:

=

|_et uriString be ToString(encodedURI).
|_et reservedURISet be'a'String containing one instance of each character valid in uriReserved pljis “#”.
3. Return the result of calling Decode(uriString, reservedURISet)

N

NOT[E The chatacter “#” is not decoded from escape sequences even though it is not a reserved URI chiracter.

15.1.3.2 decodeURIComponent (encodedURIComponent)

The|decbdeUR IComponent function computes a new version of a URI in which each escape seguence and
UTF-8 encoding of the sort that might be introduced by the encodeURIComponent function is replaced with
the character that it represents.

When the decodeURIComponent function is called with one argument encodedURIComponent, the following
steps are taken:

1. Let componentString be ToString(encodedURIComponent).
2. Let reservedURIComponentSet be the empty String.
3. Return the result of calling Decode(componentString, reservedURIComponentSet)

© ISO/IEC 2011 — All rights reserved 109

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.1.3.3 encodeURI (uri)

The encodeURI function computes a new version of a URI in which each instance of certain characters is

replaced by

one, two, three, or four escape sequences representing the UTF-8 encoding of the character.

When the encodeURI function is called with one argument uri, the following steps are taken:

1.
2.

Let uriString be ToString(uri).
Let unescapedURISet be a String containing one instance of each character valid in uriReserved and

uriUnescaped plus “#”.

3. Returnt

he result of calling Encode(uriString, unescapedURISet)

NOTE
character.

15.1.3.4

The encod
characters i
character.

When the €
taken:

1.
2.

Let com|
Let une
uriunes
3.

15.1.4 Cor

16.1.41 (

See 15.2.1

16.1.4.2 F

See 15.3.1

15143 A

See 15.4.1

1lhe character “#” is not encoded to an escape sequence even though it is not a reserved or unescaped

encodeURIComponent (uriComponent)

Return the result of calling Encode(componentString, unescapedURIComponentSet)

eURIComponent function computes a new version of a URI in which each instance of ce
5 replaced by one, two, three, or four escape sequences representing the-UTF-8 encoding o

ncodeURIComponent function is called with one argument uriComponent, the following steps

ponentString be ToString(uriComponent).
capedURIComponentSet be a String containing one instance of each character valid in
Caped.

structor Properties of the Global Object

bject (...)
hnd 15.2.2.

unction (...)

bnd 15.3.2.

rray (...)

bnd 15:4°2.

15.1.4.4 String{—

URI

(tain
the

are

See 15.5.1 and 15.5.2.

15.1.4.5 Boolean(...)

See 15.6.1 and 15.6.2.

15.1.4.6 Number(...)

See 15.7.1 and 15.7.2.

110

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

151.4.7 Date(...)

See 15.9.2.

15.1.4.8 RegExp(...)

See 15.10.3 and 15.10.4.

15.1.49 Error(...)

See|15.11.1 and 15.11.2.

15.1.4.10 EvalError (...)

See|15.11.6.1.

15.1.4.11 RangeError(...)

See|15.11.6.2.

15.1.4.12 ReferenceError (...)

See|15.11.6.3.

15.1.4.13 SyntaxError (...)

See|15.11.6.4.

15.1.4.14 TypeError(...)

See|15.11.6.5.

15.1.4.15 URIError (...)

See|15.11.6.6.

15.1.5 Other Properties of the Global Object

15.1.5.1 _Math

See| 158/

15.1.5.2 JSON

See 15.12.

15.2 Object Objects

15.2.1 The Object Constructor Called as a Function

When Object is called as a function rather than as a constructor, it performs a type conversion.

© ISO/IEC 2011 — Al rights reserved 111

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.2.1.1

Object ([value])

When the Object function is called with no arguments or with one argument value, the following steps are

taken:

1. If value is null, undefined or not supplied, create and return a new Object object exactly as if the standard

built-in

Object constructor had been called with the same arguments (15.2.2.1).

2. Return ToObject(value).

15.2.2 The Object Constructor

When Object is called as part of a new expression, it is a constructor that may create an object.
15.2.2.1 new Object ([value])
When the Opject constructor is called with no arguments or with one argument value, the following steps
taken:
1. If valuelis supplied, then

a. |[If Type(value) is Object, then

i. If the value is a native ECMAScript object, do not create alhew object but simply return
value.
il If the value is a host object, then actions are taken and @result is returned in an
implementation-dependent manner that may depepdQn the host object.

b. |If Type(value) is String, return ToObject(value).

c. |[If Type(value) is Boolean, return ToObject(value).

d. [If Type(value) is Number, return ToObject(value).
2. Assert: The argument value was not supplied or its type was Null or Undefined.
3. Let obj pe a newly created native ECMAScript object,
4. Set the |[Prototype]] internal property of obj to the standard built-in Object prototype object (15.2.4).
5. Set the |[Class]] internal property of obj to ""Object".
6. Set the |[Extensible]] internal property of obj teitrue.
7. Set all the internal methods of obj as specified in 8.12.
8. Return ¢bj.
15.2.3 Properties of the Object Constructor
The value ¢f the [[Prototype]]cinternal property of the Object constructor is the standard built-in Fun
prototype olpject.
Besides thqg internal properties and the length property (whose value is 1), the Object constructor has
following prperties;
15.2.3.1 Qbject.prototype

The initial value of Object.prototype is the standard built-in Object prototype object (15.2.4).

This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.2.3.2 Object.getPrototypeOf (O)
When the getPrototypeOT function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. Return the value of the [[Prototype]] internal property of O.

112

are

tion

the

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.2.3.3 Object.getOwnPropertyDescriptor (O, P)
When the getOwnPropertyDescriptor function is called, the following steps are taken:

If Type(O) is not Object throw a TypeError exception.

Let name be ToString(P).

Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument name.
Return the result of calling FromPropertyDescriptor(desc) (8.10.4).

PONE

15.2.3.4 Object.getOwnPropertyNames (O)

Whgn the getOwnPropertyNames function is called, the following steps are taken:

1. Jf Type(O) is not Object throw a TypeError exception.
2. et array be the result of creating a new object as if by the expression new Array) where Array is the
standard built-in constructor with that name.

3. LetnbeO.

4. For each named own property P of O

a. Let name be the String value that is the name of P.

b. Call the [[DefineOwnProperty]] internal method of array with argdments ToString(n), th
PropertyDescriptor {[[Value]]: name, [[Writable]]: true, [[Enumerable]]: true, [[Configlrable]]:
true}, and false.

c. Incrementn by 1.

5. Return array.

@D

NOTIE If O is a String instance, the set of own properties processed in step 4 includes the implicit propgrties defined
in 14.5.5.2 that correspond to character positions within the objeet’s [[PrimitiveValue]] String.

15.2.3.5 Object.create (O [, Properties])

The|create function creates a new object witha'specified prototype. When the create function i$ called, the
following steps are taken:

=

f Type(O) is not Object or Null throw a TypeError exception.
2. et obj be the result of creating a new object as if by the expression new Object() where Object i the
standard built-in constructor withthat name

3. Pet the [[Prototype]] interndl property of obj to O.
4. |f the argument Properties is present and not undefined, add own properties to obj as if by callirlg the
standard built-in functionnObject.defineProperties with arguments obj and Properties.
5. Return obj.

15.2.3.6 Object.defineProperty (O, P, Attributes)

The|defineRroperty function is used to add an own property and/or update the attributes of an ¢xisting own
progerty of ‘an object. When the defineProperty function is called, the following steps are taken:

fType(O) is not Object throw a TypeError exception.

Let name be ToString(P).

Let desc be the result of calling ToPropertyDescriptor with Attributes as the argument.

Call the [[DefineOwnProperty]] internal method of O with arguments name, desc, and true.
Return O.

oM E

15.2.3.7 Object.defineProperties (O, Properties)

The defineProperties function is used to add own properties and/or update the attributes of existing own
properties of an object. When the defineProperties function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. Let props be ToObject(Properties).

© ISO/IEC 2011 — All rights reserved 113

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

3. Let names be an internal list containing the names of each enumerable own property of props.
4. Let descriptors be an empty internal List.
5. For each element P of names in list order,

a. Let descObj be the result of calling the [[Get]] internal method of props with P as the argument.

b. Let desc be the result of calling ToPropertyDescriptor with descObj as the argument.

c. Append the pair (a two element List) consisting of P and desc to the end of descriptors.
6. For each pair from descriptors in list order,

a. Let P be the first element of pair.

b. Let desc be the second element of pair.

c. Call the [[DefineOwnProperty]] internal method of O with arguments P, desc, and true.
7. Return O.

If an implementation defines a specific order of enumeration for the for-in statement, that same enumerjtion

order must be used to order the list elements in step 3 of this algorithm.

15.2.3.8

bject.seal (O)

When the seal function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. For eachh named own property name P of O,
a. |Let desc be the result of calling the [[GetOwnProperty]] internal methed of O with P.
b. |If desc.[[Configurable]] is true, set desc.[[Configurable]] to false.
c. |Call the [[DefineOwnProperty]] internal method of O with P, desg, and true as arguments.
3. Set the |[Extensible]] internal property of O to false.
4. Return O.
15.2.3.9 Qbject.freeze (O)
When the frieeze function is called, the following steps are\taken:
1. If TypeﬂO) is not Object throw a TypeError excéption.
2. For eaclh named own property name P of O,
a. |Let desc be the result of calling the[[GetOwnProperty]] internal method of O with P.
b. |If IsDataDescriptor(desc) is trugythen
i. If desc.[[Writable]].istrue, set desc.[[WTritable]] to false.
c. |[If desc.[[Configurable]] is true, set desc.[[Configurable]] to false.
d. |Call the [[DefineOwnProperty]] internal method of O with P, desc, and true as arguments.
3. Set the |[Extensible]] internal.property of O to false.
4. Return .
15.2.3.10 Qbject.preventExtensions (O)
When the pfeventExtensions function is called, the following steps are taken:
1. If Type(Q)is-not Object throw a TypeError exception.
2. Setthe } } -
3. Return O.

15.2.3.11 Object.isSealed (O)

When the isSealed function is called with argument O, the following steps are taken:

1.
2.
a.
b.
3.
4. Otherwi
114

If Type(O) is not Object throw a TypeError exception.
For each named own property name P of O,

Let desc be the result of calling the [[GetOwnProperty]] internal method of O with P.
If desc.[[Configurable]] is true, then return false.

If the [[Extensible]] internal property of O is false, then return true.

se, return false.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.2.3.12 Object.isFrozen (O)
When the isFrozen function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. For each named own property name P of O,
a. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with P.
b. If IsDataDescriptor(desc) is true then
i. If desc.[[Writable]] is true, return false.
c. If desc.[[Configurable]] is true, then return false.
3. If the [[Extensible]] internal property of O is false, then return true.
4. therwise, return talse.

15.2.3.13 Object.isExtensible (O)

When the isExtensible function is called with argument O, the following steps are takep:

=

f Type(O) is not Object throw a TypeError exception.
2. Return the Boolean value of the [[Extensible]] internal property of O.

15.2.3.14 Object.keys (O)

When the keys function is called with argument O, the following steps\are taken:

=

f the Type(O) is not Object, throw a TypeError exception.

|_et n be the number of own enumerable properties of O

3. |Letarray be the result of creating a new Object as if by the expression new Array(n) where|Array is

he standard built-in constructor with that name.

| et index be 0.

For each own enumerable property of O whosgemame String is P

a. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(indey), the
PropertyDescriptor {[[Value]]: Pg[[Writable]]: true, [[Enumerable]]: true, [[Configuralle]]: true},
and false.

b. Increment index by 1.

6. Return array.

N

o s

If anl implementation defines a,specific order of enumeration for the for-in statement, that same ¢numeration
ordgr must be used in step 5 of\this algorithm.

15.2.4 Properties of-the Object Prototype Object

The|value of the_[[Prototype]] internal property of the Object prototype object is null, the value of the [[Class]]
intenal propertyds ""Object", and the initial value of the [[Extensible]] internal property is true.

15.2.4.1 _Object.prototype.constructor

The Tnitial value of Object. prototype.constructor is the standard built-in Object construcior.

15.2.4.2 Object.prototype.toString ()
When the toString method is called, the following steps are taken:

If the this value is undefined, return "[object Undefined]".

If the this value is null, return "[object Null]".

Let O be the result of calling ToObject passing the this value as the argument.

Let class be the value of the [[Class]] internal property of O.

Return the String value that is the result of concatenating the three Strings ""[object

aOrwdE

, class, and ""]"".

© ISO/IEC 2011 — All rights reserved 115

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.2.4.3 Obiject.prototype.toLocaleString ()

When the toLocaleString method is called, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
If IsCallable(toString) is false, throw a TypeError exception.

Return the result of calling the [[Call]] internal method of toString passing O as the this value and no
arguments.

el e

NOTE 1 This function is provided to give all Objects a generic toLocaleString interface, even though not all
use it. Curre i i = iti i

NOTE 2 he first parameter to this function is likely to be used in a future version of this standard; it is recemme
that implemeptations do not use this parameter position for anything else.

15.2.4.4 Qbject.prototype.valueOf ()
When the valueOf method is called, the following steps are taken:

1. Let O b¢ the result of calling ToObject passing the this value as the argument,

2. If Ois the result of calling the Object constructor with a host object (15.2.2-1)s-then
a. [Return either O or another value such as the host object originally‘passed to the constructor. The

specific result that is returned is implementation-defined.

3. Return 0.

15.2.4.5 Qbject.prototype.hasOwnProperty (V)
When the hpsOwnProperty method is called with argument,V, the following steps are taken:

Let P bg ToString(V).

Let O b¢ the result of calling ToObject passing the'this value as the argument.

Let desq be the result of calling the [[GetOwnProperty]] internal method of O passing P as the argument,
If desc is undefined, return false.

Return frue.

grwdE

NOTE 1 Unlike [[HasProperty]] (8.12.6),this method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1.and 2 is chosen to ensure that any exception that would have been thrown by s
in previous eglitions of this specification will continue to be thrown even if the this value is undefined or null.

15.2.4.6 Qbject.prototype.isPrototypeOf (V)

When the isProtetypeOf method is called with argument V, the following steps are taken:

Let toString be the result of calling the [[Get]] internal method of O passing "toString' as the argument.

may

hded

ep 1

1. If Vis nptdn‘object, return false.

2. Let O betheresult of calling ToODject passing the this value as the argument.
3. Repeat

a. LetV be the value of the [[Prototype]] internal property of V.

b. if Vis null, return false

c. If O andV refer to the same object, return true.

NOTE The ordering of steps 1 and 2 is chosen to preserve the behaviour specified by previous editions of this

specification for the case where V is not an object and the this value is undefined or null.

15.2.4.7 Object.prototype.propertylsEnumerable (V)

When the propertylsEnumerable method is called with argument V, the following steps are taken:

116 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

apwOdE

ISO/IEC 16262:2011(E)

Let P be ToString(V).

Let O be the result of calling ToObject passing the this value as the argument.
Let desc be the result of calling the [[GetOwnProperty]] internal method of O passing P as the argument.
If desc is undefined, return false.
Return the value of desc.[[Enumerable]].

NOTE 1 This method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thro
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

15.2

Objg

15.3 Function Objects

15.3

Whs

object. Thus the function call Function(.) isequ ivalent toCthe object creation expr

Fun

15.3

Whs
ther

1.

15.3

Whs

15.3

The
pars

Whe

is, there are.no “p” arguments, and where body might also not be provided), the following steps are|

.5 Properties of Object Instances

ct instances have no special properties beyond those inherited from the Object prototype.obje

.1 The Function Constructor Called as a Function
n Function is called as a function rather than as a constructor, it/creates and initialises a n

ction(..) with the same arguments.

.1.1 Function (p1, p2, ..., pn, body)
n the Function function is called with some arguments pl, p2, ..., pn, body (where n might
b are no “p” arguments, and where body might also*not be provided), the following steps are ta

Create and return a new Function object as if, the standard built-in constructor Function was used
pxpression with the same arguments (15.3:2:1).

.2 The Function Constructor

n Function is called as patt.of a new expression, it is a constructor: it initialises the newly cr

.2.1 new Function(pt, p2, ..., pn, body)

last argument specifies the body (executable code) of a function; any preceding arguments sg
meters.

n the Function constructor is called with some arguments p1, p2, ..., pn, body (where n mig

“an

wn by step 1

ew Function
pSsion new

be 0, that is,
en:

in a new

bated object.

ecify formal

ht be 0, that
taken:

et argCount be the total number of arguments pa:qu to this function invocation

1
2
3.
4
5

Let P be the empty String.
If argCount = 0, let body be the empty String.
Else if argCount = 1, let body be that argument.
Else, argCount > 1

a. Let firstArg be the first argument.

b. Let P be ToString(firstArg).

c. Letkbe?2.

d. Repeat, while k < argCount

i. Let nextArg be the k’th argument.

ii. Let P be the result of concatenating the previous value of P, the String **,"" (a comma), and

ToString(nextArg).
iii. Increase k by 1.

© ISO/IEC 2011 — Al rights reserved

117

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

e. Let body be the k’th argument.
Let body be ToString(body).
If P is not parsable as a FormalParameterListop: then throw a SyntaxError exception.
If body is not parsable as FunctionBody then throw a SyntaxError exception.
If body is strict mode code (see 10.1.1) then let strict be true, else let strict be false.
If strict is true, throw any exceptions specified in 13.1 that apply.
Return a new Function object created as specified in 13.2 passing P as the FormalParameterList,, and body
as the FunctionBody. Pass in the Global Environment as the Scope parameter and strict as the Strict flag.

BB O~NO

= o

A prototype property is automatically created for eve ry function, to p rovide for the possibility that the
function will be used as a constructor.

NOTE I is permissible but not necessary to have one argument for each formal parameter to be specified| For
example, all fhree of the following expressions produce the same result:

new Function('a"™, "b", '"'c", "return a+b+c')
new Function(a, b, c'", "return atb+c")

new Function('a,b"™, "c'", "return atb+c')

15.3.3 Properties of the Function Constructor
The Functipn constructor is itself a F unction object and its [[Class]] i§ "Function™. The value of| the
[[Prototype]] internal property of the Function constructor is the standard built-in Function prototype olbject
(15.3.4).

The value of the [[Extensible]] internal property of the Function constructor is true.

The Function constructor has the following properties:

15.3.3.1 Hunction.prototype
The initial v@lue of Function.prototype is the standard built-in Function prototype object (15.3.4).

This properfy has the attributes { [[Writabl€]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.3.3.2 Hunction.length

This is a dajta property with @ vialue of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

15.3.4 Properties of.the Function Prototype Object

The Functign {rototype object is itself a Function object (its [[Class]] is ""Function'’) that, when invoked,

accepts anyLarguments and returns undefined

The value of the [[Prototype]] internal property of the Function prototype object is the standard built-in Object
prototype object (15.2.4). The initial value of the [[Extensible]] internal property of the Function prototype
object is true.

The Function prototype object does not have a valueOf property of its own; however, it inherits the valueOF
property from the Object prototype Object.

The Iength property of the Function prototype object is 0.

118 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.3.4.1 Function.prototype.constructor

The initial value of Function.prototype.constructor is the built-in Function constructor.

15.3.4.2 Function.prototype.toString ()

An implementation-dependent representation of the function is returned. This representation has the syntax of
a FunctionDeclaration. Note in particular that the use and placement of white space, line terminators, and
semicolons within the representation String is implementation-dependent.

ThertoStringfunction—is—not-generic—it-throws—a—TypeErrorexception—if-its—this—vatue—ts—rot a F unction

object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.3.4.3 Function.prototype.apply (thisArg, argArray)

Whegn the apply method is called on an object func with arguments thisArg and argAfray, the follpwing steps
are faken:

1. |Jf IsCallable(func) is false, then throw a TypeError exception.
2. [|fargArray is null or undefined, then
a. Return the result of calling the [[Call]] internal method of.func, providing thisArg as the|this value
and an empty list of arguments.
f Type(argArray) is not Object, then throw a TypeError exception.
|_et len be the result of calling the [[Get]] internal method efargArray with argument ""lengthf.
| et n be ToUint32(len).
| et argList be an empty List.
| et index be 0.
Repeat while index < n
a. LetindexName be ToString(index).
b. Let nextArg be the result of callingthe [[Get]] internal method of argArray with indexName as the
argument.
c. Append nextArg as the last element of argList.
d. Setindex toindex + 1.
9. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this valyie and
argList as the list of arguments.

© N> AW

The[length property of the apply method is 2.

NOT[E The thisArg valug'is passed without modification as the this value. This is a change from Editign 2, where a
undéfined or null thisArgyis replaced with the global object and ToObject is applied to all other values and| that result is
passed as the this value.

15.3.4.4 Function.prototype.call (thisArg [, arg1[,arg2,...]1])

Whend{heccall method is called on an object func with argument thisArg and optional arguments argl, arg2
etc, the 'Fnllnwing steps are taken:

If IsCallable(func) is false, then throw a TypeError exception.

Let argList be an empty List.

If this method was called with more than one argument then in left to right order starting with argl append
each argument as the last element of argList

4. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this value and
argList as the list of arguments.

wn e

The Iength property of the cal I method is 1.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 2, where a
undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is
passed as the this value.

© ISO/IEC 2011 — All rights reserved 119

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.3.4.5 Function.prototype.bind (thisArg [, arg1 [, arg2, ...1])

The bind method takes one or more arguments, thisArg and (optionally) argl, arg2, etc, and returns a new
function object by performing the following steps:

Let Target be the this value.
If IsCallable(Target) is false, throw a TypeError exception.
Let A be a new (possibly empty) internal list of all of the argument values provided after thisArg (argl, arg2
etc), in order.
Let F be a new native ECMAScript object .
Set all the internal methods, except for [[Get]], of F as specified in 8.12.
Set the [[Get]] internal property of F as specified in 15.3.5.4.
Set the |[TargetFunction]] internal property of F to Target.
Set the [[BoundThis]] internal property of F to the value of thisArg.
Set the [[BoundArgs]] internal property of F to A.
. Set the [[Class]] internal property of F to ""Function™.
. Set the [[Prototype]] internal property of F to the standard built-in Function prototype object.as specifieg
15.3.3.14
. Set the [[Call]] internal property of F as described in 15.3.4.5.1.
. Set the [[Construct]] internal property of F as described in 15.3.4.5.2.
. Set the [[HaslInstance]] internal property of F as described in 15.3.4.5.3.
. If the [[Class]] internal property of Target is ""Function™, then
a. |Let L be the length property of Target minus the length of A.
b. [Set the length own property of F to either O or L, whichever is larger.
16. Else set|the length own property of F to 0.
17. Set the [attributes of the length own property of F to the values spec¢ified in 15.3.5.1.
18. Set the |[Extensible]] internal property of F to true.
19. Let thrower be the [[ThrowTypeError]] function Object (13.2.3).
20. Call the|[[DefineOwnProperty]] internal method of F with arguments ""cal ler", PropertyDescriptor
{[[Get]] thrower, [[Set]]: thrower, [[Enumerable]]: false-[[Configurable]]: false}, and false.
21. Call the|[[DefineOwnProperty]] internal method of F with arguments ""arguments™, PropertyDescript
{[[Get]] thrower, [[Set]]: thrower, [[Enumerable}}:false, [[Configurable]]: false}, and false.
22. Return .

The length property of the bind method is

wh e

RBOo~Ne O~

= O

n

el el e
a s wiN

=

NOTE Hunction objects created using-‘Ruriction._prototype.bind do not have a prototype property of the
[[Codel]], [[FofmalParameters]], and [[Scopellinternal properties.

15.3.4.5.1 | [[Call]]

When the [[Call]] internakumethod of a function object, F, which was created using the bind function is called
with a this yalue and aflist'of arguments ExtraArgs, the following steps are taken:

Let boupdArgs e the value of F’s [[BoundArgs]] internal property.
Let boupdFhis-be the value of F’s [[BoundThis]] internal property.
Let target\be’the value of F’s [[TargetFunction]] internal property.
Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Call]] internal method of target providing boundThis as the this value and
providing args as the arguments.

el N

15.3.4.5.2 [[Construct]]

When the [[Construct]] internal method of a function object, F that was created using the bind function is called
with a list of arguments ExtraArgs, the following steps are taken:

1. Let target be the value of F’s [[TargetFunction]] internal property.
2. If target has no [[Construct]] internal method, a TypeError exception is thrown.

120 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

3.
4.

ISO/IEC 16262:2011(E)

Let boundArgs be the value of F’s [[BoundArgs]] internal property.
Let args be a new list containing the same values as the list boundArgs in the same order followed by the

same values as the list ExtraArgs in the same order.
5. Return the result of calling the [[Construct]] internal method of target providing args as the arguments.

15.3

.4.5.3 [[HaslInstance]] (V)

When the [[HaslInstance]] internal method of a func tion object F, that was created using the bind function is
called with argument V, the following steps are taken:

1.

Let target be the value of F’s [[TargetFunction]] internal property.

2.
3.

15.3.5 Properties of Function Instances

In apldition to the required internal properties, every function instance has a [[Call]]linternal pro
most cases uses a different version of the [[Get]] internal property. Depending on_how they are d
8.6.2, 13.2, 15, and 15.3.4.5), function instances may have a [[Haslnstanc€]]jinternal property,

inte
prog
prog

Th

D

Fun

Typ
beh

15.3

The
the

The
len

15.3

The
obje

the attribute { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOT

FunEtion.prototype.bind method (15.3.4.5) have propetties named “caller” and “arguments” {

T target has no [[HaslInstance]| internal method, a TypeError exception Is thrown. ’ln
ent.

eturn the result of calling the [[HaslInstance]] internal method of target providing V as the argu

nal property, a [[Construct]] internal property, a [[FormalParameters]] intérnal property, a [[Co
erty.

value of the [[Class]] internal property is "Function™.

Ction instances that correspond to strict mode functions\(13.2) and function instances creatg

Error exception. An ECMAScript implementation~ ' must not associate any implementaf
viour with accesses of these properties from strict'mode function code.

.5.1 length
value of the Iength property is an.integer that indicates the “typical” number of arguments

unction. However, the language pérmits the function to be invoked with some other number of
behaviour of a function when invoked on a number of arguments other than the number spe

.5.2 prototype

value of the-prototype property is used to initialise the [[Prototype]] internal property of a ng
ct before the Function object is invoked as a constructor for that newly created object. This

E Function objects created using Function.prototype.bind do not have a prototype proper

berty and in
reated (see
a [[Scope]]
de]] internal

erty, a [[TargetFunction]] internal property, a [[BoundThis]] internal property, and a [[BoundAigs]] internal

d using the
hat throw a
on specific

bxpected by
arguments.
cified by its

th property depends on thexfunction. This property has the attributes { [[Writable]]: false, [[Enpumerable]]:
falsg, [[Configurable]]: false }.

wly created
roperty has

15.3.5.3 [[HaslInstance]] (V)

Assume F is a Function object.

When the [[HaslInstance]] internal method of F is called with value V, the following steps are taken:

PN E

If V is not an object, return false.

Let O be the result of calling the [[Get]] internal method of F with property name "prototype"'.

If Type(O) is not Object, throw a TypeError exception.
Repeat
a. LetV be the value of the [[Prototype]] internal property of V.

© ISO/IEC 2011 — Al rights reserved

121

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

b.
c.

NOTE

Function objects created using Function.prototype.bind have a different

If Vis null, return false.
If O and V refer to the same object, return true.

[[HasInstance]] defined in 15.3.4.5.3.

15.3.5.4 [[Get]] (P)

implementation of

Function objects use a variation of the [[Get]] internal method used for other native ECMAScript objects

(8.12.3).

Assume F

following stgps are taken:

1.

argument.
2.
3. Return
NOTE

15.4 Array Objects

Array objects give special treatment to a certain class of property names. A property name P (in the form
String valud) is an array index if and only if ToString(ToUint32(P)) is‘equal to P and ToUint32(P) is not equ

2%2-1. A pr
length pr
property is
property of
invariant. S
changed, if

Let v be[the result of calling the default [[Get]] internal method (8.12.3) on F passing P as the’property n

If Pis'lcaller'™ and v is a strict mode Function object, throw a TypeError exception.

a Func tion object. When the [[Get]] internal method of F is called with property namehP

unction objects created using Function.prototype.bind use the default [[Get]] internal method.

erty whose property name is an array index is alsq called an element. Every Array object h
perty whose value is always a nonnegative integer less than 2%2. The value of the len
humerically greater than the name of every property whose name is an array index; whenev
bn Array object is created or changed, other prdperties are adjusted as necessary to maintain

hecessary, to be one more than the numeric value of that array index; and whenever the len

the

ame

of a
Al to
BS a
gth
er a
this

becifically, whenever a property is added whose name is an array index, the length property is

gth
new
d is

property is ¢hanged, every property whose namelis an array index whose value is not smaller than the
length is a'rtomatically deleted. This constrainty applies only to ow n properties of an Array object ar
unaffected By length or array index properties’that may be inherited from its prototypes.
An object, Q, is said to be sparse if the following algorithm returns true:
1. Let len be the result of callingsthe [[Get]] internal method of O with argument "'length"".
2. For each integer i in the range/0<i<ToUint32(len)
a. |Let elem be the\result of calling the [[GetOwnProperty]] internal method of O with argument
ToString(i).
b. [If elem isundefined, return true.
3. Return false.

15.4.1 The Array Constructor Called as a Function

When Array is called as a function rather than as a constructor, it creates and initialises a new Array object.
Thus the function call Array(..) is equivalent to the object creation expression new Array(..) with the
same arguments.

15.4.1.1

Array ([item1 [, item2[,...11])

When the Array function is called the following steps are taken:

1.

Create and return a new Array object exactly as if the standard built-in constructor Array was used in a

new expression with the same arguments (15.4.2).

122

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.4.2 The Array Constructor

When Array is called as part of a new expression, it is a constructor: it initialises the newly created object.

15.4.21 new Array ([itemO[,item1[,...]111])

This description applies if and only if the Array constructor is given no arguments or at least two arguments.

The [[Prototype]] internal property of the newly constructed object is set to the original Array prototype object,

the one that is the initial value of Array.prototype (15.4.3.1).

The([[Class]] internal property of the newly constructed object is set to ""Array".

Th

D

[[Extensible]] internal property of the newly constructed object is set to true.
The[length property of the newly constructed object is set to the number of arguments:
The| O property of the n ewly constructed object is set to item0 (if supplied); the 1 property

congtructed object is set to iteml (if supplied); and, in general, for as many,arguments as ther|
proferty of the newly constructed object is set to argument k, where the\first argument is consi

f the newly
b are, the k
dered to be

argyment number 0. These properties all have the attributes {[[Writable]]: true, [[Enumergble]]: true,

[[Configurable]]: true}.

15.4.2.2 new Array (len)

The|[[Prototype]] internal property of the newly constructed object is set to the original Array protg
the pne that is the initial value of Array.prototypée. (15.4.3.1). The [[Class]] internal property
congtructed object is set to ""Array"’. The [[Extensible]] internal property of the newly constructed
to true.

If the argument len is a Number and ToUint32(len) is equal to len, then the length property
congtructed object is set to ToUint32(len)y If the argument len is a Number and ToUint32(len) is not
a RangeError exception is thrown.

If the argument len is not a Number, then the Iength property of the newly constructed object is

type object,
bf the newly
pbject is set

f the newly
equal to len,

set to 1 and

the D property of the newly constructed object is set to len with attributes {[[Writable]]: true, [[Epumerable]]:

true|, [[Configurable]]: true}.

15.4.3 Propertiestof the Array Constructor

The| value of the [[Prototype]] internal property of the Array constructor is the Function protq
(15.8.4).

Bes|des the internal properties and the length property (whose value is 1), the Array constru

type object

ctor has the

following propertes:

15.4.3.1 Array.prototype
The initial value of Array.prototype is the Array prototype object (15.4.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

© ISO/IEC 2011 — Al rights reserved

123

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.4.3.2 Array.isArray (arg)

The isArray function takes one argument arg, and returns the Boolean value true if the argument is an object
whose class internal property is ""Array'’; otherwise it returns false. The following steps are taken:

1. If Type(arg) is not Object, return false.
2. If the value of the [[Class]] internal property of arg is ""Array"’, then return true.
3. Return false.

15.4.4 Properties of the Array Prototype Object

The value ¢f the [[Prototype]] internal property of the Array prototype object is the standard built-in ,Object
prototype object (15.2.4).

The Array prototype object is itself an array; its [[Class]] is ""Array"’, and it has a length propefty (whose
initial value |s +0) and the special [[DefineOwnProperty]] internal method described in 15.4.5-4\

In following [descriptions of functions that are properties of the Array prototype object, the phrase “this object
refers to theg object that is the this value for the invocation of the function. It is permitted for the this to bp an
object for which the value of the [[Class]] internal property is not ""Array"'.

NOTE Tlhe Array prototype object does not have a valueOT property of its own;however, it inherits the valjieOF
property fror the standard built-in Object prototype Object.

15.4.4.1 Array.prototype.constructor

The initial value of Array.prototype.constructor is the standard built-in Array constructor.

15.4.4.2 Array.prototype.toString ()
When the tpString method is called, the following'steps are taken:

Let arrdy be the result of calling ToObject ‘6n-the this value.

Let fund be the result of calling the [[Get]]-internal method of array with argument *"join".
If IsCallable(func) is false, then let fung be the standard built-in method Object.prototype.toString (15.2.4.2).
Return fhe result of calling the [[CaH]] internal method of func providing array as the this value and an
empty afguments list.

PR

NOTE Tlhe toString function’is intentionally generic; it does not require that its this value be an Array olject.
Therefore it ¢an be transferred to other kinds of objects for use as a method. Whether the toString function can be
applied succgssfully to a hestiobject is implementation-dependent.

15.4.4.3 1rray.prototype.toLocaIeString ()

The elements\of'the array are converted to Strings using their toLocaleString methods, and these Stiings
are then concatenated, separated by occurrences of a separator String that has been derived in an
implementation-defined locale-specific way. The result of calling this function is intended to be analogous to
the result of toString, except that the result of this function is intended to be locale-specific.

The result is calculated as follows:

Let array be the result of calling ToObject passing the this value as the argument.

Let arrayLen be the result of calling the [[Get]] internal method of array with argument "*length™.

Let len be ToUint32(arrayLen).

Let separator be the String value for the list-separator String appropriate for the host environment’s current
locale (this is derived in an implementation-defined way).

5. If len is zero, return the empty String.

PoONE

124 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

6. Let firstElement be the result of calling the [[Get]] internal method of array with argument "*0"".
7. If firstElement is undefined or null, then
a. LetR be the empty String.
8. Else
a. LetelementObj be ToObject(firstElement).
b. Let func be the result of calling the [[Get]] internal method of elementObj with argument
"toLocaleString".
c. If IsCallable(func) is false, throw a TypeError exception.
d. LetR be the result of calling the [[Call]] internal method of func providing elementObj as the this
value and an empty arguments list.
9. Letkbel.
10. Repeat, while k < len
a. Let S be a String value produced by concatenating R and separator.
b. Let nextElement be the result of calling the [[Get]] internal method of array with~atgument
ToString(k).
c. If nextElement is undefined or null, then
i. Let R be the empty String.
d. Else
i. Let elementObj be ToObject(nextElement).
ii. Let func be the result of calling the [[Get]] internal methéd of elementObj with grgument
""toLocaleString".
iii. If IsCallable(func) is false, throw a TypeError excegtion.
iv. Let R be the result of calling the [[Call]] internal méthod of func providing elementObj as
the this value and an empty arguments list.
e. LetR be a String value produced by concatenating.S«and R.
f. Increase k by 1.
11. Return R.
NOTE 1 The first parameter to this function is likely to_bé-used in a future version of this standard; it is recommended
that [mplementations do not use this parameter positionfor‘anything else.
NOTE 2 The toLocaleString function is intentionally generic; it does not require that its this value be an|Array object.
Thergfore it can be transferred to other kinds ofiebjects for use as a method. Whether the toLocaleString function can
be applied successfully to a host object is implementation-dependent.
15.4.4.4 Array.prototype.concat{([item1 [, item2[,...1]11)
When the concat method is called with zero or more arguments iteml, item2, etc., it returps an array
confiaining the array elements of the object followed by the array elements of each argument in order.
Thelfollowing stepsiare’taken:
1. Let O be the‘result of calling ToObject passing the this value as the argument.
2. et A heamew array created as if by the expression new Array() where Array is the standard built-in
constructor with that name.
3. Letdvbe 0.
4. Ct ;tCIIID bC all ;Iltcl IICl: Llot VVhUDC f;lot C:Clllcllt ;O C all‘:ll VVhUOC aubacqucut C:CIIICIItO arc, ;II :Cft O rlght
order, the arguments that were passed to this function invocation.
5. Repeat, while items is not empty
a. Remove the first element from items and let E be the value of the element.
b. If the value of the [[Class]] internal property of E is ""Array", then
i. Let k be 0.
ii. Let len be the result of calling the [[Get]] internal method of E with argument *"length™.

iii. Repeat, while k < len
1. Let P be ToString(k).

2. Let exists be the result of calling the [[HasProperty]] internal method of E with P.

3. If exists is true, then

a Let subElement be the result of calling the [[Get]] internal method of E

with argument P.

© ISO/IEC 2011 — Al rights reserved

125

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

b Call the [[DefineOwnProperty]] internal method of A with arguments
ToString(n), Property Descriptor {[[Value]]: subElement, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
4. Increase n by 1.
5. Increase k by 1.
c. Else, Eisnotan Array

i Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property
Descriptor {[[Value]]: E, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true},

and false.
ii. Increase n by 1.
6. Return A.

The lengti property of the concat method is 1.

NOTE he concat function is intentionally generic; it does not require that its this value be an- Array olpject.
Therefore it dan be transferred to other kinds of objects for use as a method. Whether the concat functionican be applied

successfully {o a host object is implementation-dependent.

15.4.4.5 Array.prototype.join (separator)

The elements of the array are converted to Strings, and these Strings are theh ‘concatenated, separate
occurrenceg of the separator. If no separator is provided, a single comma is used as the separator.

The join npethod takes one argument, separator, and performs the following steps:

1. Let O b¢ the result of calling ToObject passing the this value as{the‘argument.
2. Let lenVal be the result of calling the [[Get]] internal method-of O with argument **length™".
3. Letlen be ToUint32(lenVal).
4. If separptor is undefined, let separator be the single-character String **,"".
5. Let sep pe ToString(separator).
6. If len is|zero, return the empty String.
7. Let element0 be the result of calling the [[Get]] internal method of O with argument ""0"".
8. If elemegnt0 is undefined or null, let R be the.empty String; otherwise, Let R be ToString(element0).
9. Letkhbel.
10. Repeat, while k < len
a. |Let S be the String value preduced by concatenating R and sep.
b. |Let element be the result of*calling the [[Get]] internal method of O with argument ToString(k).
c. [If element is undefinedvor ‘null, Let next be the empty String; otherwise, let next be
ToString(element).
d. |Let R be a String(Value produced by concatenating S and next.
e. |Increase k by 1%
11. Return

The length property of the Join method is 1.

NOTE
it can be tran
to a host object is implementation-dependent.

he'g@in function is intentionally generic; it does not require that its this value be an Array object. Therg

15.4.4.6 Array.prototype.pop ()
The last element of the array is removed from the array and returned.

Let O be the result of calling ToObject passing the this value as the argument.
Let lenVal be the result of calling the [[Get]] internal method of O with argument ""length™.
Let len be ToUint32(lenVal).
If len is zero,
a. Call the [[Put]] internal method of O with arguments " length™, 0, and true.

el N

d by

fore,
sfully

126 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

b. Return undefined.

5. Else,len>0

NOT!

Let indx be ToString(len-1).

Let element be the result of calling the [[Get]] internal method of O with argument indx.
Call the [[Delete]] internal method of O with arguments indx and true.

Call the [[Put]] internal method of O with arguments " length', indx, and true.
Return element.

o oo o

E The pop function is intentionally generic; it does not require that its this value be an Array object

. Therefore it

can be transferred to other kinds of objects for use as a method. Whether the pop function can be applied successfully to
a host object is implementation-dependent.

15.J.4.7 Array.prototype.push ([item1 [, item2[,...1]11)

The

Whs

NS

6.
7.

The
NOT|

it ca
toa

15.4.4.8 Array.prototype.reverse ()

The
the

n the push method is called with zero or more arguments item1, item2, etc,, the following steps

|_et O be the result of calling ToObject passing the this value as the argumienit.

| et lenVal be the result of calling the [[Get]] internal method of O with argument " length".
| et n be ToUint32(lenVal).

| et items be an internal List whose elements are, in left to right order, the arguments that were p
function invocation.

Repeat, while items is not empty

a. Remove the first element from items and let E bg)the value of the element.

b. Call the [[Put]] internal method of O with argiiments ToString(n), E, and true.

c. Increase n by 1.

Call the [[Put]] internal method of O with arguments " length™, n, and true.

Return n.

length property of the push method is'd.

E The push function is intentionally’ generic; it does not require that its this value be an Array objg
h be transferred to other kinds of objeets for use as a method. Whether the push function can be applied
host object is implementation-dépendent.

elements of the ‘arfay are rearranged so as to reverse their order. The object is returned as
call.

|_et O be the result of calling ToObject passing the this value as the argument.
| et lenVal be the result of calling the [[Get]] internal method of O with argument ""length™.
|_et’Jer’be ToUint32(lenVal).

| et middle be floor(len/2).

Let lower be 0.

Repeat, while lower = middle

Let upper be len— lower 1.
Let upperP be ToString(upper).
Let lowerP be ToString(lower).

arguments are appended to the end of the array, in the order in which they appear/The new length of the
array is returned as the result of the call.

are taken:

ssed to this

ct. Therefore
successfully

he result of

P00 o

Let lowerValue be the result of calling the [[Get]] internal method of O with argument lowerP.
Let upperValue be the result of calling the [[Get]] internal method of O with argument upperP .
Let lowerExists be the result of calling the [[HasProperty]] internal method of O with argument
lowerP.

Let upperExists be the result of calling the [[HasProperty]] internal method of O with argument
upperP.

If lowerExists is true and upperExists is true, then

© ISO/IEC 2011 — Al rights reserved 127

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

7. Return

NOTE

Therefore, it |can be transferred to other kinds of objects for use as a method. Whether the reverse function ca
applied succgssfully to a host object is implementation-dependent.

15.4.4.9 Array.prototype.shift ()

The first element of the array is removed from the array and returned.

1. Let O bg the result of calling ToObject passing the this value as the argument;
2. Let lenVal be the result of calling the [[Get]] internal method of O with argiment " length".
3. Letlen be ToUint32(lenVal).
4. If len is|zero, then
a. [Call the [[Put]] internal method of O with arguments " kength™, 0, and true.
b. |Return undefined.
5. Let firstlbe the result of calling the [[Get]] internal methodtof)O with argument "0
6. Letkbe|l.
7. Repeat, while k < len
a. |Let from be ToString(k).
b. |Let to be ToString(k-1).
c. |Let fromPresent be the result of calling-the [[HasProperty]] internal method of O with argument
from.
d. [If fromPresent is true, then
i Let fromVal be the result of calling the [[Get]] internal method of O with argument fron.
ii. Call the [[Put]] internial method of O with arguments to, fromVal, and true.
e. |Else, fromPresent is false
i Call the [[Delete]] internal method of O with arguments to and true.
f. [Increase k by 1.

8. Call t'he [[Delete]] internal-method of O with arguments ToString(len-1) and true.
9. Call the|[[Put]] internalimethod of O with arguments "length™, (len-1), and true.
10. Return flirst.

NOTE

it can be trgnsferred to other kinds of objects for use as a method. Whether the shift function can be ap|
successfully o a-host object is implementation-dependent

j.

k.

i Call the [[Put]] internal method of O with arguments lowerP, upperValue, and true .
ii. Call the [[Put]] internal method of O with arguments upperP, lowerValue, and true .
Else if lowerExists is false and upperExists is true, then
i Call the [[Put]] internal method of O with arguments lowerP, upperValue, and true .
ii. Call the [[Delete]] internal method of O, with arguments upperP and true.
Else if lowerExists is true and upperExists is false, then
i Call the [[Delete]] internal method of O, with arguments lowerP and true .
ii. Call the [[Put]] internal method of O with arguments upperP, lowerValue, and true .
Else, both lowerExists and upperExists are false
i No action is required.
Increase lower by 1.

D .

Tlhe reverse function is i ntentionally generic; it does not require that its this value be an Array ol

he shiiFt function is intentionally generic; it does not require that its this value be an Array object. Ther

ject.
n be

bfore
plied

15.4.4.10 Array.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns an array containing the elements of the
array from element start up to, but not including, element end (or through the end of the array if end is
undefined). If start is negative, it is treated as length+start where length is the length of the array. If end is
negative, it is treated as length+end where length is the length of the array. The following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.

2. Let A be anew array created as if by the expression new Array() where Array is the standard built-in
constructor with that name.

3. Let lenVal be the result of calling the [[Get]] internal method of O with argument " length".

128

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

BooNo o~

0.

11.
The
NOT|

it cq
SUCG

ISO/IEC 16262:2011(E)

Let len be ToUint32(lenVal).
Let relativeStart be Tolnteger(start).

If relativeStart is negative, let k be max((len + relativeStart),0); else let k be min(relativeStart, len).

If end is undefined, let relativeEnd be len; else let relativeEnd be Tolnteger(end).

If relativeEnd is negative, let final be max((len + relativeEnd),0); else let final be min(relativeEnd, len).

Let n be 0.
Repeat, while k < final

a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. If kPresent is true, then
i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
1N alT the [[DeTineOwnProperty]] internal method of A with arguments Tostring(n), Property
Descriptor {[[\Value]]: kValue, [[Writable]]: true, [[Enumerable]]: true, [[Gonfigurable]]:
true}, and false.
d. Increase k by 1.
e. Increase n by 1.
Return A.

length property of the slice method is 2.

E
n be transferred to ot her kinds of objects for use as a method. Whether the slice function ca
essfully to a host object is implementation-dependent.

15.4.4.11 Array.prototype.sort (comparefn)

The
do 1

accepts two arguments x and y and returns a negative value if x <y, zero if x =y, or a positive valu

Let pbj be the result of calling ToObject passing\the this value as the argument.

Let |en be the result of applying Uint32 to-the result of calling the [[Get]] internal method of obj wi
"lepgth".

If comparefn is not undefined and\is not a consistent comparison function for the elements of thi
below), the behaviour of sort is.implementation-defined.

Let proto be the value of-the' [[Prototype]] internal property of obj. If proto is not null and there exist
j su¢h that all of the conditions below are satisfied then the behaviour of sort is implementation-d

The

elements of this array are sorted. The sort is not necessarily stable (that is, elements that co
ot necessarily remain in their original order). If comparefn is not undefined, it should be a

p 0bj is sparse (15.4)
0<jKlen

The-result of calling the [[HasProperty]] internal method of proto with argument ToString(j) i

behaviour of sort is also implementation defined if obj is sparse and any of the following cg

The slice function is intentionally generic; it does not require that its.this value be an Array objq

b

ct. Therefore
h be applied

pare equal
nction that
if X >y.

h argument

5 array (see

s an integer
bfined:

S true.

nditions are

true:

e The [[Extensible]] internal property of obj is false.

whose [[Configurable]] attribute is false.

Any array index property of obj whose name is a nonnegative integer less than len is a data property

The behaviour of sort is also implementation defined if any array index property of obj whose name is a
nonnegative integer less than len is an accessor property or is a d ata property whose [[Writable]] attribute is
false.

Otherwise, the following steps are taken.

© ISO/IEC 2011 — Al rights reserved

129

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

2.

Perform an implementation-dependent sequence of calls to the [[Get]] , [[Put]], and [[Delete]] internal
methods of obj and to SortCompare (described below), where the first argument for each call to [[Get]],

[[Put]], or [[Delete]] is a nonnegative integer less than len and where the arguments for calls to SortCompare
are results of previous calls to the [[Get]] internal method. The throw argument to the [[Put]] and [[Delete]]

internal methods will be the value true. If obj is not sparse then [[Delete]] must not be called.
Return obj.

The returned object must have the following two properties.

Here the ngtation old[j] is used to refer to the hypothetical result of calling the [[Get]] internal method o
with argumegnt j before this function is executed, and the notation new[j] to refer to the hypothetical resu
calling the [[|Get]] internal method of obj with argument j after this function has been executed.

A function domparefn is a consistent comparison function for a set of values S if all<of the requirements b
all values a, b, and c¢ (possibly the same value) in the set S;-The notation a<c:b megans
comparefn(alb) < 0; a =c¢ b means comparefn(a,b) = 0 (of either sign); and a >cr b-means comparefn(a,b) > 0.

are met fo

e There must be some mathematical permutation n of the nonnegative integers less than len, such
for every nonnegative integer j less than len, if property old[j] existed, then ne
’.;.’;"‘ H-proper v“'i'i" """ W - COCSTOTTE N

e Then for all nonnegative integers j and k, each less than len, if SortCompare(j,k) <0 (see SortCom
belgw), then x(j) < n(k).

that

w[r(j)] is exactly the

bare

f obj
It of

plow

e Calling comparefn(a,b) always returns the same value v when given a speeific pair of values a and b as ity two
argyments. Furthermore, Type(v) is Number, and v is not NaN. Note¢that this implies that exactly one of a 4c b,
a=dr b, and a >cr b will be true for a given pair of a and b.
e Calling comparefn(a,b) does not modify the this object.
o a=dra (reflexivity)
o Ifafceb, thenb=cra (symmetry)
o IfafFcebandb=crc,thena=cec (transitivity of =cg)
o Ifakcebandb <crc, thena<cec (transitivity of <cp)
o Ifapcebandb>crc, thena>cec (transitivity of >cr)
NOTE he above conditions are necessary and sufficient to ensure that comparefn divides the set S into equivalpnce
classes and that these equivalence classes are totally ordered.
When the SprtCompare abstract operation is called with two arguments j and k, the following steps are taken:
1. LetjString be ToString(j).
2. Let kString be ToString(k).
3. Let hasj| be the result of calling the [[HasProperty]] internal method of obj with argument jString.
4. Let hask be the result«eficalling the [[HasProperty]] internal method of obj with argument kString.
5. If hasj gnd hask are‘both false, then return +0.
6. If hasj ip false, then'return 1.
7. If hask is false,\then return —-1.
8. Let x be|thé result of calling the [[Get]] internal method of obj with argument jString.
9. Lety be|the'fesult of calling the [[Get]] internal method of obj with argument kString.
10. If x and y are both undefined, return +0.
11. If x is undefined, return 1.
12. If y is undefined, return —1.
13. If the argument comparefn is not undefined, then
a. If IsCallable(comparefn) is false, throw a TypeError exception.
b. Return the result of calling the [[Call]] internal method of comparefn passing undefined as the this
value and with arguments x and y.
14. Let xString be ToString(x).
15. Let yString be ToString(y).
16. If xString < yString, return —1.
17. If xString > yString, return 1.
18. Return +0.
130 © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 162

NOTE 1 Because non-existent property values always compare greater than undefined property
undefined always compares greater than any other value, undefined property values always sort to the end of the result,
followed by non-existent property values.

NOTE 2

62:2011(E)

values, and

The sort function is intentionally generic; it does not require that its this value be an Array object. Therefore,

it can be transferred to other kinds of objects for use as a method. Whether the sort function can be applied successfully

toa

host object is implementation-dependent.

15.4.4.12 Array.prototype.splice (start, deleteCount [, item1 [, item2[,...]11])

When the splice method is called with two or more arguments start, deleteCount and (optionally) item1, item2,

etc.
item

1.
2.

ook w

© o N

10.

11.
12.

13.

P, etc. An Array object containing the deleted elements (if any) is returned. The following _steps
|_et O be the result of calling ToObject passing the this value as the argument.

Constructor with that name.

|_et lenVal be the result of calling the [[Get]] internal method of O with argument " length".

|_et len be ToUint32(lenVal).

|_et relativeStart be Tolnteger(start).

f relativeStart is negative, let actualStart be max((len + relativeStart),0); else let actualStart be

Mmin(relativeStart, len).

| et actualDeleteCount be min(max(Tolnteger(deleteCount),0), 1én =~ actualStart).

| et k be 0.

Repeat, while k < actualDeleteCount

a. Let from be ToString(actualStart+Kk).

b. Let fromPresent be the result of calling the [[HasProperty]] internal method of O with a
from.

c. If fromPresent is true, then

Descriptor {[[Value]]: fromValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}; and false.
d. Incrementk by 1.

Starting with item1. The list will.be empty if no such items are present.
| et itemCount be the number of elements in items.
f itemCount < actualDegleéteCount, then
a. Letk be actualStart.
b. Repeat, while)k < (len — actualDeleteCount)
i Let'from be ToString(k+actualDeleteCount).
ii. Let to be ToString(k+itemCount).
i Let fromPresent be the result of calling the [[HasProperty]] internal method of
argument from.
iv. If fromPresent is true, then
1. Let fromValue be the result of calling the [[Get]] internal method of O
argument from.

the deleteCount elements of the array starting at array index start are replaced by the arguments item1,

are taken:

| et A be a new array created as if by the expression new Array(Qwhere Array isthé standarg built-in

gument

i. Let fromValue be the result ofCalling the [[Get]] internal method of O with argyment from.
ii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(}), Property

| et items be an internal List whose elements are, in left to right order, the portion of the actual ajgument list

with

Vith

2. Call the [[Put]] internal method of O with arguments to, fromValue, and true.

V. Else, fromPresent is false
1. Call the [[Delete]] internal method of O with arguments to and true.
Vi. Increase k by 1.
c. Letkbelen.
d. Repeat, while k > (len — actualDeleteCount + itemCount)

i Call the [[Delete]] internal method of O with arguments ToString(k-1) and true.

ii. Decrease k by 1.
Else if itemCount > actualDeleteCount, then
a. Letkbe (len — actualDeleteCount).
b. Repeat, while k > actualStart
i. Let from be ToString(k + actualDeleteCount — 1).

© ISO/IEC 2011 — Al rights reserved

131

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

14.
15.

16.

17.

NOTE

The IengtJ\ property of the splice method is 2.

ii. Let to be ToString(k + itemCount — 1)
iii. Let fromPresent be the result of calling the [[HasProperty]] internal method of O with
argument from.
iv. If fromPresent is true, then
1. Let fromValue be the result of calling the [[Get]] internal method of O with
argument from.
2. Call the [[Put]] internal method of O with arguments to, fromValue, and true.
V. Else, fromPresent is false
1. Call the [[Delete]] internal method of O with argument to and true.
Vi. Decrease k by 1.
Let k be actualStart.
Repeat, While Ttems 15 not empty
a. |Remove the first element from items and let E be the value of that element.
b. |Call the [[Put]] internal method of O with arguments ToString(k), E, and true.
c. |Increase k by 1.
Call the|[[Put]] internal method of O with arguments " length, (len — actualDeleteCount #-itemCount],
and trug.
Return A.

he splice function is intentionally generic; it does not require that it§ this value be an Array olpject.

Therefore it dan be transferred to other kinds of objects for use as a method. Whether'the splice function can be applied

successfully {o a host object is implementation-dependent.

15.4.4.13 Array.prototype.unshift ([item1 [, item2[,...1]1])

The argumgnts are prepended to the start of the array, such thattheir order within the array is the same ag the

order in which they appear in the argument list.

When the ynshift method is called with zero or more ‘arguments iteml, item2, etc., the following stepq are

taken:

1. Let O b¢ the result of calling ToObject passing the this value as the argument.

2. Let lenVal be the result of calling the [[Get]] internal method of O with argument " length™.
3. Letlen be ToUint32(lenVal).

4. Let argCount be the number of actual @arguments.

5. Letk be|len.

6. Repeat, while k >0,

~

10.
11.

132

a. |Let from be ToString(k-1).
b. |Let to be ToString(k+argCount —1).
c. |Let fromPresent'be the result of calling the [[HasProperty]] internal method of O with argument
from.
d. |If fromRresent is true, then
i Let fromValue be the result of calling the [[Get]] internal method of O with argument from.
i, Call the [[Put]] internal method of O with arguments to, fromValue, and true.
e. |Else; fromPresent is false
i Call the [[Delete]] internal method of O with arguments to, and true.
f. Decrease k by 1.
Let j be 0.
Let items be an internal List whose elements are, in left to right order, the arguments that were passed to this
function invocation.
Repeat, while items is not empty
a. Remove the first element from items and let E be the value of that element.
b. Call the [[Put]] internal method of O with arguments ToString(j), E, and true.
c. Increase j by 1.
Call the [[Put]] internal method of O with arguments " length", len+argCount, and true.
Return len+argCount.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

The length property of the unshift method is 1.

NOTE The unshift function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the unshift function can be
applied successfully to a host object is implementation-dependent.

15.4.4.14 Array.prototype.indexOf (searchElement [, fromindex])

indexOFf compares searchElement to the elements of the array, in ascending order, using the internal Strict
Equality Comparison Algorithm (11.9.6), and if found at one or more positions, returns the index of the first

suc| nosition—othanaica 4 ic ratiirnad
I Ot CT— T 1o Totoroar

PoSTte

The|optional second argument fromIndex defaults to O (i.e. the whole array is searched). If itis grdater than or
equdl to the length of the array, -1 is returned, i.e. the array will not be searched. If it is négative, |t is used as
the ¢ffset from the end of the array to compute fromindex. If the computed index is less.than 0, the|whole array
will be searched.

Whgn the indexOT method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. |LetlenValue be the result of calling the [[Get]] internal method of O'with the argument **length™.
3. Letlen be ToUint32(lenValue).
4. |flenisO, return -1.
5. Jf argument fromindex was passed let n be Tolnteger(fromindex); else let n be 0.
6. Jfn=>len, return-1.
7. 1fn>0,then
a. Letkben.
8. Else, n<0

a. Letkbelen-abs(n).
b. [Ifkis less than 0, then let k be 0.
9. Repeat, while k<len
a. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument
ToString(k).
b. If kPresent is true, then
i. Let elementK he'the result of calling the [[Get]] internal method of O with the afgument
ToString(k)-
ii. Let same be-the result of applying the Strict Equality Comparison Algorithm to
searchElement and elementK.
iii. If same’is true, return k.
c. Increase K'by-1.
10. Return -1.

The[length preperty of the indexOf method is 1.
NOTE The indexOf function is intentionally generic; it does not require that its this value be an Array object.

Thergfafe it’can be transferred to other kinds of objects for use as a method. Whether the indexOT furjction can be
appliedsstccessfully to a host object is implementation-dependent.

15.4.4.15 Array.prototype.lastindexOf (searchElement [, fromindex])

lastIndexOf compares searchElement to the elements of the array in descending order using the internal
Strict Equality Comparison Algorithm (11.9.6), and if found at one or more positions, returns the index of the
last such position; otherwise, -1 is returned.

The optional second argument fromindex defaults to the array's length minus one (i.e. the whole array is
searched). If it is greater than or equal to the length of the array, the whole array will be searched. If it is
negative, it is used as the offset from the end of the array to compute fromindex. If the computed index is less
than 0, -1 is returned.

© ISO/IEC 2011 — All rights reserved 133

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

When the lastIndexOf method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. LetlenValue be the result of calling the [[Get]] internal method of O with the argument ""length™.
3. Letlen be ToUint32(lenValue).
4. Iflenis 0, return -1.
5. If argument fromindex was passed let n be Tolnteger(fromlIndex); else let n be len-1.
6. Ifn>0, then let k be min(n, len —1).
7. Else, n<0

a. Letkbelen-abs(n).
8. Repeat, while k>0

a. [Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument

ToString(k).
b. |If kPresent is true, then
i Let elementK be the result of calling the [[Get]] internal method of O with the-argiment
ToString(k).
ii. Let same be the result of applying the Strict Equality Comparison Algorithm to
searchElement and elementK.
iii. If same is true, return k.

c. |Decrease k by 1.
9. Return q1.
The length property of the lastlndexOf method is 1.
NOTE Tlhe lastIndexOf function is intentionally generic; it does not requifé)that its this value be an Array olpject.

Therefore it g
applied succe

15.4.4.16 A

callbackfn s
Boolean va
order, until
false. Othe
elements of

If a thisArg

provided, undefined is used instead.

callbackfn is

being travensed.

every does
callbackfn.

The range

an be transferred to other kinds of objects for use as a method, Whether the lastlndexOf function cgn be

ssfully to a host object is implementation-dependent.

rray.prototype.every (callbackfn [, thisArg])

the
ding
rns
y for

nould be a function that accepts three arguments and returns a value that is coercible to
ue true or false. every calls callbackin once for each element present in the array, in ascen
t finds one where callbackfn returns false’If such an element is found, every immediately ret
wise, if callbackfn returned true for all elements, every will return true. callbackfn is called onl
the array which actually exist; it is"ot called for missing elements of the array.

parameter is provided, it will be used as the this value for each invocation of callbackfn. If it i§ not
called with three arguments: the value of the element, the index of the element, and the olbject
s to

not directly)mutate the object on which it is called but the object may be mutated by the ca

pf ele.ments processed by every is set before the first call to callbackfn. Elements which| are

appended t¢ the“array after the call to every begins will not be visited by callbackfn. If existing elements o

f the

array are c
elements th
like the "for

hanged, their value as passed to callbackfn will be the value at the time every visits them;
at are deleted after the call to every begins and before being visited are not visited. every acts
all" quantifier in mathematics. In particular, for an empty array, it returns true.

When the every method is called with one or two arguments, the following steps are taken:

If IsCall

ok wnNE

Let k be

134

Let O be the result of calling ToObject passing the this value as the argument.
Let lenValue be the result of calling the [[Get]] internal method of O with the argument ""length™.
Let len be ToUint32(lenValue).

able(callbackfn) is false, throw a TypeError exception.

If thisArg was supplied, let T be thisArg; else let T be undefined.

0.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

8.

The Ipngfh property of the every method is 1

ISO/IEC 16262:2011(E)

Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresentis true, then
i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. Let testResult be the result of calling the [[Call]] internal method of callbackfn with T as the
this value and argument list containing kValue, k, and O.
iii. If ToBoolean(testResult) is false, return false.
d. Increase k by 1.
Return true.

NOTE The every function is intentionally generic; it does not require that its this value be an Array.objgct. Therefore
it can be transferred to ot her kinds of objects for use as a method. Whether the every function cap be applied

successfully to a host object is implementation-dependent.

15.

callk
Boo
ordg
true
no

=3

If a
proy

callh
bein

som
callk

The
to th

.4.17 Array.prototype.some (callbackfn [, thisArg])

ackfn should be a function that accepts three arguments and returns- a_value that is c oefcible to the
ean value true or false. some calls callbackfn once for each element\preésent in the array, ih ascending
r, until it finds one where callbackfn returns true. If such an element)is found, some immediately returns
. Otherwise, some returns false. callbackfn is called only for elemenis of the array which actually exist; it is
called for missing elements of the array.

hisArg parameter is provided, it will be used as the this{value for each invocation of callbackin. If it is not
ided, undefined is used instead.

ackfn is called with three arguments: the value of the element, the index of the element, anfl the object
g traversed.

e does not directly mutate the object on which it is called but the object may be mutated by] the calls to
ackfn.

range of elements processed by, seme is set before the first call to callbackfn. Elements that are appended
e array after the call to some_begins will not be visited by callbackfn. If existing elements of the array are

chamged, their value as passed to-callbackfn will be the value at the time that some visits them; elements that

are
qua

Whs¢

Heleted after the call to some begins and before being visited are not visited. some acts likef the "exists"
htifier in mathematics«ln“particular, for an empty array, it returns false.

n the some methaod is called with one or two arguments, the following steps are taken:

| et O be theqresult of calling ToObject passing the this value as the argument.
| et lenVialue be the result of calling the [[Get]] internal method of O with the argument *"length™".
| et len be ToUint32(lenValue).

fdsCallable(callbackfn) is false, throw a TypeError exception.

f thisArg was supplied, let T be thisArg:; else let T be undefined

8.
The

Let k be 0.
Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. If kPresent is true, then
i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. Let testResult be the result of calling the [[Call]] internal method of callbackfn with T as the
this value and argument list containing kValue, k, and O.
iii. If ToBoolean(testResult) is true, return true.
d. Increase k by 1.
Return false.

length property of the some method is 1.

© ISO/IEC 2011 — All rights reserved 135

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

NOTE The some function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the some function can be applied successfully
to a host object is implementation-dependent.

15.4.4.18 Array.prototype.forEach (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments. forEach calls callbackfn once for each element
present in the array, in ascending order. callbackfn is called only for elements of the array which actually exist;
it is not called for missing elements of the array.

If a thisArg para
provided, undefine

is not

isue itad.
callbackfn ig called with three arguments: the value of the element, the index of the element, and the object
being traversed.

forEach dges not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range ¢f elements processed by FforEach is set before the first call to callbackfn. Elements which are
appended tp the array after the call to forEach begins will not be visited by callbackfn. If existing elements of
the array are changed, their value as passed to callback will be the value ‘at-the time forEach visits them;
elements thpt are deleted after the call to forEach begins and before being-visited are not visited.

When the fprEach method is called with one or two arguments, the\following steps are taken:

Let O b¢ the result of calling ToObject passing the this valuesas the argument.
Let len\falue be the result of calling the [[Get]] internal method of O with the argument ""length™.
Let len be ToUint32(lenValue).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisAfg was supplied, let T be thisArg; else let F>be undefined.
Let k be]0.
Repeat, while k < len
a. |Let Pk be ToString(k).
b. |Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. |If kPresent is true, then
i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. Call the [[Cal]]vinternal method of callbackfn with T as the this value and argument list
containing kValue, k, and O.
d. [Increase k by 1.
8. Return yindefined.

NogokrwbdeE

The length property\of the forEach method is 1.

NOTE he ferEach function is intentionally generic; it does not require that its this value be an Array olject.
Therefore it gan” be-transferred to other kinds of objects for use as a method. Whether the forEach function cah be
applied succgssiully to a host object is implementation-dependent.

15.4.4.19 Array.prototype.map (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments. map calls callbackfn once for each element in the
array, in ascending order, and constructs a new Array from the results. callbackfn is called only for elements of
the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

136 © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

map does not directly mutate the object on which itis called but the object may be mutated by th e calls to
callbackfn.

The range of elements processed by map is set before the first call to callbackfn. Elements which are
appended to the array after the call to map begins will not be visited by callbackfn. If existing elements of the
array are changed, their value as passed to callbackfn will be the value at the time map visits them; elements
that are deleted after the call to map begins and before being visited are not visited.

When the map method is called with one or two arguments, the following steps are taken:

ot O he the result of r‘nlling Tnﬁhjﬂr*f rr_\nccing the this value as the nrgllmnnf

|_et lenValue be the result of calling the [[Get]] internal method of O with the argument ""leng€h".
| et len be ToUint32(lenValue).

f IsCallable(callbackfn) is false, throw a TypeError exception.
f thisArg was supplied, let T be thisArg; else let T be undefined.
| et A be a new array created as if by the expression new Array(len) where Arrayis the stangdard built-
n constructor with that name and len is the value of len.
| et k be 0.

8. Repeat, while k < len

a. Let Pk be ToString(k).

b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. If kPresent is true, then
i. Let kValue be the result of calling the [[Get]] internal method of O with argumept Pk.

ii. Let mappedValue be the result of calling thg:[[€all]] internal method of callbackfn with T as
the this value and argument list containingkValue, k, and O.
iii. Call the [[DefineOwnProperty]] internal method of A with arguments Pk, Propeity
Descriptor {[[Value]]: mappedValueyf[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}, and false!
d. Increase k by 1.
9. Return A.

ok wnNE

~

The| length property of the map method is'4.

NOTE The map function is intentionally géneric; it does not require that its this value be an Array objec]. Therefore it
can pe transferred to other kinds of objects for use as a method. Whether the map function can be applied sliccessfully to
a hopt object is implementation-dependent:

15.4.4.20 Array.prototype.filter (callbackfn [, thisArg])

callpackfn should be affunction that accepts three arguments and returns a value that is c oelfcible to the
Boolean value true or false. filter calls callbackfn once for each element in the array, in ascepding order,
and|constructs acnew array of all the values for which callbackfn returns true. callbackfn is called only for
elements of thearray which actually exist; it is not called for missing elements of the array.

If a fhisArg parameter is provided, it will be used as the this value for each invocation of callbackin. If it is not
proVided,-undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

filter does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by filter is set before the first call to callbackfn. Elements which are
appended to the array after the call to filter begins will not be visited by callbackfn. If existing elements of
the array are changed their value as passed to callbackfn will be the value at the time filter visits them;
elements that are deleted after the call to Fi l'ter begins and before being visited are not visited.

When the Fi lter method is called with one or two arguments, the following steps are taken:

© ISO/IEC 2011 — All rights reserved 137

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

1. Let O be the result of calling ToObject passing the this value as the argument.
2. LetlenValue be the result of calling the [[Get]] internal method of O with the argument ""length*.
3. Letlen be ToUint32(lenValue).
4. If IsCallable(callbackfn) is false, throw a TypeError exception.
5. If thisArg was supplied, let T be thisArg; else let T be undefined.
6. Let A beanew array created as if by the expression new Array() where Array is the standard built-in
constructor with that name.

7. LetkbeO.
8. LettobeO.
9. Repeat, while k < len

a. Let Pk be ToString(k).

b. |Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.

c. |If kPresent is true, then

i Let kValue be the result of calling the [[Get]] internal method of O with argumenf\Pk.
ii. Let selected be the result of calling the [[Call]] internal method of callbackfnwith’T as {he
this value and argument list containing kValue, k, and O.
iii. If ToBoolean(selected) is true, then
1. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(fo),
Property Descriptor {[[Value]]: kValue, [[Writable]]: true[[Enumerable]]: trug,
[[Configurable]]: true}, and false.
2. Increase to by 1.

d. |Increase k by 1.
10. Return A\.
The length property of the Fi lter method is 1.
NOTE Tlhe filter function is intentionally generic; it does not require that its this value be an Array olpject.
Therefore it dan be transferred to other kinds of objects for use as a method. Whether the Fi l'ter function can be applied
successfully fo a host object is implementation-dependent.
15.4.4.21 Array.prototype.reduce (callbackfn [, initialValue])
callbackfn should be a function that takes four argufments. reduce calls the callback, as a fu nction, onc¢ for
each elemept present in the array, in ascending order.
callbackfn is| called with four arguments: thepreviousValue (or value from the previous call to callbackfn)| the
currentValug (value of the c urrent element), the currentindex, and the object being traversed. The first time
that callback is called, the previousValue and currentValue can be one of two values. If an initialValue |was
provided in the call to reduce, then previousValue will be equal to initialValue and currentValue will be egual
to the first vplue in the array. IfnetinitialValue was provided, then previousValue will be equal to the first vialue
in the array|and currentValug will be equal to the second. It is a TypeError if the array contains no elements
and initialValue is not provided:
reduce dogs not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.
The range ppf. €lements processed by reduce is set before the first call to callbackin. Elements that| are
appended to the array aiter the call 1o reduce begins will not be visiied by callbackin. It existing elements of

the array are changed, their value as passed to callbackfn will be the value at the time reduce visits them;
elements that are deleted after the call to reduce begins and before being visited are not visited.

When the reduce method is called with one or two arguments, the following steps are taken:

If lenis
Let k be

ok wnE

138

Let O be the result of calling ToObject passing the this value as the argument.

Let lenValue be the result of calling the [[Get]] internal method of O with the argument "*length™.
Let len be ToUint32(lenValue).

If IsCallable(callbackfn) is false, throw a TypeError exception.

0 and initialValue is not present, throw a TypeError exception.
0.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

7. If initialValue is present, then
a. Set accumulator to initialValue.
8. Else, initialValue is not present
a. Let kPresent be false.
b. Repeat, while kPresent is false and k < len
i Let Pk be ToString(k).
ii. Let kPresent be the result of calling the [[HasProperty]] internal method of O w
Pk.
iii. If kPresent is true, then

ith argument

1. Let accumulator be the result of calling the [[Get]] internal method of O with

argument Pk.

V. Tncrease K by L.
c. If kPresent is false, throw a TypeError exception.
9. Repeat, while k < len
a. Let Pk be ToString(k).

c. If kPresentis true, then
i Let kValue be the result of calling the [[Get]] internal method of‘O with argume
ii. Let accumulator be the result of calling the [[Call]] internakmethod of callback

d. Increase k by 1.
10. Return accumulator.

The|length property of the reduce method is 1.

NOTE The reduce function is intentionally generic; it does not require that its this value be an
Thergfore it can be transferred to other kinds of objects for use as & method. Whether the reduce function c
successfully to a host object is implementation-dependent.

15.4.4.22 Array.prototype.reduceRight (callbackfn [, initialValue])

b. Let kPresent be the result of calling the [[HasProperty]] internal method of ©-with arguent Pk.

Nt Pk.
n with

undefined as the this value and argument list containing@accumulator, kValue, K, and O.

Array object.
bn be applied

calljackfn should be a function that takes four\arguments. reduceRight calls the callback, ad a function,

oncg¢ for each element present in the array;.i@descending order.

calljackfn is called with four arguments:’the previousValue (or value from the previous call to cal
currgntValue (value of the current element), the currentindex, and the object being traversed. The f
fungtion is called, the previousValue-and currentValue can be one of two values. If an initialValue W
in the call to reduceRight, then’previousValue will be equal to initialValue and currentValue will be
last [value in the array. If ne_initialValue was provided, then previousValue will be equal to the last
array and currentValue will;be equal to the second-to-last value. It is a TypeError if the array
elements and initialValue-is not provided.

reduceRight does not directly mutate the object on which it is called but the object may be mu
callg to callbackin.

Ibackfn), the
irst time the
as provided
equal to the
value in the
contains no

fated by the

The(rande of elements processed by reduceRight is set before the first call to callbackfn. Elem¢nts that are

appeénded to the array after the call to reduceRight begins will not be visited by callbackfn

. If existing

elententsof the ditdy dre Chdnged DY CallDackKlnm, thelr value das pPpdassed 10 CallDaCKI WIIT De e

value at the

time reduceRight visits them; elements that are deleted after the call to reduceRight begins and before

being visited are not visited.

When the reduceRight method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.

Let len be ToUint32(lenValue).

If IsCallable(callbackfn) is false, throw a TypeError exception.

If len is 0 and initialValue is not present, throw a TypeError exception.
Let k be len-1.

If initialValue is present, then

NogerwbhE

© ISO/IEC 2011 — Al rights reserved

Let lenValue be the result of calling the [[Get]] internal method of O with the argument ""length™.

139

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Set accumulator to initialValue.
tialvValue is not present
Let kPresent be false.
Repeat, while kPresent is false and k>0
i Let Pk be ToString(k).
ii.
Pk.
If kPresent is true, then
1. Let accumulator be the result of calling the [[Get]] internal method of O with
argument Pk.
iv. Decrease k by 1.

Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument

a.
8. Else, ini
a.
b.
C.
9. Repeat,
a.
b.
C.
d.
10. Return §
The lengt
NOTE

Therefore it g
applied succq

15.4.5 Pro

Array instar
"Array". A

15.4.5.1

Array objec
objects (8.1

Assume A is

In the follow
return false.”

When the [|

Boolean flag Threw; the following steps are taken:

Tlhe reduceRight function is intentionally generic; it does not require‘that its this value be an Array of

perties of Array Instances

[IDefineOwnProperty]] (P, Desc, Throw)

TT KPTESeNt 15 1alse, thTOw a T yPEETTor exception.
while k >0
Let Pk be ToString(k).
Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
If kPresent is true, then
i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
il Let accumulator be the result of calling the [[Call]] internal method oficallbackfn with
undefined as the this value and argument list containing accumulator, kValue, k, and O
Decrease k by 1.
ccumulator.

h property of the reduceRight method is 1.

an be transferred to other kinds of objects for use as a method. Whether the reduceRight function cg
ssfully to a host object is implementation-dependent.

rray instances also have the following properties.

s use a variation of the [[DefineOwnProperty]] internal method used for other native ECMAS
D.9).

an Array object, Dese.sva Property Descriptor, and Throw is a Boolean flag.

ing algorithm, the_term “Reject” means “If Throw is true, then throw a TypeError exception, othe

DefineOwnProperty]] internal method of A is called with property P, Property Descriptor Desc,

ject.
n be

ces inherit properties from the Array prototype object and their [[Class]] internal property valle is

Cript

wise

and

enDesc be the result of calling the [[GetOwnProperty]] internal method of A passing ""length’

as

ment. The result will never be undefined or an accessor descriptor because Array objects are

created with a length data property that cannot be deleted or reconfigured.

1. Letoldl
the argu

2.

3. IfPis™
a.
b.
c.
d.
e.
f.

140

Let oldLen be oldLenDesc.[[Value]].

length", then
If the [[Value]] field of Desc is absent, then
i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9)
passing ""length", Desc, and Throw as arguments.
Let newLenDesc be a copy of Desc.
Let newLen be ToUint32(Desc.[[Value]]).
If newLen is not equal to ToNumber(Desc.[[Value]]), throw a RangeError exception.
Set newLenDesc.[[Value] to newLen.
If newLen >oldLen, then

© ISO/IEC 2011 — All rights res

onA

erved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A

passing "length", newLenDesc, and Throw as arguments.
g. Rejectif oldLenDesc.[[Writable]] is false.
h. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
i. Else,

i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be

deleted.
ii. Let newWritable be false.
iii. Set newLenDesc.[[Writable] to true.

j. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on

A passing "length™, newLenDesc, and Throw as arguments.

k. If succeeded Is false, return false.
I. While newLen < oldLen repeat,
i Set oldLen to oldLen — 1.
i Let deleteSucceeded be the result of calling the [[Delete]] internal method’of A
ToString(oldLen) and false as arguments.
iii. If deleteSucceeded is false, then
1. Set newLenDesc.[[Value] to oldLen+1.
2. If newWritable is false, set newLenDesc.[[Writable] to false.
3. Call the default [[DefineOwnProperty]] internal fmethod (8.12.9) on A p
"length", newLenDesc, and false as arguments.
4. Reject.
m. If newWritable is false, then
i. Call the default [[DefineOwnProperty]] internal™method (8.12.9) on A passing '
Property Descriptor{[[Writable]]: false}, and false as arguments. This call will
return true.
n. Return true.

assing

hssSing

fength™,
lways

4. Elseif P is an array index (15.4), then
a. Letindex be ToUint32(P).
b. Reject if index > oldLen and oldLenDese:f[Writable]] is false.
c. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on
A passing P, Desc, and false as arguments.
d. Reject if succeeded is false.
e. If index>oldLen
i Set oldLenDesc.[[Value]] to index + 1.
ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "“length",
oldLenDesC, and false as arguments. This call will always return true.
f. Return true.
5. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A pasging P,
Pesc, and Throw asfarguments.
15.45.2 length
The|length'property of this Array object is a data property whose value is always numerically greater than
the pame-of.every deletable property whose name is an array index.
Thellength property initially has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.
NOTE Attempting to set the length property of an Array object to a value that is numerically less than or equal to the

largest numeric property name of an existing array indexed non-deletable property of the array will result in the length
being set to a numeric value that is one greater than that largest numeric property name. See 15.4.5.1.

15.5 String Objects

15.5.1 The String Constructor Called as a Function

When String is called as a function rather than as a constructor, it performs a type conversion.

© ISO/IEC 2011 — Al rights reserved

141

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.5.1.1 String ([value])

Returns a String value (nota String object) computed by ToString(value). If value is not supplied, the empty

String is returned.

15.5.2 The String Constructor

When String is called as part of a new expression, it is a constructor: it initialises the newly created object.

15.5.2.1 new String ([value])

The [[Protolype]] internal property of th e newly constructed object is set to the standard built-in, S
prototype olbject that is the initial value of String.prototype (15.5.3.1).

The [[Class]] internal property of the newly constructed object is set to "'String™.

The [[Extengible]] internal property of the newly constructed object is set to true.

ring

The [[PrimitjveValue]] internal property of the newly constructed object is set to ToStririg(value), or to the empty

String if valye is not supplied.

15.5.3 Properties of the String Constructor

The value pf the [[Prototype]] internal property of the String constructor is the standard built-in Fun
prototype object (15.3.4).

Besides thg internal properties and the length property (whose value is 1), the String constructor has
following prpperties:

15.5.3.1 S§tring.prototype
The initial value of String.prototype is the'standard built-in String prototype object (15.5.4).

This properfy has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.5.3.2 §tring.fromCharCode({char0[,char1[,...]111)

Returns a String value containing as many characters as the number of arguments. Each argument sped

tion

the

ifies

one character of the resulting String, with the first argument specifying the first character, and so on, fronp left

to right. An prgument-isiconverted to a character by applying the operation ToUint16 (9.7) and regarding
resulting 16+-bit integer’as the code unit value of a character. If no arguments are supplied, the result ig
empty String.

The length

15.5.4 Properties of the String Prototype Object

the
the

The String prototype object is itself a String object (its [[Class]] is ""'String') whose value is an empty String.

The value of the [[Prototype]] internal property of the String prototype object is the standard built-in Object

prototype object (15.2.4).

15.5.4.1 String.prototype.constructor

The initial value of String.prototype.constructor is the built-in String constructor.

142 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.5.4.2 String.prototype.toString ()

Returns this String value. (Note that, for a String object, the toString method happens to return the same
thing as the valueOf method.)

The toString function is not generic; it throws a TypeError exception if its this value is not a String or a
String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.5.4.3 String.prototype.valueOf ()

Retyrmsthis String vatue.

The|valueOf function is not generic; it throws a TypeError exception if its this value is not a String or String
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.8.4.4 String.prototype.charAt (pos)

Returns a String containing the character at position pos in the String resulting.from converting thi$ object to a
String. If there is no character at that position, the result is the empty String. Fhe result is a String|value, not a
String object.

If pas is a value of Number type that is an integer, then the result of X.charAt(pos) is equal to fhe result of
X.spbstring(pos, pos+1).

When the charAt method is called with one argument pos;the following steps are taken:

Call CheckObjectCoercible passing the this value as its argument.

|_et S be the result of calling ToString, giving it-the this value as its argument.
|_et position be Tolnteger(pos).

| et size be the number of characters in S.

f position < 0 or position > size, return the’empty String.

Return a String of length 1, containing one character from S, namely the character at position pogition, where
he first (leftmost) character in S is‘considered to be at position 0, the next one at position 1, and|so on.

oak~wnhE

NOTE The charAt function-is.intentionally generic; it does not require that its this value be a S| tring object.
Thergfore, it can be transferred to other kinds of objects for use as a method.

15.8.4.5 String.prototype.charCodeAt (pos)
Retiirns a Number.(a nonnegative integer less than 2'°) representing the code unit value of the fharacter at
position pos inthe " String resulting from converting this object to a St ring. If there is no chargcter at that
position, the.result is NaN.

When the-charCodeAt method is called with one argument pos, the following steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.

2. Let S be the result of calling ToString, giving it the this value as its argument.

3. Let position be Tolnteger(pos).

4. Let size be the number of characters in S.

5. If position < 0 or position > size, return NaN.

6. Return a value of Number type, whose value is the code unit value of the character at position position in the
String S, where the first (leftmost) character in S is considered to be at position 0, the next one at position 1,
and so on.

NOTE The charCodeAt function is intentionally generic; it does not require that its this value be a String object.

Therefore it can be transferred to other kinds of objects for use as a method.

© ISO/IEC 2011 — All rights reserved 143

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.5.4.6 String.prototype.concat ([string1 [, string2[,...1]11)

When the concat method is called with zero or more arguments stringl, string2, etc., it returns a String
consisting of the characters of this object (converted to a String) followed by the characters of each of stringl,
string2, etc. (where each argument is converted to a String). The result is a String value, not a String object.
The following steps are taken:

Call CheckObjectCoercible passing the this value as its argument.
Let S be the result of calling ToString, giving it the this value as its argument.
Let args be an internal list that is a copy of the argument list passed to this function.
LetR be S.
Repeat, while args is not empty
a. |Remove the first element from args and let next be the value of that element.
b. |Let R be the String value consisting of the characters in the previous value of R followed-by)the
characters of ToString(next).
6. Return

agrwNdE

The lengti property of the concat method is 1.

NOTE he concat function is intentionally generic; it does not require that its this’ value be a String olpject.
Therefore it dan be transferred to other kinds of objects for use as a method.

15.5.4.7 String.prototype.indexOf (searchString, position)

If searchStringg appears as a substring of the result of converting this gbject to a String, at one or more posifions
that are gneater than or equal to position, then the index of the smallest such position is returped;
otherwise, 41 is returned. If position is undefined, 0 is assumed;.so as to search all of the String.

The index(Qf method takes two arguments, searchString andjposition, and performs the following steps:

Call Ch¢ckObjectCoercible passing the this value aSits argument.

Let S bd the result of calling ToString, giving it.the’ this value as its argument.

Let searjchStr be ToString(searchString).

Let pos pe Tolnteger(position). (If position“is‘undefined, this step produces the value 0).

Let len be the number of characters in. S:

Let starf be min(max(pos, 0), len).

Let searnchLen be the number of characters in searchsStr.

Return the smallest possible integer k not smaller than start such that k+ searchLen is not greater than le
and for gll nonnegative integers | less than searchLen, the character at position k+j of S is the same as the
charactdr at position j of searchStr; but if there is no such integer k, then return the value -1.

NGO R~WNE

The Iength property of the indexOf method is 1.

NOTE he indexOf function is intentionally generic; it do es not require that its this value be a String olpject.
Therefore, it ¢an/be transferred to other kinds of objects for use as a method.

15.5.4.8 String.prototype.lastindexOf (searchString, position)

If searchString appears as a substring of the result of converting this object to a String at one or more positions
that are smaller than or equal to position, then the index of the greatest such position is returned;
otherwise, -1 is returned. If position is undefined, the length of the String value is assumed, so as to search
all of the String.

The lastIndexOf method takes two arguments, searchString and position, and performs the following steps:
1. Call CheckObjectCoercible passing the this value as its argument.

2. Let S be the result of calling ToString, giving it the this value as its argument.
3. Let searchStr be ToString(searchString).

144 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

If numPos is NaN, let pos be +; otherwise, let pos be Tolnteger(numPos).
Let len be the number of characters in S.

Let start min(max(pos, 0), len).

Let searchLen be the number of characters in searchStr.

©ooNOA

than len, and for all nonnegative integers j less than searchLen, the character at position k+j of S

as the character at position j of searchStr; but if there is no such integer k, then return the value -

The length property of the lastIndexOf method is 1.

Let numPos be ToNumber(position). (If position is undefined, this step produces the value NaN).

Return the largest possible nonnegative integer k not larger than start such that k+ searchLen is not greater

is the same
1.

NOTE The lastIndexOf function is intentionally generic; it does not require that its this value be,a
Thergfore, it can be transferred to other kinds of objects for use as a method.

15.9.4.9 String.prototype.localeCompare (that)

Whegn the localeCompare method is called with one argument that, it returns a,Namiber other th
represents the result of a locale-sensitive String comparison of the this value (converted to a Stri
(converted to a String). The two Strings are S and That. The two Strings are compared in an imp
defimed fashion. The result is intended to order String values in the sort order specified by the sy
locale, and will be negative, zero, or positive, depending on whether S_comes before That in the sd
Strings are equal, or S comes after That in the sort order, respectively.

Btring object.

Bn NaN that
ng) with that
ementation-
stem default
rt order, the

Befgre perform the comparisons the following steps are perforgiedto prepare the Strings:

1. [all CheckObjectCoercible passing the this value as itsargument.

2. et S be the result of calling ToString, giving it the this.value as its argument.

3. Let That be ToString(that).

The| localeCompare method, if considered as\a-function of two arguments this and that, is @ consistent
compparison function (as defined in 15.4.4.11) an the set of all Strings.

The|actual return values are implementation-defined to permit implementers to encode additionall information
in the value, but the function is re quired to define a total ord ering on all Strings and toretyrn O when
compparing Strings that are considered.canonically equivalent by the Unicode standard.

If nq language-sensitive comparison at all is available from the host environment, this function mgy perform a
bitw|se comparison.

NOTEE 1 The localeCampare method itself is not directly suitable as an argument to Array.protptype.sort
becquse the latter requires a function of two arguments.

NOTE 2 This function is intended to rely on whatever language-sensitive comparison functionality is avpilable to the

ECMAScript environment from the host environment, and to compare according to the rules of the host €
currgnt locale. 1t is strongly recommended that this function treat Strings that are canonically equivalent acq
Unicpde’ standard as identical (in other words, compare the Strings as if they had both been converted t

nvironment’s
ording to the
b Normalised

ivalences or

NOTE 3
recommended that implementations do not use this parameter position for anything else.

NOTE 4 The localeCompare function is intentionally generic; it does not require that its this value be a
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.10 String.prototype.match (regexp)

When the match method is called with argument regexp, the following steps are taken:

© ISO/IEC 2011 — Al rights reserved

The second parameter to this function is likely to be used in afuture version of this standard; it is

String object.

145

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

1. Call CheckObjectCoercible passing the this value as its argument.

n

Let S be the result of calling ToString, giving it the this value as its argument.

3. If Type(regexp) is Object and the value of the [[Class]] internal property of regexp is ""RegExp"*, then let rx
be regexp;

4. Else, let rx be a new RegExp object created as if by the expression new RegExp(regexp) where RegExp
is the standard built-in constructor with that name.

5. Let global be the result of calling the [[Get]] internal method of rx with argument ""global™".

6. Let exec be the standard built-in function RegExp.prototype.exec (see 15.10.6.2)

7. If global is not true, then

a.

8. Else, gl
a.
b.

+® oo

@

NOTE
it can be tran

Return the result of calling the [[Call]] internal method of exec with rx as the this value and
argument list containing S.

bal is true
Call the [[Put]] internal method of rx with arguments "*lastindex' and 0.
Let A be a new array created as if by the expression new Array() where Array is thestanda
built-in constructor with that name.
Let previousLastindex be 0.
Let n be 0.
Let lastMatch be true.
Repeat, while lastMatch is true
i. Let result be the result of calling the [[Call]] internal method of\eXec with rx as the this
value and argument list containing S.
ii. If result is null, then set lastMatch to false.
iii. Else, result is not null
1. Let thisIndex be the result of calling the [[Get]] internal method of rx with
argument "lastlndex".
2. If thisIndex = previousLastindex then
a Call the [[Put]] internal method*of rx with arguments ""lastindex" 3
thisindex+1.

b Set previousLastIndex to thisindex+1.
Else, set previousLastIndex to‘thisIndex.
4. Let matchStr be the result of calling the [[Get]] internal method of result with

argument ""0"".
5. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(

w

true, [[configurdble]]: true}, and false.
6. Increment n:
If n =0, then return null.
Return A.

he match function is'intentionally generic; it does not require that its this value be a String object. Therg
ferred to other kinds/of objects for use as a method.

15.5.4.11 String.prototype.replace (searchValue, replaceValue)

First set stri

1. CallCh

hg according to the following steps:

the Property Descriptor {[[Value]]: matchStr, [[Writable]]: true, [[Enumerable]]]:

=)
~

fore,

cCKUDJeCtLOercinle passing the wtnis vatue as ItS argument.

2. Let string be the result of calling ToString, giving it the this value as its argument.

If searchValue is a regular expression (an object whose [[Class]] internal property is ""‘RegExp'"), do the
following: If searchValue.global is false, then search string for the first match of the regular expression
searchValue. If searchValue.global is true, then search string for all ma tches of the regular expression
searchValue. Do the search in the same manner as in String.prototype.match, including the update of
searchValue.lastindex. Let m beth e number of left capturing parentheses in searchValue (using

NcapturingP.

arens as specified in 15.10.2.1).

If searchValue is not a regular expression, let searchString be ToString(searchValue) and search string for the first

occurrence

146

of searchString. Let m be 0.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

If replaceValue is a fu nction, then for each matched substring, call the fu nction with the following m + 3
arguments. Argument 1 is the substring that matched. If searchValue is a regular expression, the next m
arguments are all of the captures in the MatchResult (see 15.10.2.1). Argument m + 2 is the offset within string
where the match occurred, and argument m + 3 is string. The result is a String value derived from the original
input by replacing each matched substring with the corresponding return value of the function call, converted
to a String if need be.

Otherwise, let newstring denote the result of converting replaceValue to a String. The result is a String value
derived from the original input String by replacing each matched substring with a String derived from newstring
by replacing characters in newstring by replacement text as specified in Table 22. These $ replacements are
done left-to-right, and, once such a replacement is p erformed, the new replacement text is not subject to
furtHer replacements. For example, "$1,$2".replace(V/(\$(\d))/g, "$$1-$1$2") ,refurns "$1-
$11f, $1-$22". A $ in newstring that does not match any of the forms below is left as is.

Table 22 — Replacement Text Symbol Substitutions

(Gharacters Replacement text '\@V

43 $

H& The matched substring.

S The portion of string that precedes the matched substring.

4’ The portion of string that follows the matched substring.

Hn The n™ capture, where n is a single digit in the\fange 1 to 9 and $n is not fpllowed

by a decimal digit. If n<m and the nth captlre is undefined, use the empty String
instead. If n>m, the result is implementation-defined.
Hnn The nn™ capture, where nn is a two<digit decimal number in the range 01 fo 99. If
nn<m and the nn® capture is undefined, use the empty String instead. If nn>m, the
result is implementation-defined:

NOTE The replace function is intentionally generic; it does not require that its this value be a $tring object.
Thergfore, it can be transferred to other kinds of objects for use as a method.

15.9.4.12 String.prototype.search (regexp)

When the search method is called with argument regexp, the following steps are taken:

=

Call CheckObjectCoercible passing the this value as its argument.

| et string be the result gf.calling ToString, giving it the this value as its argument.
3. If Type(regexp) is @bject and the value of the [[Class]] internal property of regexp is ""RegExp’[, then let rx
be regexp;
4. Else, let rx be.a\new RegExp object created as if by the expression new RegExp(regexp) wherle RegEXp
s the standdrd-built-in constructor with that name.
5. PBearch the value string from its beginning for an occurrence of the regular expression pattern rx.|Let result
be a NUmber indicating the offset within string where the pattern matched, or -1 if there was no fnatch. The
lastblndex and global properties of regexp are ignored when performing the search. The latIndex
bropéerty of regexp is left unchanged.
6. Return result.

N

NOTE The search function is intentionally generic; it does not require that its this value be a S tring object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.13 String.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns a substring of the result of converting this
object to a String, starting from character position start and running to, but not including, character position end
(or through the end of the String if end is undefined). If start is negative, it is treated as sourceLength+start
where sourceLength is the length of the String. If end is negative, it is treated as sourceLength+end where

© ISO/IEC 2011 — Al rights reserved 147

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

sourceLength is the length of the String. The result is a String value, not a String object. The following steps are

taken:

1.

2.

3.

4,

5.

6.

7.

8.

9. Return

The lengt

NOTE
it can be tran

15.5.4.14 String.prototype.split (separator, limit)

Returns an
stored. The
occurrencey
value of sep|

Call CheckObjectCoercible passing the this value as its argument.

Let S be the result of calling ToString, giving it the this value as its argument.

Let len be the number of characters in S.

Let intStart be Tolnteger(start).

If end is undefined, let intEnd be len; else let intEnd be Tolnteger(end).

If intStart is negative, let from be max(len + intStart,0); else let from be min(intStart, len).
If intEnd is negative, let to be max(len + intEnd,0); else let to be min(intEnd, len).

Let span be max(to — from,0).

property of the slice method is 2.

he slice function is intentionally generic; it does not require that its this value be a Stringjebjéct. Thergfore

ferred to other kinds of objects for use as a method.

Array object into which substrings of the result of converting this(object to a String have Qeen
substrings are d etermined by searching from left to right for . ‘eccurrences of separator; these
are not part of any substring in the returned array, but serve<to*divide up the String vaIue.IThe
Arator may be a String of any length or it may be a RegExp object (i.e., an object whose [[Class]]

internal pro

The value

match an e
the input St
example, if
array equal
expression,
yield a non
array ["a™

If the this d
empty Strin
which is the|

If separator
the results

erty is ""RegExp'"; see 15.10).

separator may be an empty String, an empty regularexpression, or a regular expression that

pty String. In this case, separator does not match'\the empty substring at the beginning or erld of
Fin g, nor does it match the empty substring at; the end of the previous separator match. |(For
eparator is the empty String, the String is split\up into individual characters; the length of the result
5 the length of the String, and each substring contains one character.) If separator is a regular
only the first match at a given position.6f’the this String is considered, even if backtracking cpould
Ltempty-substring match at that position. (For example, "ab” .split(/a*?/) evaluates td the
b, while ""ab™ _split(/a*/).evaluates to the array["""*,"'b""].)

can

bject is (or converts to) the-empty String, the result depends on whether separator can match the
. If it can, the result array centains no elements. Otherwise, the result array contains one element,
empty String.

s a regular expression that contains capturing parentheses, then each time separator is mat¢hed

including any undefined results) of the capturing parentheses are spliced into the output afray.

For examplg,

""Aboldand<CODE>coded</CODE>".split(/<(\/)?(["<>]+)>/)
evaluates tq the array

["A%, undefined, '"B', "bold"™, "/, "B", "and", undefined,

| nnFll, llpndndll, IIIII, Ilr\nnpll, Illl]

If separator is undefined, then the result array contains just one String, which is the this value (converted to a
String). If limit is not undefined, then the output array is truncated so that it contains no more than limit
elements.

When the split method is called, the following steps are taken:

Call CheckObjectCoercible passing the this value as its argument.

the result of calling ToString, giving it the this value as its argument.

Let A be a new array created as if by the expression new Array()where Array is the standard built-in

constructor with that name.

1.
2. LetSbe
3.
4. Letleng
148

thA be 0.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

©No o

©

11.

12.
13.

14.

15.

16.

ISO/IEC 16262:2011(E)

If limit is undefined, let lim = 23°-1; else let lim = ToUint32(limit).

Let s be the number of characters in S.

Letp=0.

If separator is a RegExp object (its [[Class]] is ""RegExp""), let R = separator; otherwise let R =
ToString(separator).

If lim =0, return A.

. If separator is undefined, then

a. Call the [[DefineOwnProperty]] internal method of A with arguments "'0"", Property Descriptor
{[[Value]]: S, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
b. Return A.
If s =0, then
a. Call SphtMatch(S, 0, R) and let z be i1ts MatchResult result.
b. If zis not failure, return A.
c. Call the [[DefineOwnProperty]] internal method of A with arguments **0"*, Propgrty)Descriptor
{[[\Value]l: S, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}; and falge.
d. Return A.
| et g =p.
Repeat, while g = s
a. Call SplitMatch(S, g, R) and let z be its MatchResult result.
b. If zis failure, then let g = g+1.
c. Else, zisnot failure
i. z must be a State. Let e be z's endIndex and let capcbez’s captures array.
ii. If e=p, thenletq = q+1.
iii. Else,e#p

1. Let T be a String value equal to the\substring of S consisting of the charpcters at

positions p (inclusive) through, g, (exclusive).

2. Call the [[DefineOwnProperty]Jsinternal method of A with arguments
ToString(lengthA), PropertyDescriptor {[[Value]]: T, [[Writable]]: trug
[[Enumerable]]: true, [[Configurable]]: true}, and false.

Increment lengthA by-2:
If lengthA = lim, return A.
Letp=e.
Leti=0.
Repeat, while i is not equal to the number of elements in cap.
a . Leti=i+l.
b.(CCall the [[DefineOwnProperty]] internal method of A with arguments
ToString(lengthA), Property Descriptor {[[Value]]: capli], [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
¢ Increment lengthA by 1.
d If lengthA = lim, return A.
8. Letqg=p.
| et T be a Stringwalue equal to the substring of S consisting of the characters at positions p (inclusive)
hrough s (exelusive).
Call the [[DefineOwnProperty]] internal method of A with arguments ToString(lengthA), Property Descriptor
([[\Valtel]: T, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
Retura/A.

Nookw

The abstract operation SplitMatch takes three parameters, a String S, an integer g, and a String or RegExp R,
and performs the following in order to return a MatchResult (see 15.10.2.1):

1.

gRwn

o

If R is a RegExp object (its [[Class]] is ""RegExp"), then
a. Call the [[Match]] internal method of R giving it the arguments S and g, and return the MatchResult
result.
Type(R) must be String. Let r be the number of characters in R.
Let s be the number of characters in S.
If g+r > s then return the MatchResult failure.
If there exists an integer i between 0 (inclusive) and r (exclusive) such that the character at position g+i of S
is different from the character at position i of R, then return failure.
Let cap be an empty array of captures (see 15.10.2.1).
Return the State (q+r, cap). (see 15.10.2.1)

© ISO/IEC 2011 — All rights reserved 149

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

The length property of the spl it method is 2.
NOTE 1 The spl it method ignores the value of separator.global for separators that are RegExp objects.

NOTE 2 The split function is intentionally generic; it does not require that its this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

15.5.4.15 String.prototype.substring (start, end)

The substring method takes two arguments start and end, and returns a substrlng of the result of convertlng
this object t :
end of the S rlng (or through the end of the String is end is undeflned) The result is a Str|ng value not a S ring
object.

If either argtiment is NaN or negative, it is replaced with zero; if either argument is larger than the length of the
String, it is feplaced with the length of the String.

If start is larger than end, they are swapped.
The following steps are taken:

Call ChgckObjectCoercible passing the this value as its argument.

Let S bg the result of calling ToString, giving it the this value as its argument.
Let len be the number of characters in S.

Let intSfart be Tolnteger(start).

If end i undefined, let intEnd be len; else let intEnd be Tolnteger(end).

Let fina)Start be min(max(intStart, 0), len).

Let fina)End be min(max(intEnd, 0), len).

Let fronp be min(finalStart, finalEnd).

Let to bg max(finalStart, finalEnd).

0. Return g String whose length is to - from, containing\characters from S, namely the characters with indicgs
from through to —1, in ascending order.

BOoo~NoO~whE

The IengtJr property of the substring method'is 2.

NOTE he substring function is intentionally generic; it does not require that its this value be a String olpject.
Therefore, it ¢an be transferred to other kinds’of objects for use as a method.

15.5.4.16 Ytring.prototype.tolowerCase ()
The following steps are taken:

1. Call ChgckObjectCoercible passing the this value as its argument.

2. Let S bgthe pesult of calling ToString, giving it the this value as its argument.

3. Let L bgadsString where each character of L is either the Unicode lowercase equivalent of the corresponding
charactqr of*S or the actual corresponding character of S if no Unicode lowercase equivalent exists.

4. Return L.

For the purposes of this operation, the 16-bit code units of the Strings are treated as code points in the
Unicode Basic Multilingual Plane. Surrogate code points are directly transferred from S to L without any

mapping.

The result must be derived according to the case mappings in the Unicode character database (this explicitly
includes not only the UnicodeData.txt file, but also the SpecialCasings.txt file that accompanies it in Unicode
2.1.8 and later).

NOTE 1 The case mapping of some characters may produce multiple characters. In this case the result String may not
be the same length as the source String. Because both toUpperCase and toLowerCase have context-sensitive

150 © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

behaviour, the functions are not symmetrical. In other words, s.toUpperCase() .toLowerCase() is not necessarily

equal to s. toLowerCase().

NOTE 2 The toLowerCase function is intentionally generic; it does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.17 String.prototype.toLocaleLowerCase ()

This function works exactly the same as toLowerCase except that its result is intended to yield the correct

result for the host environment’s current locale, rather than a locale-independent result. There w
diff i i . i
Unigode case mappings.

NOTEE 1 The first parameter to this function is likely to be used in a future version of this standard; it is r
that [mplementations do not use this parameter position for anything else.

NOTE 2 The toLocalelLowerCase function is intentionally generic; it does not require(that its this valu
obje¢t. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.18 String.prototype.toUpperCase ()
function behaves in exactly the same way as String.proetotype.tolLowerCase,

NOTE The toUpperCase function is intentionally generic; itdoes not require that its this value be a
Thergfore, it can be transferred to other kinds of objects for use as‘a method.

15.9.4.19 String.prototype.toLocaleUpperCase ()
Thig function works exactly the same as toUpperCase except that its result is intended to yield
resylt for the host environment’s current locale, rather than a locale-independent result. There w
diffgrence in the few cases (such as Turkish) where the rules for that language conflict with
Unigode case mappings.

NOTEE 1 The first parameter to this.function is likely to be used in a future version of this standard; it is r
that [mplementations do not use this parameter position for anything else.

NOTE 2 The toLocaleUpperCase function is intentionally generic; it does not require that its this valuy
obje¢t. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.20 String.prototype.trim ()

Thelfollowing:Steps are taken:

ill only be a
the regular

bcommended

e be a String

except that

acters are mapped to their uppercase equivalents as specified in'the Unicode Character Databgse.

Btring object.

the correct
Il only be a
the regular

bcommended

e be a String

1. [Call.CheckObjectCoercible passing the this value as its argument.

2. LCEtrsShetheTesuttofcathimg ToStrimng, giving itthe this vatue as 1S argumment.

3. Let T be a String value that is a copy of S with both leading and trailing white space removed. The definition

of white space is the union of WhiteSpace and LineTerminator.
4. ReturnT.

NOTE The trim function is intentionally generic; it does not require that its this value be a String object
can be transferred to other kinds of objects for use as a method.

© ISO/IEC 2011 — Al rights reserved

. Therefore, it

151

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and their [[Class]] internal property value is
"'String". String instances also have a [[PrimitiveValue]] internal property, a length property, and a set of
enumerable properties with array index names.

The [[PrimitiveValue]] internal property is the String value represented by this String object. The array index
named properties correspond to the individual characters of the String value. A special [[GetOwnProperty]]
internal method is used to specify the number, values, and attributes of the array index named properties.

15.5.5.1 length
The numbef of characters in the String value represented by this String object.

Once a Stfing object is created, this property is unchanging. It has the attributes { [[Writable]]: f3lse,
[[Enumerable]]: false, [[Configurable]]: false }.

15.5.5.2 [|GetOwnProperty]] (P)

String objedts use a variation of the [[GetOwnProperty]] internal method used for other native ECMASLript
objects (8.12.1). This special internal method p rovides access to named_ (properties corresponding to the
individual characters of String objects.

Assume S i a String object and P is a String.

When the [[GetOwnProperty]] internal method of S is called with ‘property name P, the following steps| are
taken:

1. Let desq be the result of calling the default [[GetOwnPRfoperty]] internal method (8.12.1) on S with argument

P.

If desc is not undefined return desc.

If ToString(abs(Tolnteger(P))) is not the same-value as P, return undefined.

Let str e the String value of the [[PrimitiveValue]] internal property of S.

Let inddx be Tolnteger(P).

Let len be the number of characters instr.

If len <jindex, return undefined.

Let resyltStr be a String of length'l, containing one character from str, specifically the character at posit|on

index, Where the first (leftmost)-character in str is considered to be at position 0, the next one at position

and so gn.

9. Return g Property Descriptor { [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,
[[Configurable]]: false-}

NGO~ wN

=

15.6 Boolpan Objects

15.6.1 Thq Boolean Constructor Called as a Function

When Boolean is called as a function rather than as a constructor, it performs a type conversion.

15.6.1.1 Boolean (value)

Returns a Boolean value (not a Boolean object) computed by ToBoolean(value).

15.6.2 The Boolean Constructor

When Boolean is called as part of a new expression it is a constructor: it initialises the newly created object.

152 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.6.2.1 new Boolean (value)

The [[Prototype]] internal property of the newly constructed object is set to the original Boolean prototype

obje

The

ct, the one that is the initial value of Boolean .prototype (15.6.3.1).

[[Class]] internal property of the newly constructed Boolean object is set to ""Boolean™'.

The [[PrimitiveValue]] internal property of the newly constructed Boolean object is set to ToBoolean(value).

The

[[Extensible]] internal property of the newly constructed object is set to true.

15.6

The
(15.

Bes
follo}

15.6
The
This
15.6

The

The
prot

15.6

The

15.6

The

N =

.3 Properties of the Boolean Constructor

3.4).

des the internal properties and the length property (whose value is 1), thepBoeolean constru
wing property:

.3.1 Boolean.prototype
initial value of Boolean.prototype is the Boolean prototype*object (15.6.4).

property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

.4 Properties of the Boolean Prototype Object
Boolean prototype object is itself a Boolean objett (its [[Class]] is "'Boolean') whose value is

value of the [[Prototypel]] internal property of the Boolean prototype object is the standard by
btype object (15.2.4).

.4.1 Boolean.prototype.consfructor

initial value of Boolean .prototype.constructor is the built-in Boolean constructor.

.4.2 Boolean.prototype.toString ()
following steps-are taken:
| et B he'the this value.

f Type(B) is Boolean, then let b be B.
Fise’if Type(B) is Object and the value of the [[Class]] internal property of B is ""Boolean"’, th

value of the [[Prototype]] internal property of the Boolean constructor is the Functiolr prottype obje ct

ctor has the

false.

ilt-in Object

en let b be

4.
5.

| L £ il [ID: HH \Lal 11l 1t L re £ D
me varuc UrT Ui |_|_I IIIIIILIVCVQIUUJJ mreeTirar 'JIUPCII.y Ul .
Else throw a TypeError exception.

If b is true, then return ""true'; else return "false".

15.6.4.3 Boolean.prototype.valueOf ()

The

1.
2.
3.

following steps are taken:

Let B be the this value.
If Type(B) is Boolean, then let b be B.

Else if Type(B) is Object and the value of the [[Class]] internal property of B is ""Boolean™, then let b be

the value of the [[PrimitiveValue]] internal property of B.

© ISO/IEC 2011 — Al rights reserved

153

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

4.
5.

Else throw a TypeError exception.
Return b.

15.6.5 Properties of Boolean Instances

Boolean instances inherit properties from the Boolean p rototype object and their [[Class]] internal property
value is "'‘Boolean". Boolean instances also have a [[PrimitiveValue]] internal property.

The [[PrimitiveValue]] internal property is the Boolean value represented by this Boolean object.

15.7 Num

15.7.1 The

When Numb

15.7.1.1 N

Returns a |
returns +0.

156.7.2 The

When Numb

15.7.21

The [[Proto
object, the g

The [[Class

The [[Primit
supplied, el

The [[Exten

per Objects

Number Constructor Called as a Function

er is called as a function rather than as a constructor, it performs a type conversion.

umber ([value])

Number value (not a Number object) computed by ToNumber(value)\\if value was supplied,

Number Constructor

er is called as part of a new expression it is a construgtor! it initialises the newly created objec

new Number ([value])

ype]] internal property of the newly constructed object is set to the original Number proto
ne that is the initial value of Number . prétotype (15.7.3.1).

| internal property of the newly constructed object is set to ""Number™.

veValue]] internal property-ofithe newly constructed object is set to ToNumber(value) if value
se to +0.

Sible]] internal property-of the newly constructed object is set to true.

15.7.3 Properties of the-Number Constructor

else

type

was

The value ¢f the [[Prototype]] internal property of the Number constructor is the Function prototype object

(15.3.4).

Besides the

internal properties and the length property (whose value is 1), the Number constructor hag

the

following properties:

15.7.3.1

Number.prototype

The initial value of Number . prototype is the Number prototype object (15.7.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

154

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

15.7

ISO/IEC 16262:2011(E)

.3.2 Number.MAX_VALUE

The value of Number_MAX_VALUE is the largest positive finite value of the Number type, w hich is
approximately 1.7976931348623157 x 10°®,

This

15.7

property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

.3.3 Number.MIN_VALUE

The value of Number .MIN_VALUE is the smallest positive value of the Number type, which is approximately

224

5x 10

Thig

15.7
The

This

15.7
The

Thig

15.7
The

This

15.7
The

The
prot

Unle
and
[[Clg

property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

.3.4 Number.NaN
value of Number .NaN is NaN.

property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

.3.5 Number.NEGATIVE_INFINITY
value of Number.NEGATIVE_INFINITY is —oo.

property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

.3.6 Number.POSITIVE_INFINITY
value of Number.POSITIVE_INFINITY is;+eo.

property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

.4 Properties of the Number Prototype Object
Number prototype object is itself a Number object (its [[Class]] is ""Number') whose value is

value of the [[Prototypel]] internal property of the Number prototype object is the standard by
btype object (15.2.4).

ss explicitly ‘stated otherwise, the methods of the Number prototype object defined below are
the thisivalue passed to them must be either a Number value or an Object for which the
ss]] internal property is ""Number"".

0.

ilt-in Object

not generic
alue of the

In tt

¢ foftowingdescriptions of functionsthatare properties of the Number prototype object, the

hrase “this

Number object” refers to either the object that is the this value for the invocation of the function or, if

Type(this value) is Number,

an object that is created as if by the expression new Number (this value)

where Number is the standard built-in constructor with that name. Also, the phrase “this Number value” refers
to either the Number value represented by this Number object, that is, the value of the [[PrimitiveValue]]
internal property of this Number object or the this value if its type is Number. A TypeError exception is
thrown if the this value is neither an object for which the value of the [[Class]] internal property is ""Number**

ora

value whose type is Number.

15.7.4.1 Number.prototype.constructor

The

initial value of Number . prototype.constructor is the built-in Number constructor.

© ISO/IEC 2011 — Al rights reserved

155

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.7.4.2 Number.prototype.toString ([radix])

The optional radix should be an integer value in the inclusive range 2 to 36. If radix not present or is undefined
the Number 10 is used as the value of radix. If Tolnteger(radix) is the Number 10 then this Number value is

given as an

argument to the ToString abstract operation; the resulting String value is returned.

If Tolnteger(radix) isn ot an integer between 2an d 36 inc lusive throw a RangeError exception. If
Tolnteger(radix) is an integer from 2 to 36, but not 10, the result is a String representation of this Number value
using the specified radix. Letters a-z are used for digits with values 10 through 35. The precise algorithm is
implementation-dependent if the radix is not 10, however the algorithm should be a generalisation of that

specified in

9.8.1.

The toStr
Number obj

15.7.4.3 N
Produces a
environmen

encouraged

NOTE
that impleme

15.7.44 N
Returns this

The value
Number obj

15.7.4.5 N

ng function is not generic; it throws a TypeError exception if its this value is not a Number
bct. Therefore, it cannot be transferred to other kinds of objects for use as a method.

umber.prototype.toLocaleString()

String value that represents this Number value formatted according to the-conventions of the
I's current locale. This function is impl ementation-dependent, and 4tisp ermissible, but
, for it to return the same thing as toString.

Tlhe first parameter to this function is likely to be used in a future versjoh, of this standard; it is recomme|

htations do not use this parameter position for anything else.

umber.prototype.valueOf ()
Number value.

DT function is not generic; it throws a TypeEfror exception if its this value is not a Number
ect. Therefore, it cannot be transferred to ather kinds of objects for use as a method.

umber.prototype.toFixed (fractionDigits)

ring containing this Number.value represented in decimal fixed-point notation with fraction
he decimal point. If fractionDigits is undefined, 0 is assumed. Specifically, perform the follo

Tolnteger(fractionDigits). (If fractionDigits is undefined, this step produces the value 0).
r f > 20, throw a‘'RangeError exception.

this Number yalue.

aN, return the-String "*NaN"".

the empty_String.

then

Let ssbe "-".

Lef'x = —X.

or a

host
not

hded

igits
ving

Return a S
digits after
steps:
1. Letfbe
2. Iff<0
3. Letxbe
4. IfxisN
5. Letsbhe
6. Ifx<0,
a.
b
7.

a.
8.
a.
b.
c.
156

If x > 10%%, then

Let m = ToString(x).

Else, x < 10%*

Let n be an integer for which the exact mathematical value of n + 10" — x is as close to zero as
possible. If there are two such n, pick the larger n.
If n =0, let m be the String ""0"". Otherwise, let m be the String consisting of the digits of the
decimal representation of n (in order, with no leading zeroes).
If f =0, then
i. Let k be the number of characters in m.
ii. If k <f, then
1. Let z be the String consisting of f+1-k occurrences of the character ‘0’.
2. Let m be the concatenation of Strings z and m.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

3. Letk=f+1.
iii. Let a be the first k—f characters of m, and let b be the remaining f characters of m.
iv. Let m be the concatenation of the three Strings a, **."*, and b.

9. Return the concatenation of the Strings s and m.

The Iength property of the toFixed method is 1.

If the toFixed method is called with more than one argument, then the behaviour is undefined (see
clause 15).

An implementation is permitted to extend the behaviour of toFixed for values of fractionDigits less than 0 or
gredter than 20. In this case toFixed would not necessarily throw RangeError for such values;

NOTE The output of toFixed may be more precise than toString for some values because\toStrifg only prints
enoygh significant digits to distinguish the number from adjacent number values. For example,
(10g0000000000000128) . toString() returns **1000000000000000100",

whilg¢ (1000000000000000128) . toFixed(0) returns **1000000000000000128"".

15.71.4.6 Number.prototype.toExponential (fractionDigits)

Return a String containing this Number value represented in decimal exponential notation with ong digit before
the pignificand's decimal point and fractionDigits digits after the significand's decimal point. If fragtionDigits is
undefined, include as many significand digits as necessary to-uniq uely specify the Number |(just like in
ToS}ring except that in this case the Number is always outputin‘expo nential notation). Specificglly, perform
the following steps:

|_et x be this Number value.
|_et f be Tolnteger(fractionDigits).
f x is NaN, return the String ""NaN"".
|_et s be the empty String.
fx <0, then
a. Letshbe™-".
b. Letx=-x.
6. |fx =+, then
a. Return the concatenatign,of the Strings s and "Infinity".

A A o

7. [f fractionDigits is not undgfined and (f < 0 or f > 20), throw a RangeError exception.
8. |fx=0,then

a. Letf=0.

b. Letm be thé String consisting of f+1 occurrences of the character ‘0’.

c. Lete=0!
9. Else,x#0

a. If fraetionDigits is not undefined, then
i Let e and n be integers such that 10" < n < 10™* and for which the exact mathematical value
of n x 105" = x is as close to zero as possible. If there are two such sets of e and|n, pick the
e and n for which n x 10° is larger.
b. Else, fractionDigits is undefined
i. Lete, n, and f be integers such that f > 0, 10" < n < 10", the number value for n x 10°"is x,
and f is as small as possible. Note that the decimal representation of n has f+1 digits, n is
not divisible by 10, and the least significant digit of n is not necessarily uniquely
determined by these criteria.
c. Letm be the String consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).
10. If f # 0, then
a. Leta be the first character of m, and let b be the remaining f characters of m.
b. Let m be the concatenation of the three Strings a, **."", and b.
11. If e =0, then
a. Letc="+"._
b. Letd="0".

© ISO/IEC 2011 — Al rights reserved 157

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

12. Else
a.
b.

C.

13. Let m be the concatenation of the four Strings m,

14. Returnt

If e >0, thenletc=""+"
Else,e<0

i. Letc=""-"".

ii. Lete = —e.
Let d be the String consisting of the digits of the decimal representation of e (in order, with no
leading zeroes).

e, c, and d.

he concatenation of the Strings s and m.

The Iength property of the toExponential method is 1.

If the toEx
clause 15).

An impleme
than 0 or g
values.

NOTE H
recommende

15.7.4.7 N

Return a St
before the s
fixed notati
Specifically,

Let x be
If precis
Let p be
Ifxis N
Lets be
If x <0,
a.
b.
Ifx=+
a.
Ifp<1
Ifx=0,
a.

o k~whE

ponential method is called with more than one argument, then the behaviour is undefined

ntation is permitted to extend the be haviour of toExponential for values of fractionDigits
eater than 20. In this case toExponential would not necessarily throw RangeError for

or implementations that provide more accurate conversions than required‘.by the rules above,
d that the following alternative version of step 9.b.i be used as a guideline:

Lete, n, and f be integers such that f > 0, 10" < n < 10, the numberwvalue for n x 10" is x, and f is as
as possible. If there are multiple possibilities for n, choose the valué-of n for which n x 10 is closest in
to x. If there are two such possible values of n, choose the onethat’is even.

umber.prototype.toPrecision (precision)

ing containing this Number value represented ejther in decimal exponential notation with one
ignificand's decimal point and precision-1 digits after the significand's decimal point or in deg
pn with precision significant digits. If precision is undefined, call ToString (9.8.1) inst
perform the following steps:

this Number value.

ion is undefined, return ToString(x).
Tolnteger(precision).

aN, return the String ""NaN®.

the empty String.

then

Letsbe "-"".

Let x = —X.

o, then

Return the~concatenation of the Strings s and *"Infinity".
or p > 21 throw a RangeError exception.
then

see

less
such

it is

small
alue

digit
imal
pad.

L.&t'm be the String consisting of p occurrences of the character ‘0’.

b.
10. Else x #
a.

158

LCt C = G.
0,
Let e and n be integers such that 10°™ < n < 10° and for which the exact mathematical value of n

X

10°P*1 _ x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for

which n x 105" is larger.

Let m be the String consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).

Ife<—6o0re=>p,then

i Let a be the first character of m, and let b be the remaining p—1 characters of m.

ii. Let m be the concatenation of the three Strings a, **."", and b.
iii. If e =0, then

1. Letc="+"andd="0".
iv. Else e # 0,

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

1. Ife>0, then
a Letc="+",

2. Elsee<0,
a Letc="-",
b Lete=-e.

3. Let d be the String consisting of the digits of the decimal representation of e (in
order, with no leading zeroes).
V. Let m be the concatenation of the five Strings s, m, ""e"*, c, and d.
11. If e = p-1, then return the concatenation of the Strings s and m.
12. If e > 0, then
a. Let m be the concatenation of the first e+1 characters of m, the character ., and the remaining p—
(e+1) characters of m.

13. Elsee <0,
a. Let m be the concatenation of the String ""0."", —(e+1) occurrences of the character*0’, pnd the
String m.

14. Return the concatenation of the Strings s and m.

The|length property of the toPrecision method is 1.

If the toPrecision method is called with more than one arg ument, then the behaviour is undefined (see
clause 15).

An implementation is permitted to extend the behaviour of toPrecdsion for values of precision less than 1 or
gredter than 21. In this case toPrecision would not necessarilythrow RangeError for such valdes.

15.1.5 Properties of Number Instances

Nunpber instances inherit properties from the Numbeér-prototype object and their [[Class]] interpal property
valug is ""Number™'. Number instances also have a.[[PrimitiveValue]] internal property.

The[[[PrimitiveValue]] internal property is the Number value represented by this Number object.

15.8 The Math Object
The|Math object is a single objectthat has some named properties, some of which are functions.

The|value of the [[Prototype]]. internal property of the Math object is the standard built-in Objeft prototype
object (15.2.4). The valugof the [[Class]] internal property of the Math object is **Math"".

The|Math object dees-not have a [[Construct]] internal property; it is not possible to use the Math| object as a
congtructor with,the'new operator.

The|Math object does not have a [[Call]] in ternal property; it is n ot possible to invoke the Math|object as a
fungtion.

NOT

15.8.1 Value Properties of the Math Object

15.8.11 E
The Number value for e, the base of the natural logarithms, which is approximately 2.7182818284590452354.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

© ISO/IEC 2011 — All rights reserved 159

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.8.1.2 LN10
The Number value for the natural logarithm of 10, which is approximately 2.302585092994046.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.8.1.3 LN2
The Number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

This properfy-he

15.8.1.4 LOG2E

The Number value for the base-2 logarithm of e, the base of the natural logarithms; this valug lisyapproximately

1.4426950408889634.
This properfy has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE he value of Math.LOG2E is approximately the reciprocal of the value of Mathy'LN2.

15.8.1.5 LOG10E

The Numbgr value for the base-10 logarithm of e, the base ©fthe natural logarithms; this valu
approximately 0.4342944819032518.

This properfy has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Tlhe value of Math .LOG10E is approximately the reeiprocal of the value of Math.LN10.

15.8.1.6 Al

The Numbgr value for =, the ratio of the ‘circumference of a circle to its diameter, which is approximately

3.1415926535897932.

This properfy has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.8.1.7 SQRT1_2
The Numbef value for the-square root of %2, which is approximately 0.7071067811865476.

This properfy has-the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Tlhewalue of Math.SQRT1 2 is approximately the reciprocal of the value of Math.SQRT2.

15.8.1.8 SQRT2
The Number value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

160 © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.8.2 Function Properties of the Math Object

Each of the following Math object functions applies the ToNumber abstract operator to each of its arguments
(in left-to-right order if there is more than one) and then performs a computation on the resulting Number
value(s).

In the function descriptions below, the symbols NaN, -0, +0, — and +e refer to the Number values described

in 8.

NOTE

5.

The behaviour of the functions acos, asin, atan, atan2, cos, exp, log, pow, sin, sgrt, and tan is not

precisely specified here except to require specific results for certain argument values that represent boundary cases of

inter
matt]
an in
avail

Althg
impl
math

bst. For other argument values, these functions are intended to compute approximations to the resu
ematical functions, but some latitude is allowed in the choice of approximation algorithms. The genera
hplementer should be able to use the same mathematical library for ECMAScript on a given hardware p
Able to C programmers on that platform.

ugh the choice of algorithms is left to the implementation, it is recommended (but not specified by this 1
bmentations use the approximation algorithms for IEEE 754 arithmetic contained in jfdDibm, the freely
ematical library from Sun Microsystems (http://www.netlib.org/fdlibm).

15.8.2.1 abs (x)

Returns the absolute value of x; the result has the same magnitudetas*x but has positive sign.

e If xis NaN, the result is NaN.
e If xis -0, the result is +0.
e If xis —oo, the result is +oo.

15.8.2.2 acos (x)

Retdrns an implementation-dependent approximation to the arc cosine of x. The result is expressg

and

15.8

ranges from +0 to +n.

If x is NaN, the result is NaN.

If x is greater than 1, the.result is NaN.
If x is less than —1, the résult is NaN.
If x is exactly 1,¢he result is +0.

.2.3 asin (x)

Retyrns an implementation-dependent approximation to the arc sine of x. The result is expresse|

and

ranges from —n/2 to +n/2.

If x is NaN, the result is NaN.
If X is greater than 1, the result is NaN.

ts of familiar
intent is that
atform that is

tandard) that
distributable

d in radians

H in radians

If x is less than —1, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is —0.

15.8.2.4 atan (x)

Returns an implementation-dependent approximation to the arc tangent of x. The result is expressed in
radians and ranges from —m/2 to +n/2.

© ISO/IEC 2011 — Al rights reserved

161

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is =0, the result is 0.

If X is +o0, the result is an implementation-dependent approximation to +m/2.
If X is —oo, the result is an implementation-dependent approximation to —/2.

15.8.2.5 atan2 (y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the arguments y
and x, where the signs of y and x are used to determine the quadrant of the result. Note that it is intentional

and traditiofatforthe two-argument arc tangent function that the argument named y be firstand the argument

named x be|second. The result is expressed in radians and ranges from —x to +r.

If either x or y is NaN, the result is NaN.

If y>0 and x is +0, the result is an implementation-dependent approximation to +n/2.

If y>0 and x is -0, the result is an implementation-dependent approximation to +m/2.

If y is +0 and x>0, the result is +0.

If y is +0 and x is +0, the result is +0.

Ify is +0 and x is -0, the result is an implementation-dependent approximationto” +r.

If y is +0 and x<0, the result is an implementation-dependent approximatiohto +m.

If y is —0 and x>0, the result is 0.

If y is =0 and x is +0, the result is —0.

If y is —0 and x is -0, the result is an implementation-dependent appreximation to —x.

If y is —0 and x<0, the result is an implementation-dependent approximation to —.

If y<0 and x is +0, the result is an implementation-dependentapproximation to —m/2.

If y<0 and x is -0, the result is an implementation-dependent approximation to —m/2.

If y>0 and y is finite and x is +oo, the result is +0.

If y>0 and y is finite and x is —o, the result if an implementation-dependent approximation to +mn.
If y<0 and y is finite and x is +o, the result is —0.

If y<0 and y is finite and x is —oo, the result is;an‘implementation-dependent approximation to —.
Ify is +o0 and x is finite, the result is an implementation-dependent approximation to +n/2.
If y is —o and x is finite, the result is ap-implementation-dependent approximation to —mu/2.
If y is +o0 and x is +oo, the result is.an implementation-dependent approximation to +n/4.
If y is +o0 and X is —oo, the result.is.an implementation-dependent approximation to +3n/4.
If y is —oo0 and x is +oo, the resultis an implementation-dependent approximation to —mn/4.
If y is —o0 and x is —oo, the result is an implementation-dependent approximation to —3n/4.

15.8.2.6 cgil (x)

Returns thg smallest (Closest to —) Number value that is not less than x and is equal to a mathemdtical
integer. If x |s already an'integer, the result is x.

If x isNaN, the result is NaN.

ITXNS +0, the result is +0.

If x is -0, the result is —0.

If X is +o0, the result is +oo.

If x is —oo, the result is —oo.

If x is less than 0 but greater than -1, the result is —0.

The value of Math.cei 1 (X) is the same as the value of -Math.floor(-x).

15.8.2.7 cos (x)

Returns an implementation-dependent approximation to the cosine of x. The argument is expressed in radians.

162 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

If x is NaN, the result is NaN.
If x is +0, the result is 1.

If x is =0, the result is 1.

If x is +oo, the result is NaN.
If x is —oo, the result is NaN.

15.8.2.8 exp (x)

Returns an implementation-dependent approximation to the exponential function of x (e raised to the power of

X, where e is the base of the natural logarithms).

If x is NaN, the result is NaN.
If x is +0, the result is 1.

If x is -0, the result is 1.

If X is +oo, the result is +oo.

If X is —oo, the result is +0.

15.8.2.9 floor (x)

integer. If x is already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is =0, the result is —0.

If x is +oo, the result is +o.

If X is —oo, the result is —oo.

If x is greater than 0 but less than 1, the reSult is +0.

NOTE The value of Math.floor(x) is the same as the value of -Math.cei l (-x).

15.8.2.10 log (x)

Returns an implementation-dependent approximation to the natural logarithm of x.
If x is NaN, the resultis NaN.

If x is less than.0ythe result is NaN.

If x is +0 or £0) the result is —co.

If x is 1, the result is +0.

If X is«00; the result is +oo.

15.8.2.11 max([value1 [, value2 [, ...11]1)

Givgn. Zero or more arguments, calls ToNumber on each of the arguments and returns the Ia|

RetIrns the greatest (closest to +o0) Number value that is not greater-than x and is equal to a m

2 thematical

rgest of the

resuttimgvatues:

If no arguments are given, the result is —oo.
e Ifany value is NaN, the result is NaN.

e The comparison of values to determine the largest value is done as in 11.8.5 except that +0 is considered to

be larger than —0.

The Iength property of the max method is 2.

© ISO/IEC 2011 — Al rights reserved

163

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.8.2.12 min ([value1 [, value2[, ...111)

Given zero or more arguments, calls ToNumber on each of the arguments and returns the smallest of the
resulting values.

If no arguments are given, the result is +oo.
If any value is NaN, the result is NaN.

The comparison of values to determine the smallest value is done as in 11.8.5 except that +0 is considered

to be larger than —0.

The length_ property of the min method is 2

15.8.2.13 pow (X, y)

Returns an

mplementation-dependent approximation to the result of raising x to the powery.

If y is NaN, the result is NaN.

Ify is +0, the result is 1, even if x is NaN.

Ify is -0, the result is 1, even if x is NaN.

If x is NaN and y is nonzero, the result is NaN.

If abs(x)>1 and y is +oo, the result is +oo.

If abs(x)>1 and y is —oo, the result is +0.

If abs(x)==1 and y is +o, the result is NaN.

If abs(x)==1 and y is —oo, the result is NaN.

If abs(x)<1 and y is +o, the result is +0.

If abs(x)<1 and y is —oo, the result is +oo.

If X is +o0 and y>0, the result is +oo.

If X is +o0 and y<O0, the result is +0.

If x is —oo and y>0 and y is an odd integer, the result is —o.

If x is —0 and y>0 and y is not an odd integer;-the result is +oo.
If x is —e0 and y<0 and y is an odd integer, the'result is 0.

If X is —e0 and y<0 and y is not an odd integer, the result is +0.
If x is +0 and y>0, the result is +0.

If x is +0 and y<O0, the result is +o6.

If x is —0 and y>0 and y is an(odd integer, the result is 0.

If x is —0 and y>0 and y is not an odd integer, the result is +0.
If x is —0 and y<0 and ysis,an odd integer, the result is —o.

If x is —0 and y<0 and.y/is not an odd integer, the result is +co.
If x<0 and x is finite-and y is finite and y is not an integer, the result is NaN.

15.8.2.14 random ()

Returns a N

umber’v alue with positive sign, greater than or equal to 0 but less than 1, chosen random
pseudo rangomly with approximately uniform distribution over that range, using an implementation-depen

y or
Hent

algorithm or strategy. This funcfion takes no arguments.

15.8.2.15 round (x)

Returns the Number value that is closest to x and is equal to a mathematical integer. If two integer Number
values are equally close to x, then the result is the Number value that is closer to +«. If x is already an integer,
the result is x.

e o o o

164

If x is NaN, the result is NaN.
If x is +0, the result is +0.

If x is =0, the result is -0.

If X is +o0, the result is +oo.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

e If xis —oo, the result is —oo.
e If xis greater than 0 but less than 0.5, the result is +0.
e If xis less than 0 but greater than or equal to -0.5, the result is —0.

NOTE 1 Math.round(3.5) returns 4, but Math.round(-3.5) returns -3.

NOTE 2 The value of Math.round(x) is the same as the value of Math.floor(x+0.5), except when x is -0 or is
less than 0 but greater than or equal to -0.5; for these cases Math.round(x) returns -0, but Math.floor(x+0.5)
returns +0.

15 T“‘G—!;u (I\;
Retdirns an implementation-dependent approximation to the sine of x. The argument is expressed in radians.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is =0, the result is —0.

If X is +o0 Or —oo, the result is NaN.

15.8.2.17 sqrt (x)
Retdirns an implementation-dependent approximation to the squareoot of x.

If x is NaN, the result is NaN.

If x is less than 0, the result is NaN.
If x is +0, the result is +0.

If x is -0, the result is 0.

If X is +o0, the result is +oo.

15.4.2.18 tan (x)

RetlLrns an imp lementation-dependent..approximation to the tangent of x. The argument is e kpressed in
radigns.

If x is NaN, the result.is NaN.

If x is +0, the result is +0.

If x is -0, the-result is —0.

If X is +oo(OF 00, the result is NaN.

15.9 Date Objects

15.9.1 _Overview of Date Objects and Definitions of Abstract Operators

+5-:9-t-H—Note that, in

The fU“UW;I Y fullbt;Ul IS diItT dbbtl dbt upclatiunb t;ldt Upcldtv Ul t;IIIC vaiuca (Ulcﬁllud ;II
every case, if any argument to one of these functions is NaN, the result will be NaN.

15.9.1.1 Time Values and Time Range

A Date object contains a Number indicating a particular instant in time to within a millisecond. Such a Number
is called a time value. A time value may also be NaN, indicating that the Date object does not represent a
specific instant of time.

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. In time values leap seconds

are ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript Number values
can represent all inte gers from —9,007,199,254,740,992 to 9,007,199,254,740,992; this range suffices to

© ISO/IEC 2011 — All rights reserved 165

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

measure times to millisecond precision for any instant that is within approximately 285,616 years, either

forward or b

ackward, from 01 January, 1970 UTC.

The actual range of times supported by E CMAScript Date objects is slightly smaller: exactly —100,000,000
days to 100,000,000 days measured relative to midnight at the beginning of 01 January, 1970 UTC. This gives

arange of 8

,640,000,000,000,000 milliseconds to either side of 01 January, 1970 UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the value +0.

15.9.1.2 Day Number and Time within Day

A given timel value t belongs to day number

where the n

Day(t) = floor(t / msPerDay)
umber of milliseconds per day is
msPerDay = 86400000

The remaindler is called the time within the day:

TimeWithinDay(t) = t modulo msPerDay

15.9.1.3 Year Number

ECMAScrip
the month &
and ((not di

All non-leap
in February

The time va

isible by 100) or (divisible by 400)). The number of days)inyear number y is therefore defined

DaysinYear(y) =365 if (y modulo4) =0
=366 if (y modulo 4) =0 and {y"modulo 100) = 0
=365 if (y modulo 100) =0ahd (y modulo 400) = 0
=366 if (y modulo 400) =0

The day number of the first day of yeary is given by:

ue of the start of a year is:

TimeFromYear(y) =umsPerDay x DayFromYear(y)

A time valug determines a year by:

The leap-ye

YearFromTime(t) = the largest integer y (closest to positive infinity) such that TimeFromYear(y)
ar function st for a time within a leap year and otherwise is zero:

InLeapYear(t) =0 if DaysInYear(YearFromTime(t)) = 365
=1 if DaysInYear(YearFromTime(t)) = 366

uses an extrapolated Gregorian system to map a day number’to a year number and to deter{rine

nd date within that year. In this system, leap years are precisely those which are (divisible Ry 4)

y

years have 365 days with the usual number of days per month and leap years have an extra|day

DayFromYear(y) =365 x (y=1970) + floor((y—1969)/4) — floor((y—1901)/100) + floor((y—1601)/400)

15.9.1.4 Month Number

Months are identified by an integer in the range 0 to 11, inclusive. The mapping MonthFromTime(t) from a time
value t to a month number is defined by:

166

MonthFromTime(t) =0 if 0 < DayWithinYear(t) < 31
=1 if 31 < DayWithinYear (t) < 59+InLeapYear(t)
=2 if 59+InLeapYear(t) < DayWithinYear (t) < 90+InLeapYear(t)
=3 if 90+InLeapYear(t) < DayWithinYear (t) < 120+InLeapYear(t)
=4 if 120+InLeapYear(t) < DayWithinYear (t) < 151+InLeapYear(t)
=5 if 151+InLeapYear(t) < DayWithinYear (t) < 181+InLeapYear(t)
=6 if 181+InLeapYear(t) < DayWithinYear (t) <212+InLeapYear(t)

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

=7 if 212+InLeapYear(t) < DayWithinYear (t) < 243+InLeapYear(t)

=8 if 243+InLeapYear(t) < DayWithinYear (t) < 273+InLeapYear(t)

=9 if 273+InLeapYear(t) < DayWithinYear (t) < 304+InLeapYear(t)

=10 if 304+InLeapYear(t) < DayWithinYear (t) < 334+InLeapYear(t)

=11 if 334+InLeapYear(t) < DayWithinYear (t) < 365+InLeapYear(t)
where

DayWithinYear(t) = Day(t)-DayFromYear(YearFromTime(t))

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April; 4 specifies
May, 5 specifies June 6 specmes July; 7 specifies August; 8 specmes September 9 specmes October; 10

15.9.1.5 Date Number

A date number is identified by an integer in the range 1 through 31, inclusive. The-mapping DatefFromTime(t)
fron] a time value t to a month number is defined by:

DateFromTime(t) = DayWithinYear(t)+1 if MonthFromTime(t)=0
= DayWithinYear(t)-30 if MonthFromTime(t)=1
= DayWithinYear(t)-58—InLeapYear(t) if MonthFromTime(t)=2
= DayWithinYear(t)-89—InLeapYear(t) if MonthFromTime(t)=3
= DayWithinYear(t)-119—-InLedpYear(t) if MonthFromTime(t)=4
= DayWithinYear(t)-150-I0eapYear(t) if MonthFromTime(t)=5
= DayWithinYear(t)-180-1inLeapYear(t) if MonthFromTime(t)=6
= DayWithinYear(t)<211-InLeapYear(t) if MonthFromTime(t)=7
= DayWithinYear(t)<242—InLeapYear(t) if MonthFromTime(t)=8
= DayWithinYear(t)-272—InLeapYear(t) if MonthFromTime(t)=9
= DayWithin¥Y'ear(t)-303—-InLeapYear(t) if MonthFromTime(t)=10
= DayWithihYear(t)-333—InLeapYear(t) if MonthFromTime(t)=11

15.9.1.6 Week Day

The|weekday for a particular time value t is defined as
WeekDay(t) = (Day(t) + 4) modulo 7

A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies \Vednesday;
4 specifies Thursday; 5 speeifies Friday; and 6 specifies Saturday. Note that WeekDay(0) = 4, corrdsponding to
Thufsday, 01 January; 1970.

15.9.1.7 LocalTime Zone Adjustment

An implemientation of EC MAScript is expected to determine the local time zone adjustment. The local time
zong¢ adjustment is a value LocalTZA measured in milliseconds which when added to UTC refresents the
loca] standard time. Daylight saving time is not reflected by LocalTZA. The value LocalTZA does njot vary with
time but depends only on the geographic location.

15.9.1.8 Daylight Saving Time Adjustment

An implementation of ECMAScript is expected to determine the daylight saving time algorithm. The algorithm
to determine the daylight saving time adjustment DaylightSavingTA(t), measured in milliseconds, must depend
only on four things:
(1) the time since the beginning of the year

t — TimeFromYear(YearFromTime(t))

(2) whether tis in a leap year

© ISO/IEC 2011 — All rights reserved 167

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

InLeapYear(t)

(3) the week day of the beginning of the year

WeekDay(TimeFromYear(YearFromTime(t)))

and (4) the geographic location.

The implementation of ECMAScript should not try to determine whether the exact time was subject to daylight
saving time, but just whether daylight saving time would have been in effect if the current daylight saving time
algorithm had been used at the time. This avoids complications such as taking into account the years that the
locale observed daylight saving time year round.

If the host
ECMAScrip
week day fq
restriction is

16.9.1.9 L

Conversion

Conversion

Note that U

15.9.1.10 H

The followin

where

environment provides functionality for determining daylight saving time, the implementatio
is free to map the year in question to an equivalent year (same leap-year-ness and same sta
r the year) for which the host environment provides daylight saving time information.. The
that all equivalent years should produce the same result.

ocal Time

from UTC to local time is defined by
LocalTime(t) =t + LocalTZA + DaylightSaving TA(t)
from local time to UTC is defined by
UTC(t) =t — Local TZA - DaylightSavingTA(t — Local TZA)

[[C(LocalTime(t)) is not necessarily always equal to t.

ours, Minutes, Second, and Milliseconds

g functions are useful in decomposing time values:
HourFromTime(t) = floor(t / msPerHour) modulo HoursPerDay
MinFromTime(t) = floor(t/ msPerMinute) modulo MinutesPerHour
SecFromTime(t) = floor(t / misPerSecond) modulo SecondsPerMinute

msFromTime(t) =t mpdulo msPerSecond

HoursPerDay =24
MinutesPerHowr =60
SecondsPerMinute= 60

n of
ting
only

msPerSecond =1000
msPerMinute =60000 = msPerSecond x SecondsPerMinute
msRerHour =3600000—+sRerMHintePrutesPerHour

15.9.1.11 MakeTime (hour, min, sec, ms)

The operator MakeTime calculates a nu mber of milliseconds from its f our arguments, which must be
ECMAScript Number values. This operator functions as follows:

Let s be

agrwnE

168

If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.
Let h be Tolnteger(hour).
Let m be Tolnteger(min).

Tolnteger(sec).

Let milli be Tolnteger(ms).

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

6.

7.

ISO/IEC 16262:2011(E)

Let t be h * msPerHour + m * msPerMinute + s * msPerSecond + milli, performing the arithmetic according

to IEEE 754 rules (that is, as if using the ECMAScript operators * and +).
Return t.

15.9.1.12 MakeDay (year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be ECMAScript
Number values. This operator functions as follows:

8.

15.9.1.13 MakeDate (day, time)

The| operator Make Date calculates a n umber of milliseconds from its two arguments, whig
ECNIAScript Number values. This operator functions as follows;

15.9.1.14 TimeClip (time)

The|operator TimeClip calculates a number ofimilliseconds from its argument, which must be an
Number value. This operator functions as follews:

1. |ftime is not finite, return NaN.

2. |fabs(time) > 8.64 x 10%, returnp'NaN.

3. Return an implementation-dependent choice of either Tolnteger(time) or Tolnteger(time) + (+0).
hositive zero converts —0 to *0.)

NOTE The point of step*3 is that an implementation is permitted a choice of internal representations o

for example as a 64-bit’Sigried integer or as a 64-bit floating-point value. Depending on the implementation
reprg¢sentation may ormay not distinguish —0 and +0.

15.9.1.15 Date/Time String Format

ECNIAScript defines a string interchange format for date-times based upon a simplification of th
Extgnded Format. The format is as follows: YYYY-MM-DDTHH:mm:SS.SSSZ

1
2
3.
4.
5
6
7

If year is not finite or month is not finite or date is not finite, return NaN.
atvbho Toalntoaoriiany \

CEyPCTTTOTC gty T ary
|_et m be Tolnteger(month).

| et dt be Tolnteger(date).

|_et ym be y + floor(m /12).

|_et mn be m modulo 12.

Find a value t such that YearFromTime(t) == ym and MonthFromTime(t) == mn and‘DateFromT
but if this is not possible (because some argument is out of range), return NaN.

Return Day(t) + dt — 1.

f day is not finite or time is not finite, return NaN.
Return day x msPerDay + time.

me(t) == 1;

h must be

ECMAScript

(Adding a

time values,
this internal

e 1SO 8601

Where the fields are as follows:

YYYY is the decimal digits of the year 0000 to 9999 in the Gregorian calendar.
- “~” (hyphen) appears literally twice in the string.

MM is the month of the year from 01 (January) to 12 (December).

DD is the day of the month from 01 to 31.

T “T” appears literally in the string, to indicate the beginning of the time element.
HH is the number of complete hours that have passed since midnight as two decimal
00 to 24.

=" (colon) appears literally twice in the string.

© ISO/IEC 2011 — Al rights reserved

digits from

169

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

to 59.

»

(dot) appears literally in the string.

the time zone offset specified as “Z” (for UTC) or either “+” or

expression HH:zmm

includes date-only forms:

is the number of complete minutes since the start of the hour as two decimal digits from 00 to

is the number of complete seconds since the start of the minute as two decimal digits from 00

is the number of complete milliseconds since the start of the second as three decimal digits.
“~” followed by a time

mm
59.

ss

sss

Z is
This format
YYYY
YYYY-MM
YYYY-MM-O

It also inclugles “date-time” forms that consist of one of the above date-only forms immediately followed by

of the follow

THH:>mm
THH:-mm:sS
THH:>mm:sS

All numbers
fields are a
absent time

lllegal value
valid instan

NOTE1 A
distinguish th
exactly the sa

NOTE 2
sometimes i
format specif

15.9.1.15.1

ECMAScrip
forward or
permits the
receiver. In
digits and is
sign.

D

ing time forms with an optional time zone offset appended:

.SSs
must be base 10. If the MM or DD fields are absent “01” is uséd" as the value. If the HH, mm, o
bsent “00” is used as the value and the value of an absént sss field is “000”. The value g

zone offset is “Z”.

s (out-of-bounds as well as syntax errors) in a format string means that the format string is 1
e of this format.

s every day both starts and ends with midnight, the two notations 00:00 and 24:00 are availab|
e two midnights that can be associated withone date. This means that the following two notations ref
me point in time: 1995-02-04T24:00 and 1995-02-05T00:00

here exists no international standard that specifies abbreviations for civil time zones like CET, EST, etc
e same abbreviation is even uséd for two very different time zones. For this reason, ISO 8601 and
les numeric representations of date and time.

Extended years

requires the ability to specify 6 digit years (extended years); approximately 285,426 years, €
backward, from*01 January, 1970 UTC. To represent years before 0 or after 9999, ISO &
expansion\6f the year representation, but only by prior agreement between the sender andg
the simplified ECMAScript format such an expanded year representation shall have 2 extra
always prefixed with a + or — sign. The year 0 is considered positive and hence prefixed with

one

r ss
f an

ota

e to
er to

and
this

ther
601
the
ear
a+

NOTE

-283457
-000001

+000000-01-01T00:00:00Z2
+000001-01-01T00:00:00Z2
+001970-01-01T00:00:00Z2
+002009-12-15T00:00:00Z2

Examples of extended years:

-03-21T15:00:59.008Z 283458 B.C.
-01-01T00:00:00Z 2B.C.
1B.C.
1A.D.

1970 A.D.
2009 A.D.

+287396-10-12T08:59:00.992Z 287396 A.D.

170

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.9.2 The Date Constructor Called as a Function

When Date is called as a function rather than as a constructor, it returns a String representing the current
time (UTC).

NOTE The function call Date(...) is not equivalent to the object creation expression new Date(..) with the same
arguments.

15.9.2.1 Date ([year [, month [, date [, hours [, minutes [, seconds [ms]1]111111)

b-are-com ; ed. A String
ng() where Date is\{he standard
builttin constructor with that name and toString is the standard (built-ih method
Datg.prototype.toString.

[0}
Q
—
[0
Q
Q
>
Q.
=
D ¢
(=g
C
S
>
('Dl
Q
Q
Z
§<
<
-
>
<'Dl
@ 9
X
©
=
(93
(2
[%2]
o
=]
~
>
)
=
O
QD (
g(
')
o/
o/
[
o
wn
~+

15.9.3 The Date Constructor

Whegn Date is called as part of a new expression, it is a constructor: it initialises the newly created [object.

15.9.3.1 new Date (year, month [, date [, hours [, minutes [, seconds’[, ms1]1]111])

Whgn Date is called with two to seven arguments, it computes the date from year, month, and|(optionally)
datg, hours, minutes, seconds and ms.

The|[[Prototype]] internal property of the newly constructed.object is set to the original Date protdtype object,
the pne that is the initial value of Date .prototype (15:9:4.1).

The[[[Class]] internal property of the newly constructed object is set to "'Date"".

Th

D

[[Extensible]] internal property of the newly'constructed object is set to true.

Th

D

[[PrimitiveValue]] internal property.6fthe newly constructed object is set as follows:

|_et y be ToNumber(year).

|_et m be ToNumber(month),

f date is supplied then let dt be ToNumber(date); else let dt be 1.

f hours is supplied thenslet h be ToNumber(hours); else let h be 0.

f minutes is supplied_then let min be ToNumber(minutes); else let min be 0.
f seconds is supplied then let s be ToNumber(seconds); else let s be 0.

f ms is supplied then let milli be ToNumber(ms); else let milli be 0.
fyisnotNaNand 0 < Tolnteger(y) <99, then let yr be 1900+Tolnteger(y); otherwise, let yr be J.
| et finalDate be MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli)).
0. Pet the f[PrimitiveValue]] internal property of the newly constructed object to TimeClip(UTC(figalDate)).

HooNoOkwhE

15932 new Date (value)

The [[Prototype]] internal property of the newly constructed object is set to the original Date prototype object,
the one that is the initial value of Date.prototype (15.9.4.1).

The [[Class]] internal property of the newly constructed object is set to ""Date"".
The [[Extensible]] internal property of the newly constructed object is set to true.
The [[PrimitiveValue]] internal property of the newly constructed object is set as follows:

1. Letvbe ToPrimitive(value).
2. If Type(v) is String, then

© ISO/IEC 2011 — Al rights reserved 171

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

a.

3.
4, Setthe

Parse v as a date, in exactly the same manner as for the parse method (15.9.4.2); let V be the ti
value for this date.

Else, let V be ToNumber(v).

[[PrimitiveValue]] internal property of the newly constructed object to TimeClip(V) and return.

15.9.3.3 new Date ()

me

The [[Prototype]] internal property of the newly constructed object is set to the original Date prototype object,
the one that is the initial value of Date.prototype (15.9.4.1).

The [[Class]Hrterrat-property-ofthe-newly-constructed-objeetissetio—Bate™
The [[Extengible]] internal property of the newly constructed object is set to true.
The [[PrimitiveValue]] internal property of the newly constructed object is s et to the time walue (UTC)
identifying the current time.
15.9.4 Properties of the Date Constructor
The value of the [[Prototype]] internal property of the Date constructor is the Furction prototype object (15]3.4).
Besides thq internal properties and the length property (whose value is 7), the Date constructor haq the
following preperties:
15.9.4.1 Date.prototype
The initial value of Date . prototype is the built-in Date prototype object (15.9.5).
This properfy has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.9.4.2 Date.parse (string)
The parse [function applies the ToString operator to its argument and interprets the resulting String as a fate
and time; itfreturns a Number, the UT€\time value corresponding to the date and time. The String may be
interpreted gs a local time, a UTC time;-or a time in some other time zone, depending on the contents of the
String. The [function first attempts to parse the format of the String according to the rules called out in Date
Time String|Format (15.9.1.15) 1 the String does not conform to that format the function may fall back to]any
implementafion-specific heuristics or implementation-specific date formats. Unrecognisable Strings or dates
containing illegal element values in the format String shall cause Date . parse to return NaN.
If x is any Date object whose milliseconds amount is zero within a particular implementation of ECMASg¢ript,
then all of the following expressions should produce the same numeric value in that implementation, if al| the
properties referenced have their initial values:

x.valueof()

Date.parse(x.toString())
Date.parse(x.toUTCString())
Date.parse(x.tolS0String())

However, the expression
Date.parse(x.toLocaleString())

is not required to produce the same Number value as the preceding three expressions and, in g eneral, the
value produced by Date.parse is implementation-dependent when given any String value that does not
conform to the Date Time String Format (15.9.1.15) and that could not be produced in that implementation by
the toString or toUTCString method.

172 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.9.4.3 Date.UTC (year, month [, date [, hours [, minutes [, seconds [, ms]1]1]111)

When the UTC function is called with fewer than two arguments, the behaviour is implementation-dependent.
When the UTC function is called with two to seven arguments, it computes the date from year, month and
(optionally) date, hours, minutes, seconds and ms. The following steps are taken:

Let y be ToNumber(year).

Let m be ToNumber(month).

If date is supplied then let dt be ToNumber(date); else let dt be 1.

If hours is supplied then let h be ToNumber(hours); else let h be 0.

If minutes is supplied then let min be ToNumber(minutes); else let min be 0.
f seconds is supplied then let s be ToNumber(seconds); else let s be 0.

f ms is supplied then let milli be ToNumber(ms); else let milli be 0.
fyisnot NaN and 0 < Tolnteger(y) <99, then let yr be 1900+Tolnteger(y); otherwise, let\yr be J.
Return TimeClip(MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli))).

CoNooO~wNE

The[length property of the UTC function is 7.

NOTE The UTC function differs from the Date constructor in two ways: it return§s a time value as a Nimber, rather
than|creating a Date object, and it interprets the arguments in UTC rather than as lacal time.

15.9.4.4 Date.now ()

The[now function return a Number value that is the time valte designating the UTC date and|time of the
occyirrence of the call to now.

15.9.5 Properties of the Date Prototype Object
The|Date prototype object is itself a Date object (its [[Class]] is "'Date'") whose [[PrimitiveValue]] i NaN.

The|value of the [[Prototype]] internal property of the Date prototype object is the standard bdilt-in Object
protptype object (15.2.4).

In fgllowing descriptions of functions-that are properties of the Date prototype object, the phrasg “this Date
object” refers to the object thatvis:the this value for the invocation of the function. Unless exglicitly noted
othgrwise, none of these functions are generic; a TypeError exception is thrown if the this valyie is not an
object for which the value of the [[Class]] internal property is ""Date". Also, the phrase “this time Yalue” refers
to the Number value for-the time represented by this Date object, that is, the value of the [[PriritiveValue]]
inteqnal property of this Date object.

15.9.5.1 Date.prototype.constructor

Thelinitial-value of Date . prototype.constructor is the built-in Date constructor.

15.975. 2 Date.prototype.toString ()

This function returns a String value. The contents of th e String are implementation-dependent, but are
intended to represent the Date in the current time zone in a convenient, human-readable form.

NOTE For any Date value d whose milliseconds amount is zero, the result of Date.parse(d.toString()) is
equal to d.valueOf(). See 15.9.4.2.

© ISO/IEC 2011 — All rights reserved 173

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.9.5.3 Date.prototype.toDateString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-readable

form.

15.9.5.4 Date.prototype.toTimeString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “time” portion of the Date in the current time zone in a convenient, human-readable

form.

15.9.5.5 [
This functig
intended tg
corresponds

NOTE
that impleme

15.9.5.6 O
This functig
intended to
form that co

NOTE
that impleme

15.9.5.7 [
This functid
intended to
form that co

NOTE
that impleme

15.9.5.8 O

The value

Tlhe first parameter to this function is likely to be used in a future version of this\standard; it is recomme

Tlhe first parameter to this function is likely to be used’in a future version of this standard; it is recomme

Tlhe first parameter to this function is likely to be used in a future version of this standard; it is recomme

ate.prototype.toLocaleString ()
n returns a String value. The contents of the String are implementation-dependent, but

represent the Date in the current time zone in a convenient, human-readable form
to the conventions of the host environment’s current locale.

htations do not use this parameter position for anything else.

ate.prototype.toLocaleDateString ()
n returns a String value. The contents of the String~are implementation-dependent, but

represent the “date” portion of the Date in the currentdime zone in a convenient, human-read
rresponds to the conventions of the host environment's current locale.

htations do not use this parameter position for anything else.

ate.prototype.toLocaleTimeString ()
n returns a String value. The contents of the String are implementation-dependent, but

represent the “time” portion ofthe Date in the current time zone in a convenient, human-read
rresponds to the conventions,of the host environment’s current locale.

htations do not use this parameter position for anything else.

ate.prototype:valueOf ()

T function-returns a Number, which is this time value.

are
that

hded

are
able

hded

are
able

hded

15.9.59 [

ateprototype.getTime ()

1. Returnt

his time value.

15.9.5.10 Date.prototype.getFullYear ()

1.
2.
3.

Lett be

174

this time value.

If t is NaN, return NaN.
Return YearFromTime(Local Time(t)).

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

15.9.5.11 Date.prototype.getUTCFullYear ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return YearFromTime(t).

15.9.5.12 Date.prototype.getMonth ()

1. Lett be this time value.
2. Iftis NaN, return NaN.

3. eturn I\/Innfhl:ranimn(I nnalTimn(f))

15.9.5.13 Date.prototype.getUTCMonth ()

1. |ettbe this time value.
ftis NaN, return NaN.
3. Return MonthFromTime(t).

N

15.9.5.14 Date.prototype.getDate ()

1. Lett be this time value.
ftis NaN, return NaN.
3. Return DateFromTime(LocalTime(t)).

N

15.9.5.15 Date.prototype.getUTCDate ()

=

|_et t be this time value.
ftis NaN, return NaN.
3. Return DateFromTime(t).

N

15.9.5.16 Date.prototype.getDay ()

1. Lett be this time value.
ftis NaN, return NaN.
3. Return WeekDay(LocalTime(f)).

N

15.9.5.17 Date.prototype.getUTCDay ()

1. Lettbe this time.value.
ftis NaN,detirn NaN.
3. Return WeekDay(t).

N

15.9.518 Date.prototype.getHours ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return HourFromTime(Local Time(t)).

15.9.5.19 Date.prototype.getUTCHours ()
1. Lett be this time value.

2. Iftis NaN, return NaN.
3. Return HourFromTime(t).

© ISO/IEC 2011 — Al rights reserved

ISO/IEC 16262:2011(E)

175

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.9.5.20 Date.prototype.getMinutes ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return MinFromTime(Local Time(t)).

15.9.5.21 Date.prototype.getUTCMinutes ()

1. Lett be this time value.

2. If tis NaN, return NaN.
3. Returnl‘/linl:ranimn(f)

15.9.5.22 Date.prototype.getSeconds ()
1. Lett befthis time value.

2. Iftis NaN, return NaN.
3. Return $ecFromTime(LocalTime(t)).

15.9.5.23 Date.prototype.getUTCSeconds ()
1. Lett befthis time value.

2. Iftis NaN, return NaN.
3. Return $ecFromTime(t).

15.9.5.24 Date.prototype.getMilliseconds ()
1. Lett befthis time value.

2. Iftis NaN, return NaN.
3. Return msFromTime(Local Time(t)).

15.9.5.25 Date.prototype.getUTCMilliseconds {(-)
1. Lett bejthis time value.

2. Iftis NaN, return NaN.
3. Return msFromTime(t).

15.9.5.26 Date.prototype.getTimezoneOffset ()
Returns the|difference between local time and UTC time in minutes.
1. Lett befthis time(value.

2. If tis NaN, return NaN.
3. Return 1t —LecalTime(t)) / msPerMinute.

15.9.5.27 Date.prototype.setTime (time)

1. Letvbe TimeClip(ToNumber(time)).
2. Set the [[PrimitiveValue]] internal property of this Date object to v.
3. Returnv.

15.9.5.28 Date.prototype.setMilliseconds (ms)

1. Lett be the result of LocalTime(this time value).

2. Let time be MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), ToONumber(ms)).
3. Letu be TimeClip(UTC(MakeDate(Day(t), time))).

4. Set the [[PrimitiveValue]] internal property of this Date object to u.

176 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

5. Return u.

15.9.5.29 Date.prototype.setUTCMilliseconds (ms)

Let t be this time value.

Let time be MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), ToNumber(ms)).
Let v be TimeClip(MakeDate(Day(t), time)).

Set the [[PrimitiveValue]] internal property of this Date object to v.

Return v.

agrLOdBE

15.9.5:30 Date.prototype.setSeconds (Sec [, ms |)
If mq is not specified, this behaves as if ms were specified with the value getMil liseconds().

| et t be the result of LocalTime(this time value).

|_et s be ToNumber(sec).

f ms is not specified, then let milli be msFromTime(t); otherwise, let milli be TaNumber(ms).
|_et date be MakeDate(Day(t), MakeTime(HourFromTime(t), MinFromTime(t), s, milli)).

| et u be TimeClip(UTC(date)).

Set the [[PrimitiveValue]] internal property of this Date object to u.

Return u.

NoakwhE

The|length property of the setSeconds method is 2.

15.9.5.31 Date.prototype.setUTCSeconds (sec [, ms])
If mq is not specified, this behaves as if ms were specified with the value getUTCMilliseconds().

|_et t be this time value.

| et s be ToNumber(sec).

f ms is not specified, then let milli be msFEfomTime(t); otherwise, let milli be ToNumber(ms).
| et date be MakeDate(Day(t), MakeTime(HourFromTime(t), MinFromTime(t), s, milli)).

| et v be TimeClip(date).

Set the [[PrimitiveValue]] interpal-property of this Date object to v.

Return v.

NoopwhE

The[length property of the.setUTCSeconds method is 2.

15.9.5.32 Date.prototype.setMinutes (min [, sec [, ms]])
If se¢ is not specified, this behaves as if sec were specified with the value getSeconds().

If mq is not specified, this behaves as if ms were specified with the value getMilliseconds().

ettt ha thae racult of | acalTimel(thic tima valug)
=t t Y +=

Let m be ToNumber(min).

If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), m, s, milli)).

Let u be TimeClip(UTC(date)).

Set the [[PrimitiveValue]] internal property of this Date object to u.

Return u.

NG~ WNE

The Iength property of the setMinutes method is 3.

© ISO/IEC 2011 — Al rights reserved 177

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.9.5.33 Date.prototype.setUTCMinutes (min [, sec[, ms]])
If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds().

If ms is not specified, this function behaves as if ms were specified with the value return by
getUTCMilliseconds().

Let t be this time value.

Let m be ToNumber(min).

If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let datd be MakeDate(Day(t), MakeTime(HourFromTime(t), m, s, milli)).

Let v bel TimeClip(date).

Set the |[PrimitiveValue]] internal property of this Date object to v.

Return

N~k wNE

The length property of the setUTCMinutes method is 3.

15.9.5.34 Date.prototype.setHours (hour [, min [, sec[,ms]]1])

If min is not specified, this behaves as if min were specified with the value getMinutes().

If sec is not $pecified, this behaves as if sec were specified with the value getSeconds().

If ms is not dpecified, this behaves as if ms were specified with the value getMilliseconds().

Let t befthe result of LocalTime(this time value).

Let h bg ToNumber(hour).

If min i not specified, then let m be MinFromTime(t);\otherwise, let m be ToNumber(min).

If If sec|is not specified, then let s be SecFromTime(t);*otherwise, let s be ToNumber(sec).

If ms is pot specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let datd be MakeDate(Day(t), MakeTime(h, m, symilli)).

Let u bg TimeClip(UTC(date)).

Set the |[PrimitiveValue]] internal property of this Date object to u.

Return

CoNoOR~WNE

The Iengt]\ property of the setHours method is 4.

15.9.5.35 Date.prototype.setUTCHours (hour [, min [, sec[,ms]]1])
If min is notspecified, this‘behaves as if min were specified with the value getUTCMinutes().
If sec is not $pecifiedynthis behaves as if sec were specified with the value getUTCSeconds().

If ms is not gpecified, this behaves as if ms were specified with the value getUTCMi I liseconds().

Let t be this time value.

Let h be ToNumber(hour).

If min is not specified, then let m be MinFromTime(t); otherwise, let m be ToNumber(min).

If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let newDate be MakeDate(Day(t), MakeTime(h, m, s, milli)).

Let v be TimeClip(newDate).

Set the [[PrimitiveValue]] internal property of this Date object to v.

Return v.

CoOoNAR~LNE

The Iength property of the setUTCHours method is 4.

178 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

15.9.5.36 Date.prototype.setDate (date)

oak~whE

Let t be the result of LocalTime(this time value).
Let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), dt), TimeWithinDay(t)).

Let u be TimeClip(UTC(newDate)).

Set the [[PrimitiveValue]] internal property of this Date object to u.

Return u.

15.9.5.37 Date.prototype.setUTCDate (date)

ok~ whE

15.9

If da|

NoohkwhE

The

15.9

If dal

NookwhE

The

| et t be this time value.
| et dt be ToNumber(date).

|_et v be TimeClip(newDate).
Set the [[PrimitiveValue]] internal property of this Date object to v.
Return v.

.5.38 Date.prototype.setMonth (month [, date])
e is not specified, this behaves as if date were specified with the value’getDate().

| et t be the result of LocalTime(this time value).

| et m be ToNumber(month).

f date is not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).
| et newDate be MakeDate(MakeDay(YearFromTime(t),"m, dt), TimeWithinDay(t)).

| et u be TimeClip(UTC(newDate)).

Set the [[PrimitiveValue]] internal property of this Date object to u.

Return u.

length property of the setMonth method'is 2.

.5.39 Date.prototype.setUTCMonth (month [, date])
e is not specified, this behavesas if date were specified with the value getUTCDate().

| et t be this time valug.

| et m be ToNumber{month).

f date is not specifiged, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).
|_et newDate betMakeDate(MakeDay(YearFromTime(t), m, dt), TimeWithinDay(t)).

| et v be TimeClip(newDate).

Set the [[PrimitiveValue]] internal property of this Date object to v.

Returne\.

Lkength property of the setUTCMonth method is 2.

15.9.5.40 Date.prototype.setFullYear (year [, month [, date]])

If month is not specified, this behaves as if month were specified with the value getMonth().

If date is not specified, this behaves as if date were specified with the value getDate().

arwDE

Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.

Let y be ToNumber(year).

If month is not specified, then let m be MonthFromTime(t); otherwise, let m be ToNumber(month).
If date is not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(t)).

© ISO/IEC 2011 — Al rights reserved

|_et newDate be MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), dt), TimeWithinDaj(t)).

179

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

6.
7.
8.

Let u be TimeClip(UTC(newDate)).
Set the [[PrimitiveValue]] internal property of this Date object to u.
Return u.

The Iength property of the setFul I Year method is 3.

15.9.5.41 Date.prototype.setUTCFullYear (year [, month [, date]])

If month is not specified, this behaves as if month were specified with the value getUTCMonth().

Dad-a-d)

If date is not

Lett be
Lety be
If mont
If date i
Let new|
Letv be
Set the

Return

N~ wN R

ifiodl thiao Lol H 2 s H PR | ablo tL 1 11T
SPCTUITU, o VTTIAVT o do T UdIlT WTTT OPJTUITITU WILIT TS vVAluT YT U TUUATTR) -

this time value; but if this time value is NaN, let t be +0.

ToNumber(year).

is not specified, then let m be MonthFromTime(t); otherwise, let m be ToNumber(manth).
5 not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date),
Date be MakeDate(MakeDay(y, m, dt), TimeWithinDay(t)).

TimeClip(newDate).

[PrimitiveValue]] internal property of this Date object to v.

The Iength property of the setUTCFul IYear method is 3.

15.9.5.42 O

This functid
intended to

NOTE
15.9.1.15. It
does not hay
space rather

15.9.5.43 O
This functio
of the String

zone is a Iw
RangeErro

15.9.5.44 O

This functio

ate.prototype.toUTCString ()

n returns a String value. The contents of the String are implementation-dependent, but
Fepresent the Date in a convenient, human-readable)form in UTC.

Tlhe intent is to produce a String representation of‘a“date that is more readable than the format specifi

s not essential that the chosen format be unambiguous or easily machine parsable. If an implement
e a preferred human-readable format it is recommended to use the format defined in 15.9.1.15 but W
than a “T” used to separate the date and time elements.

ate.prototype.tolSOString ()
n returns a String value represent the instance in time represented by this Date object. The fo
is the Date Time string format defined in 15.9.1.15. All fields are present in the String. The

ays UTC, denoted-by the suffix Z. If the time value of this object is not a finite Numb
" exception is thrown:

ate.prototype.toJSON (key)

N provides a String representation of a Date object for use by JSON.stringify (15.12.3).

are

bd in
Btion
ith a

'mat
time
Br a

When the t

Let tolS

ok wnNpE

D.JSON method is called with argument key, the following steps are taken:

Let O be the result of calling ToObject, giving it the this value as its argument.
Let tv be ToPrimitive(O, hint Number).
If tv is a Number and is not finite, return null.

O be the result of calling the [[Get]] internal method of O with argument "to1SOString".

If IsCallable(tolSO) is false, throw a TypeError exception.
Return the result of calling the [[Call]] internal method of tolSO with O as the this value and an empty

argument list.

NOTE 1

180

The argument is ignored.

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

NOTE 2 The toJSON function is intentionally generic; it does not require that its this value be a Date object. Therefore,
it can be transferred to other kinds of objects for use as a method. However, it does require that any such object have a
tol1S0String method. An object is free to use the argument key to filter its stringification.

15.9.6 Properties of Date Instances

Date instances inherit properties from the Date prototype object and their [[Class]] internal property value is
""Date". Date instances also have a [[PrimitiveValue]] internal property.

The [[PrimitiveValue]] internal property is time value represented by this Date object.

15.10 RegExp (Regular Expression) Objects
A RegExp object contains a regular expression and the associated flags.

NOTIE The form and functionality of regular expressions is modelled after the regular expression facility in the Perl 5
progfamming language.

15.1/0.1 Patterns

The|RegEXxp constructor applies the following grammar to the inpdt-pattern String. An error dccurs if the
grarqmar cannot interpret the String as an expansion of Pattern.

Syntax

Pattgrn ::
Disjunction

Disjtinction ::
Alternative
Alternative | Disjunction

Altefnative ::
[empty]
Alternative Term

Tern ::
Assertion
Atom
Atom Quantifier

Asseftion ::
N

$

\ b
_B
C?2=Drisjurctiom)
(? ! Disjunction)
Quantifier ::
QuantifierPrefix
QuantifierPrefix ?

© ISO/IEC 2011 — All rights reserved 181

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

QuantifierPrefix ::

+
I

{ DecimalDigits }
{ DecimalDigits , }
{ DecimalDigits , DecimalDigits }

Atom ::
PatternCharacter

\ AtgmEscape
ChargcterClass
(Dis|unction)
(? :|Disjunction)

PatternChargcter ::
SourceCharacter but not one of

TN . =+ 2 C)HY>LI1{13} I

AtomEscape [
DecimalEscape
ChardcterEscape
ChardcterClassEscape

CharacterEsgape ::
ContrplEscape
c CoptrolLetter
HexEgcapeSequence
UnicddeEscapeSequence
IdentityEscape

ControlEscape :: one of
f nn r t v

ControlLettef :: one of
a b c d T h A
A B C D F H. 1

(&=
~xX
~ ==
=3
=25
oo
poke]

e g
E G

O Q0
=
wn
—
cCc
<<
==
< X

IdentityEscape ::
SourckCharacter but nat IdentifierPart
<ZWJ>
<ZWINJ>

DecimalEscqpe ::
DecinpallntegerLiteral [lookahead ¢ DecimalDigit]

CharacterCl o of
d D s S w W

CharacterClass ::
[Nookahead ¢ {*}] ClassRanges 1]
[~ ClassRanges]

ClassRanges ::
[empty]
NonemptyClassRanges

182 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

NonemptyClassRanges ::

ClassAtom
ClassAtom NonemptyClassRangesNoDash
ClassAtom - ClassAtom ClassRanges

NonemptyClassRangesNoDash ::

Clas

ClassAtom
ClassAtomNoDash NonemptyClassRangesNoDash
ClassAtomNoDash - ClassAtom ClassRanges

SAtom ::

Clas

Clag

15.1
A rg
impl
resu
prog

15.1

The

Furt

ClassAtomNoDash

5AtomNoDash ::
SourceCharacter but not one of \ or] or -
\ ClassEscape

SEscape ::
DecimalEscape
b

CharacterEscape
CharacterClassEscape

0.2 Pattern Semantics

gular expression pattern is converted into an internal procedure using the process describe
ementation is encouraged to use more efficienttalgorithms than the ones listed below, as
Its are the same. The internal procedure is used as the value of a RegExp object’s [[Mat
erty.

0.2.1 Notation

descriptions below use the following variables:
e Input is the String being matched by the regular expression pattern. The notation inp
the n' character ofinput, where n can range between 0 (inclusive) and InputLength (ex
e InputLength is.the number of characters in the Input String.

e NcapturingParens is the total number of left capturing parentheses (i.e. the total num
the Atom“:z/(Disjunction) production is expanded) in the pattern. A left capturing p3
any_(Gpattern character that is matched by the (terminal of the Atom :: (Disjunction)

o IgnoreCase is the setting of the RegExp object's ignoreCase property.
o Multiline is the setting of the RegExp object’'s multi line property.

] below. An
long as the
ch]] internal

ut[n] means
lusive).

ber of times
renthesis is
production.

hermore, the descriptions below use the following internal data structures:

e A CharSet is a mathematical set of characters.
e A State is an ordered pair (endindex, captures) where endindex is an integer and ca

ptures is an

internal array of NcapturingParens values. States are used to represent partial match states in the

regular expression matching algorithms. The endindex is o ne plus the index of th

e last input

character matched so far by the pattern, while captures holds the results of capturing parentheses.
The n" element of captures is either a String that represents the value obtained by the n" set of
capturing parentheses or undefined if the n set of capturing parentheses hasn’t been reached
yet. Due to backtracking, many States may be in use at any time during the matching process.

e A MatchResult is either a State or the special token failure that indicates that the match

© ISO/IEC 2011 — Al rights reserved

failed.

183

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

e A Continuation procedure is an internal closure (i.e. an internal procedure with some arguments
already bound to values) that takes one State argument and returns a MatchResult result. If an
internal closure references variables bound in the function that creates the closure, the closure
uses the values that these variables had at the time the closure was created. The Continuation
attempts to match the remaining portion (specified by the closure's already-bound arguments) of
the pattern against the input String, starting at the intermediate state given by its State argument. If
the match succeeds, the Continuation returns the final State that it reached; if the match fails, the
Continuation returns failure.

e A Matcher procedure is an internal closure that takes two arguments -- a State and a Continuation --
and returns a MatchResult result. A Matcher attempts to match a middle subpattern (specified by
the closure's already-bound arguments) of the pattern against the input String, starting at the
intermediate state given by its State argument. The Continuation argument should be a closure|that
matches the rest of the pattern. After matching the subpattern of a pattern to obtain a new Jtate,
the Matcher then calls Continuation on that new State to test if the rest of the pattern canvmatch as
well. If it can, the Matcher returns the State returned by Continuation; if not, the Matcher may try
different choices at its choice points, repeatedly calling Continuation until it either@ucceeds qgr all
possibilities have been exhausted.

e |An AssertionTester procedure is an internal closure that takes a State argument and returps a
Boolean result. The assertion tester tests a specific condition (specified by'the closure's alrepdy-
bound arguments) against the current place in the input String and \teturns true if the condjtion
matched or false if not.

¢ |An EscapeValue is either a character or an integer. An EscapeValue is used to d enote| the
interpretation of a DecimalEscape escape sequence: a character ch means that the e s¢ape
sequence is interpreted as the character ch, while an integer n means that the escape seque¢nce
is interpreted as a backreference to the n" set of capturifig)parentheses.

15.10.2.2 Hattern
The production Pattern :: Disjunction evaluates as follows:

1. Evaluat¢ Disjunction to obtain a Matcher m.
2. Return gn internal closure that takes two arguments, a String str and an integer index, and performs the

followirg:

1. Let Input be the given String str. This variable will be used throughout the algorithms ir]
15.10.2.

2. Let InputLength be.the length of Input. This variable will be used throughout the algorithms
in 15.10.2.

3. Let c be a Centinuation that always returns its State argument as a successful MatchResilt.

4. Let cap be ar’internal array of NcapturingParens undefined values, indexed 1 through
NcapturingParens.

5. Letx‘he the State (index, cap).

6. Calkm(x, c) and return its result.

NOTE A Patternsevaluates ("compiles") to an internal procedure value. RegExp.prototype.exec can then apply

this procedurg to,a String and an offset within the String to determine whether the pattern would match starting at exactly
that offset withih.the String, and, if it does match, what the values of the capturing parentheses would be. The algorithms
in 15.10.2 are designed so that compiling a pattern may throw a SyntaxError exception; on the other hand, once the
pattern is successfully compiled, applying its result internal procedure to find a match in a String cannot throw an
exception (except for any host-defined exceptions that can occur anywhere such as out-of-memory).

15.10.2.3 Disjunction

The production Disjunction :: Alternative evaluates by evaluating Alternative to obtain a Matcher and returning
that Matcher.

The production Disjunction :: Alternative | Disjunction evaluates as follows:

1. Evaluate Alternative to obtain a Matcher m1.

184 © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

2. Evaluate Disjunction to obtain a Matcher m2.
3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and performs
the following:

1. Call m1(x, c) and let r be its result.
2. Ifrisn't failure, returnr.
3. Call m2(x, ¢) and return its result.

NOTE The | regular expression operator separates two alternatives. The pattern first tries to match the left Alternative
(followed by the sequel of the regular expression); if it fails, it tries to match the right Disjunction (followed by the sequel of
the regular expression). If the left Alternative, the right Disjunction, and the sequel all have choice points, all choices in the
sequel are tried before moving on to the next choice in the left Alternative. If choices in the left Alternative are exhausted,
the rjghtDisfumnction s triedmsteadof the teft Altermative ANy capturing paremtheses msidea portiom of the pgttern skipped
by] |produce undefined values instead of Strings. Thus, for example,

/alab/ .exec(''abc™)
returns the result **a’™ and not "*ab"*. Moreover,

/(@1 (ab)) ((c) [(bc))/.exec(abc™)

retumns the array
[''abc™, "a"™, "a'", undefined, "bc", undefined, ‘bc“]

and pot
[""abc™, "ab'"™, undefined, "ab", "c', "c", undefined]

15.10.2.4 Alternative

The|production Alternative :: [empty] evaluates by returning a Mateher that takes two arguments, a Jtate x and a
Continuation ¢, and returns the result of calling c(x).

The|production Alternative :: Alternative Term evaluates as.follows:

1. Evaluate Alternative to obtain a Matcher m1.
2. [Evaluate Term to obtain a Matcher m2.
3. Return an internal Matcher closure that takes'two arguments, a State x and a Continuation ¢, and jperforms
he following:
1. Create a Continuation d that takes a State argument y and returns the result of cdlling m2(y,

c).
2. Call m1(x, d):and'return its result.

NOTE Consecutive Terms try to simultaneously match consecutive portions of the input String. If the I¢ft Alternative,
the right Term, and the sequelof the regular expression all have choice points, all choices in the sequel ar¢ tried before
moving on to the next choice'in the right Term, and all choices in the right Term are tried before moving gn to the next
choige in the left Alternative:

15.10.2.5 Term

The|production Term :: Assertion evaluates by returning an internal Matcher closure that takes two|arguments,
a Sthte x ahd a Continuation ¢, and performs the following:

1. Evaluate Assertion to obtain an AssertionTester t.
2. Call t(x) and let r be the resulting Boolean value.
3. [Ifris false, return failure.

4. Call c(x) and return its result.

The production Term :: Atom evaluates by evaluating Atom to obtain a Matcher and returning that Matcher.
The production Term :: Atom Quantifier evaluates as follows:
1. Evaluate Atom to obtain a Matcher m.

2. Evaluate Quantifier to obtain the three results: an integer min, an integer (or o) max, and Boolean greedy.
3. If max is finite and less than min, then throw a SyntaxError exception.

© ISO/IEC 2011 — All rights reserved 185

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

left of this production expansion's Term. This is the total number of times the Atom :: (Disjunction)

producti
producti

on is expanded prior to this production's Term plus the total number of Atom :: (Disjunction)
ons enclosing this Term.

is the total number of Atom :: (Disjunction) productions enclosed by this production's Atom.

the following:

1. Call RepeatMatcher(m, min, max, greedy, X, ¢, parenindex, parenCount) and return its

result.

Let parenindex be the number of left capturing parentheses in the entire regular expression that occur to the

Let parenCount be the number of left capturing parentheses in the expansion of this production's Atom. This

Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs

The abstrad
max, a Boo

performs th
1. Ifmaxi
2. Create 3
3. Letcap
4. Foreve
5. Letebe
6. Letxrb
7. Ifminig
8. |Ifgreed
a.
b.
C.
9. Call m(
10. Ifzisn
11. Call c(x
NOTE 1 A

be non-greed
can be greed
Atom pattern
input substrin

NOTE2
(or as few, if
last repetition
next-to-last (1

t operation RepeatMatcher takes eight parameters, a Matcher m, an integer min, an integern(q
ean greedy, a State x, a Continuation c, an integer parenindex, and an integer parenCount,
e following:

5 zero, then call ¢(x) and return its result.

n internal Continuation closure d that takes one State argument y and performs the-following:
1. If minis zero and y's endIndex is equal to x's endIndex, then return failure.
2. If minis zero then let min2 be zero; otherwise let min2 be min-1.
3. If max is oo, then let max2 be «; otherwise let max2 be max-1.
4. Call RepeatMatcher(m, min2, max2, greedy, y, ¢, parenindexj parenCount) and return it

result.

be a fresh copy of x's captures internal array.
y integer k that satisfies parenindex < k and k < parenindex4parenCount, set cap[k] to undefine
x's endIndex.
b the State (e, cap).

not zero, then call m(xr, d) and return its result.
y is false, then

Call c(x) and let z be its result.

If z is not failure, return z.

Call m(xr, d) and return its result.

r, d) and let z be its result.

t failure, return z.

and return its result.

n Atom followed by a Quantifieris repeated the number of times specified by the Quantifier. A Quantifie
y, in which case the Atom pattern is repeated as few times as possible while still matching the sequel,
y, in which case the Atom pattern is repeated as many times as possible while still matching the sequel
s repeated rather than the input String that it matches, so different repetitions of the Atom can match diff

gs.

the Atom and the\sequel of the regular expression all have choice points, the Atom is first matched as 1
non-greedy)dimes as possible. All choices in the sequel are tried before moving on to the next choice i

r o)
and

—

can
or it
The
brent

hany
h the

of Atom. (Alljchoices in the last (n™) repetition of Atom are tried before moving on to the next choice if the

—1)* repétition of Atom; at which point it may turn out that more or fewer repetitions of Atom are now pos

these are ex

¢

usted (again, starting with either as few or as many as possible) before moving on to the next choice i

ible;
h the

(n-1)*" repetitforfef Atom and so on.

Compare

/a[a-z]{2,4}/ -exec('abcdefghi™)

which returns ""abcde"* with

/a[a-z]{2,4}7?/.exec("abcdefghi')

which returns ""abc".

Consider also

which, by the

/(aa]aabaac|ba|b]c)*/.exec("aabaac™)

choice point ordering above, returns the array
["aaba™, "ba"]

and not any of:

186

© ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

['aabaac™, '"aabaac']
["aabaac™, "c']

The above ordering of choice points can be used to write a regular expression that calculates the greatest common divisor
of two numbers (represented in unary notation). The following example calculates the gcd of 10 and 15:

"aaaaaaaaaa,aaaaaaaaaaaaaaa’” .replace(/"(a+)\1*,\1+$/,"$1"")
which returns the gcd in unary notation ""aaaaa".

NOTE 3 Step 4 of the RepeatMatcher clears Atom's captures each time Atom is repeated. We can see its behaviour in
the regular expression
/(2) ((a+)?(b+)?(c))*/.exec(''zaacbbbcac'™)

whichreturns the array

[''zaacbbbcac"™, "z'", "ac', "a", undefined, "c"]
and pot

[''zaacbbbcac"™, 'z, "ac'™, "a'", "bbb"™, "c"]
becduse each iteration of the outermost * clears all captured Strings contained in the quantified~Atom, which in this case
includes capture Strings numbered 2, 3, 4, and 5.

NOTE 4 Step 1 of the RepeatMatcher's d closure states that, once the minimufm number of repetitions has been
satisfied, any more expansions of Atom that match the empty String are not considered for further repetitions. This
prevents the regular expression engine from falling into an infinite loop on patterns _such as:

/(a*)*/.exec("'b"™)

or the slightly more complicated:
/(a*)b\1+/_exec(''baaaac')
which returns the array

b, "]
15.10.2.6 Assertion

The|production Assertion :: © evaluates by retufning an internal AssertionTester closure that takes a State
argyment x and performs the following:

| et e be x's endIndex.

f e is zero, return true.

f Multiline is false, return false:

f the character Input[e-1] is-one of LineTerminator, return true.
Return false.

N

The|production Assertion\i+"$ evaluates by returning an internal AssertionTester closure that takes a State
argyment x and perfofmsthe following:

| et e be x's€ndindex.

f e is equalyto InputLength, return true.

f multibine is false, return false.

f the.character Input[e] is one of LineTerminator, return true.
Return false.

agpwNE

The production Assertion :: \ b evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

Let e be x's endIndex.

Call IsWordChar(e-1) and let a be the Boolean result.
Call IsWordChar(e) and let b be the Boolean result.

If ais true and b is false, return true.

If ais false and b is true, return true.

Return false.

eak~whE

The production Assertion :: \ B evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

© ISO/IEC 2011 — All rights reserved 187

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Let e be x's endIndex.

Call IsWordChar(e-1) and let a be the Boolean result.
Call IsWordChar(e) and let b be the Boolean result.
If ais true and b is false, return false.

If a is false and b is true, return false.

Return true.

oak~kwhE

The production Assertion :: (' ? = Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
the folldqwing steps:

Let d be a Continuation that always returns its State argument as a successful MatchRes|
Call m(x, d) and let r be its result.

If ris failure, return failure.

Lety be r's State.

Let cap be y's captures internal array.
Let xe be x's endIndex.

Let z be the State (xe, cap).

Call c(z) and return its result.

t.

N~ wNE

The producfion Assertion :: (? ! Disjunction) evaluates as follows:

1. Evaluat¢ Disjunction to obtain a Matcher m.
2. Return gn internal Matcher closure that takes two arguments, a StateX and a Continuation c, and performs
the follqwing steps:

1. Letd be a Continuation that always returns its.State argument as a successful MatchResp
2. Call m(x, d) and let r be its result.
3. Ifrisn't failure, return failure.
4. Call c(x) and return its result.

t.

The abstragt operation IsWordChar takes an integer. parameter e and performs the following:

1. If e ==11 or e == InputLength, return false
2. Let c belthe character Input[e].
3. If cis ope of the sixty-three characters*below, return true.

albcde fghiykIlImnopgrstuvwxX
AIBCDEFGHWMJKLMNOPQRSTUVWX
Of1 23 456789 _

4. Return false.

y z
Y Z

15.10.2.7 Quantifier

The producfionr Quantifier :: QuantifierPrefix evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or «) max.
2. Return the three results min, max, and true.

The production Quantifier :: QuantifierPrefix ? evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or «) max.
2. Return the three results min, max, and false.

The production QuantifierPrefix :: * evaluates by returning the two results 0 and .

The production QuantifierPrefix :: + evaluates by returning the two results 1 and .

188 © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

The

The

1.
2.

The

1.
2.

The

N

15.1

The

wh e

The

=

The
that

The

ISO/IEC 16262:2011(E)

production QuantifierPrefix :: ? evaluates by returning the two results 0 and 1.
production QuantifierPrefix :: { DecimalDigits } evaluates as follows:

Let i be the MV of DecimalDigits (see 7.8.3).
Return the two results i and i.
production QuantifierPrefix :: { DecimalDigits , } evaluates as follows:

Let i be the MV of DecimalDigits.
Return the two results i and .

production QuantifierPrefix :: { DecimalDigits , DecimalDigits } evaluates as follows:
| et i be the MV of the first DecimalDigits.

| et j be the MV of the second DecimalDigits.
Return the two results i and j.

0.2.8 Atom

production Atom :: PatternCharacter evaluates as follows:
|_et ch be the character represented by PatternCharacter.
|_et A be a one-element CharSet containing the character ch.

Call CharacterSetMatcher(A, false) and return its Matchep-reSult.

production Atom :: . evaluates as follows:

|_et A be the set of all characters except LineTerminator.
Call CharacterSetMatcher(A, false) and return its Matcher result.

production Atom :: \ AtomEscape evaluates by evaluating AtomEscape to obtain a Matcher a
Matcher.

production Atom :: CharacterCldss-evaluates as follows:

Fvaluate CharacterClass toobtain a CharSet A and a Boolean invert.
Call CharacterSetMatcher(A, invert) and return its Matcher result.

production Atom z» (~Disjunction) evaluates as follows:

Fvaluate Disjuniction to obtain a Matcher m.
|_et parentndex be the number of left capturing parentheses in the entire regular expression that g
eft of this-production expansion's initial left parenthesis. This is the total number of times the

nd returning

ccur to the

Atom ::y(Disjunction) production is expanded prior to this production's Atom plus the total number of

Atom/:: (Disjunction) productions enclosing this Atom.
the following steps:
1. Create an internal Continuation closure d that takes one State argument y and pe
following steps:
Let cap be a fresh copy of y's captures internal array.
Let xe be x's endIndex.
Let ye be y's endIndex.

PonNE

positions xe (inclusive) through ye (exclusive).
5. Set cap[parenindex+1] to s.
6. Let z be the State (ye, cap).
7. Call c(z) and return its result.
2. Call m(x, d) and return its result.

© ISO/IEC 2011 — Al rights reserved

performs

rforms the

Let s be a fresh String whose characters are the characters of Input at

189

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

The production Atom

(7 Disjunction) evaluates by evaluating Disjunction to obtain a Matcher

returning that Matcher.

and

The abstract operation CharacterSetMatcher takes two arguments, a CharSet A and a Boolean flag invert, and
performs the following:

1.

the following steps:

Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs

The abstrag

t operation Canonicalize takes a character parameter ch and performs-the following steps:

1. Lete be x's endIndex.
2. If e == InputLength, return failure.
3. letch be the character Input[e]
4. Let cc be the result of Canonicalize(ch).
5. Ifinvert is false, then
a If there does not exist a member a of set A such that Canonicalize(a) == ¢c, rétur
failure.
6. Else invertis true,
a If there exists a member a of set A such that Canonicalize(a) == cCs return failurg.
7. Let cap be x's captures internal array.
8. Lety be the State (e+1, cap).
9. Call c(y) and return its result.

1. If IgnorgCase is false, return ch.

2. Letubgch converted to upper case as if by calling the standard built€<in method
String.prototype.toUpperCase on the one-character String ch.

3. If u doep not consist of a single character, return ch.

4. Letcu be u's character.

5. If ch's cpde unit value is greater than or equal to decimal 428 and cu's code unit value is less than decimgl
128, then return ch.

6. Return gu.

NOTE 1 Harentheses of the form (Disjunction) sé€rve both to group the components of the Disjunction pdttern

together and
decimal num
internal procq

NOTE 2
inside Disjun
If Disjunction

operators, th
the Disjunctioj

For example,

matches the

Tlhe form (?= Disjunction) specifies a zero-width positive lookahead. In order for it to succeed, the pg

to save the result of the match. The result'can be used either in a backreference (\ followed by a nor
ber), referenced in a replace String, or-returned as part of an array from the regular expression mat
dure. To inhibit the capturing behaviour of parentheses, use the form (?: Disjunction) instead.

tion must match at the current position, but the current position is not advanced before matching the se
can match at the current position in several ways, only the first one is tried. Unlike other regular expre
bre is no backtracking.into a (?= form (this unusual behaviour is inherited from Perl). This only matters

h contains capturing-parentheses and the sequel of the pattern contains backreferences to those capture

/(2=(at))/ .exec("baaabac™)
empty String immediately after the first b and therefore returns the array:

zero
hing

ttern
uel.
sion
hen
S.

[, "aaa"]

To illustrate the lack of backtracking into the lookahead, consider:

/(?=(at))a*b\1/.exec('baaabac™)

This expression returns

[aba'™, ™"a']
and not:
["aaaba™, "a™]
NOTE 3 The form (?! Disjunction) specifies a zero-width negative lookahead. In order for it to succeed, the pattern

inside Disjunction must fail to match at the current position. The current position is not advanced before matching the
sequel. Disjunction can contain capturing parentheses, but backreferences to them only make sense from within

190 © ISO/IEC 2011 — Al rights reserved

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

ISO/IEC 16262:2011(E)

Disjunction itself. Backreferences to these capturing parentheses from elsewhere in the pattern always return undefined
because the negative lookahead must fail for the pattern to succeed. For example,

/(. *?)a(?1(a+t)b\2c)\2(.*)/.exec("baaabaac™)
looks for an a not immediately followed by some positive number n of a's, a b, another n a's (specified by the first \2) and
a c. The second \2 is outside the negative lookahead, so it matches against undefined and therefore always succeeds.
The whole expression returns the array:

['baaabaac™, '"ba', undefined, "abaac']

In case-insignificant matches all characters are implicitly converted to upper case immediately before they are compared.
However, if converting a character to upper case would expand that character into more than one character (such as
converting ""R"" (\UOODF) into "*SS"), then the character is left as-is instead. The character is also left as-is if it is not an
ASC|lLcharacter but converting it to upper case would make it into an ASCII character This prevents llnicade characters
such as \u0131 and \u017F from matching regular expressions such as /[a-z]/1i, which are only intenfled to match
ASC]I letters. Furthermore, if these conversions were allowed, then /["\W]/i would match each of a, b;...}, h, but not i
ors.

15.10.2.9 AtomEscape
The|production AtomEscape :: DecimalEscape evaluates as follows:

1. Evaluate DecimalEscape to obtain an EscapeValue E.

2. |f Eis acharacter, then

a. Letch be E's character.

b. Let A be a one-element CharSet containing the characterch.

c. Call CharacterSetMatcher(A, false) and return its Matcher result.

3. E must be an integer. Let n be that integer.
4. If n=0 or n>NCapturingParens then throw a SyntaxErrot exception.
5. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
he following:
1. Let cap be x's captures internalarray.
2. Letsbe cap[n].
3. If sis undefined, then call't(x) and return its result.
4. Lete be x's endIndex.
5. Letlen be s's lengtht
6. Letfbee+len.
7. If f>InputLengthy'return failure.
8. If there exists'an integer i between 0 (inclusive) and len (exclusive) such that

Canonicalize(s[i]) is not the same character as Canonicalize(Input [e+i]), then rgturn
failure.
9. Lety be the State (f, cap).
10. Call c(y) and return its result.

The|production‘AtemEscape :: CharacterEscape evaluates as follows:
1. Evaluate CharacterEscape to obtain a character ch.

2. |Let’A-be a one-element CharSet containing the character ch.
3. [LalMCharacterSetMatcher(A, false) and return its Matcher result.

The production AtomEscape :: CharacterClassEscape evaluates as follows:

1. Evaluate CharacterClassEscape to obtain a CharSet A.
2. Call CharacterSetMatcher(A, false) and return its Matcher result.

NOTE An escape sequence of the form \ followed by a nonzero decimal number n matches the result of the nth set
of capturing parentheses (see 15.10.2.11). It is an error if the regular expression has fewer than n capturing parentheses.
If the regular expression has n or more capturing parentheses but the nth one is undefined because it has not captured
anything, then the backreference always succeeds.

© ISO/IEC 2011 — All rights reserved 191

https://iecnorm.com/api/?name=0f51dc84243a6a605a453f2e9ed6fe36

	Information technology — Programminglanguages, their environments andsystem software interfaces —ECMAScript language specification
	Contents
	Foreword
	Introduction
	1 Scope
	2 Conformance
	3 Normative references
	4 Overview
	5 Notational Conventions
	6 Source Text
	7 Lexical Conventions
	8 Types
	9 Type Conversion and Testing
	10 Executable Code and Execution Contexts
	11 Expressions
	12 Statements
	13 Function Definition
	14 Program
	15 Standard Built-in ECMAScript Objects
	16 Errors
	Annex A(informative)Grammar Summary
	A.1 Lexical Grammar
	A.2 Number Conversions
	A.3 Expressions
	A.4 Statements
	A.5 Functions and Programs
	A.6 Universal Resource Identifier Character Classes
	A.7 Regular Expressions
	A.8 JSON
	Annex B(informative)Compatibility
	B.1 Additional Syntax
	B.2 Additional Properties
	Annex C(informative)The Strict Mode of ECMAScript
	Annex D(informative)Corrections and Clarifications in the 3rd Editionwith Possible 2nd Edition Compatibility Impact
	Annex E(informative)Additions and Changes in the 3rd Edition thatIntroduce Incompatibilities with the 2nd Edition
	Bibliography

